Smooth Muscle Silent Information Regulator 1 Contributes to Colitis in Mice
<p>Abnormal baseline intestinal architecture in mice <span class="html-italic">Sirt1</span>-Tg mice compared to WT mice. (<b>A</b>) qRT-PCR for the expression of SIRT1 in mouse colon smooth muscle tissue. (<b>B</b>) Representative images showing colon length of WT and <span class="html-italic">Sirt1</span>-Tg mice. (<b>C</b>) Statistics of colon length of WT and <span class="html-italic">Sirt1</span>-Tg mice. (<b>D</b>) Representative H&E-stained images, out of three independently acquired, of colon sections from the indicated groups of mice (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>E</b>) Representative Alcian-Blue-stained images, out of three independently acquired, of colon sections from the indicated groups (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>F</b>) Representative photomicrographs of colonic PCNA IHC staining in each group (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>G</b>) Quantified colonic crypt depth. (<b>H</b>) Quantification of the average number of goblet cells per crypt. (<b>I</b>) AOD analysis of IHC results of CLAUDIN2, <span class="html-italic">n</span> = 6. (<b>J</b>) Western blot detection of ZO1 and CLAUDIN1. (<b>K</b>) qRT-PCR for the expression of inflammation-related cytokines. All quantifications are represented as mean ± SD and statistical significance was assessed by two-tailed unpaired Student’s <span class="html-italic">t</span>-test. Actual <span class="html-italic">p</span>-values are indicated in each graph. * <span class="html-italic">p</span> < 0.05; ** <span class="html-italic">p</span> < 0.01; ns indicates no significant change. AOD: average optical density; GAPDH: glyceraldehyde-3-phosphate dehydrogenase.</p> "> Figure 2
<p><span class="html-italic">Sirt1</span>-Tg mice exhibit impaired intestinal regeneration in DSS-induced colitis. (<b>A</b>) Timeline of DSS treatment. Mice were exposed to 2.5% DSS for 5 days followed by 6 days of regular water to allow for epithelial restoration. (<b>B</b>) Representative images showing colon length at end point. (<b>C</b>) Statistics of colon length of WT and <span class="html-italic">Sirt1</span>-Tg mice with DSS. (<b>D</b>) Weight loss relative to % to initial weight, <span class="html-italic">n</span> = 6 mice per genotype, determined daily and compared to the weights at the start of DSS treatment for each mouse. (<b>E</b>) Disease activity index measured daily in mice described in a during DSS treatment schedule. (<b>F</b>) Representative H&E-stained images, out of three independently acquired, of colon sections from the indicated groups of mice treated at the end of DSS administration (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>G</b>) Histopathological changes in colon tissue of WT and <span class="html-italic">Sirt1</span>-Tg mice with DSS. (<b>H</b>) Representative Alcian-Blue-stained images, out of three independently acquired, of colon sections from the indicated groups of mice treated at the end of DSS administration (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>I</b>) Representative immunohistochemistry images of the PCNA in the colon, out of three independently acquired, of colon sections from the indicated groups of mice treated at the end of DSS administration (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>J</b>) AOD analysis of IHC results of PCNA, <span class="html-italic">n</span> = 6. (<b>K</b>) qPCR analysis of cZFP609 levels in colon tissue of mice at the end of DSS administration. Data are presented as mean ± SD of <span class="html-italic">n</span> = 6. All quantifications are represented as mean ± SD and statistical significance was assessed by two-tailed unpaired Student’s <span class="html-italic">t</span>-test. Actual <span class="html-italic">p</span>-values are indicated in each graph. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01 (two-tailed Student’s <span class="html-italic">t</span>-test).</p> "> Figure 3
<p>The conditioned medium (CM) of <span class="html-italic">Sirt1</span>-Tg CSMCs inhibits the proliferation of Caco-2 cells in vitro. (<b>A</b>) qRT-PCR of cZFP609 expression in CSMCs from WT or <span class="html-italic">Sirt1</span>-Tg mice treated with TNF-α for 24 h. (<b>B</b>) qRT-PCR of cZFP609 expression in Caco-2 cells incubated with the TNF-α-induced CSMC conditioned medium (CM) for 24 h and exposed to hypoxia. (<b>C</b>) Ratio of cell counting of Caco-2 cells incubated with the TNF-α-induced CSMC (CM) for 24 h and exposed to hypoxia. (<b>D</b>,<b>E</b>) Migration of Caco-2 cells was assessed using a scratch wound assay. Caco-2 cells were incubated with the TNF-α-induced CSMC exosomes (CM) for 24 h and exposed to hypoxia treated with TNF-α. (Scale bar: 200 µm.) Data are presented as mean ± SEM. (<b>F</b>) Immunofluorescent confocal microscopy of HIF1α nuclear translocation in the Caco-2 cells, Scale bars: 25 μm. Bar graphs show mean ± SEM. Student’s <span class="html-italic">t</span>-test or one-way ANOVA was used. ** <span class="html-italic">p</span> < 0.01 versus the corresponding control.</p> "> Figure 4
<p>cZFP609 inhibits proliferation in Caco-2 cells via inhibiting HIF1α nuclear translocation. (<b>A</b>) qRT-PCR of cZFP609 expression in Caco-2 cells treated with vector or cZFP609. (<b>B</b>) Ratio of cell counting of Caco-2 cells treated with vector or cZFP609. (<b>C</b>,<b>D</b>) Migration of Caco-2 cells was assessed using a scratch wound assay. Caco-2 cells treated with vector of cZFP609. (Scale bar: 200 µm). Data are presented as mean ± SEM. (<b>E</b>) Immunofluorescent confocal microscopy of HIF1α nuclear translocation in the Caco-2 cells. (Scale bars: 25 μm). Bar graphs show mean ± SEM. Student’s <span class="html-italic">t</span>-test or one-way ANOVA was used. ** <span class="html-italic">p</span> < 0.01 versus the corresponding control.</p> "> Figure 5
<p>cZFP609 inhibits endothelial regeneration after DSS-induced colitis. (<b>A</b>) Macroscopic colon appearance of tail-injected WT mice treated with DSS-induced colitis. (<b>B</b>) The colon length of vector and cZFP609 tail-injection mice. (<b>C</b>) Weight loss relative to % to initial weight, <span class="html-italic">n</span> = 6 mice per group, determined daily and compared to the weights at the start of DSS treatment for each mouse. (<b>D</b>) Disease activity index measured daily in tail-injection mice described during the DSS treatment schedule. (<b>E</b>) Representative H&E-stained images, out of three independently acquired, of colon sections from the indicated groups of mice treated at the end of DSS administration (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>F</b>) Histopathological changes in colon tissue of WT and <span class="html-italic">Sirt1</span>-Tg mice with DSS. (<b>G</b>) Representative Alcian-Blue-stained images, out of three independently acquired, of colon sections from the indicated groups of mice treated at the end of DSS administration (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>H</b>) Representative immunohistochemistry images of the PCNA in the colon, out of three independently acquired, of colon sections from the indicated groups of mice treated at the end of DSS administration (scale bar: 200 µm; scale bar in the enlarged image is 100 µm). (<b>I</b>) AOD analysis of IHC results of PCNA, <span class="html-italic">n</span> = 6. (<b>J</b>) qPCR analysis of cZFP609 levels in colon tissue of tail-injection treated mice at the end of DSS administration. All quantifications are represented as mean ± SD and statistical significance was assessed by two-tailed unpaired Student’s <span class="html-italic">t</span>-test. Actual <span class="html-italic">p</span>-values are indicated in each graph. * <span class="html-italic">p</span> < 0.05.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Sirt1-Tg Mice Exhibit Abnormal Baseline Intestinal Architecture
2.2. Sirt1-Tg Mice Exhibit Impaired Colonic Epithelium Regeneration in DSS-Induced Colitis
2.3. Sirt1-Tg CSMC-Derived cZFP609 Inhibits the Proliferation of Caco-2 Cells via Inhibiting HIF1α Nuclear Translocation
2.4. cZFP609 Aggravates DSS-Induced Injury and Impairs Epithelial Regeneration In Vivo
3. Discussion
4. Materials and Methods
4.1. Animals and Ethics Statement
4.2. DSS Mouse Model of Colitis
4.3. Assessment of Colitis Severity
4.4. Assessment of Histological Score
4.5. Immunohistochemistry (IHC)
4.6. Cell Culture and Conditioned Medium Collection
4.7. Proliferation Assay
4.8. Scratch Wound Assay
4.9. Immunofluorescence Staining
4.10. Quantitative Reverse-Transcription Polymerase Chain Reaction (RT-qPCR)
4.11. Plasmid Construction
4.12. Cell Transfection
4.13. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SMCs | Smooth muscle cells |
SIRT1 | Silent information regulator 1 |
IBD | Inflammatory bowel disease |
HIF | Hypoxia-inducible factor |
DSS | Dextran sulfate sodium |
CSMCs | Colonic smooth muscle cells |
CM | Conditioned media |
References
- Kobayashi, T.; Siegmund, B.; Le Berre, C.; Wei, S.C.; Ferrante, M.; Shen, B.; Bernstein, C.N.; Danese, S.; Peyrin-Biroulet, L.; Hibi, T. Ulcerative colitis. Nat. Rev. Dis. Primers 2020, 6, 74. [Google Scholar] [CrossRef] [PubMed]
- Krugliak Cleveland, N.; Rai, V.; El Jurdi, K.; Rao, S.S.; Giurcanu, M.C.; Rubin, D.T. Ulcerative Colitis Patients Have Reduced Rectal Compliance Compared With Non-Inflammatory Bowel Disease Controls. Gastroenterology 2022, 162, 331–333.e1. [Google Scholar] [CrossRef]
- Bai, X.; Chen, S.; Chi, X.; Xie, B.; Guo, X.; Feng, H.; Wei, P.; Zhang, D.; Xie, S.; Xie, T.; et al. Reciprocal regulation of T follicular helper cells and dendritic cells drives colitis development. Nat. Immunol. 2024, 25, 1383–1394. [Google Scholar] [CrossRef]
- Mennillo, E.; Kim, Y.J.; Lee, G.; Rusu, I.; Patel, R.K.; Dorman, L.C.; Flynn, E.; Li, S.; Bain, J.L.; Andersen, C.; et al. Single-cell and spatial multi-omics highlight effects of anti-integrin therapy across cellular compartments in ulcerative colitis. Nat. Commun. 2024, 15, 1493. [Google Scholar] [CrossRef] [PubMed]
- Mitsialis, V.; Wall, S.; Liu, P.; Ordovas-Montanes, J.; Parmet, T.; Vukovic, M.; Spencer, D.; Field, M.; McCourt, C.; Toothaker, J.; et al. Single-Cell Analyses of Colon and Blood Reveal Distinct Immune Cell Signatures of Ulcerative Colitis and Crohn’s Disease. Gastroenterology 2020, 159, 591–608. [Google Scholar] [CrossRef] [PubMed]
- Roulis, M.; Flavell, R.A. Fibroblasts and myofibroblasts of the intestinal lamina propria in physiology and disease. Differentiation 2016, 92, 116–131. [Google Scholar] [CrossRef]
- Powell, D.W.; Pinchuk, I.; Saada, J.; Chen, X.; Mifflin, R. Mesenchymal cells of the intestinal lamina propria. Annu. Rev. Physiol. 2011, 73, 213–237. [Google Scholar] [CrossRef] [PubMed]
- Pinchuk, I.V.; Mifflin, R.C.; Saada, J.I.; Powell, D.W. Intestinal mesenchymal cells. Curr. Gastroenterol. Rep. 2010, 12, 310–318. [Google Scholar] [CrossRef]
- Katajisto, P.; Vaahtomeri, K.; Ekman, N.; Ventelä, E.; Ristimäki, A.; Bardeesy, N.; Feil, R.; A DePinho, R.; Mäkelä, T.P. LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat. Genet. 2008, 40, 455–459. [Google Scholar] [CrossRef]
- Nogueiras, R.; Habegger, K.M.; Chaudhary, N.; Finan, B.; Banks, A.S.; Dietrich, M.O.; Horvath, T.L.; Sinclair, D.A.; Pfluger, P.T.; Tschöop, M.H. Sirtuin 1 and sirtuin 3: Physiological modulators of metabolism. Physiol. Rev. 2012, 92, 1479–1514. [Google Scholar] [CrossRef] [PubMed]
- Elesela, S.; Morris, S.B.; Narayanan, S.; Kumar, S.; Lombard, D.B.; Lukacs, N.W. Sirtuin 1 regulates mitochondrial function and immune homeostasis in respiratory syncytial virus infected dendritic cells. PLoS Pathog. 2020, 16, e1008319. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.; Singh, N.; Jaggi, A.S. Dual role of sirtuin 1 in inflammatory bowel disease. Immunopharmacol. Immunotoxicol. 2020, 42, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Dou, Y.Q.; Kong, P.; Li, C.-L.; Sun, H.-X.; Li, W.-W.; Yu, Y.; Nie, L.; Zhao, L.-L.; Miao, S.-B.; Li, X.-K.; et al. Smooth muscle SIRT1 reprograms endothelial cells to suppress angiogenesis after ischemia. Theranostics 2020, 10, 1197–1212. [Google Scholar] [CrossRef]
- Guenin-Mace, L.; Konieczny, P.; Naik, S. Immune-Epithelial Cross Talk in Regeneration and Repair. Annu. Rev. Immunol. 2023, 41, 207–228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Medik, Y.B.; Patel, B.; Zamler, D.B.; Chen, S.; Chapman, T.; Schneider, S.; Park, E.M.; Babcock, R.L.; Chrisikos, T.T.; et al. Intestinal toxicity to CTLA-4 blockade driven by IL-6 and myeloid infiltration. J. Exp. Med. 2023, 220, e20221333. [Google Scholar] [CrossRef]
- Jęśko, H.; Wencel, P.; Strosznajder, R.P.; Strosznajder, J.B. Sirtuins and Their Roles in Brain Aging and Neurodegenerative Disorders. Neurochem. Res. 2017, 42, 876–890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xue, H.; Zhao, G.; Qiao, C.; Sun, X.; Pang, C.; Zhang, D. Curcumin and resveratrol suppress dextran sulfate sodium-induced colitis in mice. Mol. Med. Rep. 2019, 19, 3053–3060. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.P.; Singh, N.P.; Singh, B.; Hofseth, L.J.; Price, R.L.; Nagarkatti, M.; Nagarkatti, P.S. Resveratrol (trans-3,5,4′-trihydroxystilbene) induces silent mating type information regulation-1 and down-regulates nuclear transcription factor-kappaB activation to abrogate dextran sulfate sodium-induced colitis. J. Pharmacol. Exp. Ther. 2010, 332, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Lo Sasso, G.; Ryu, D.; Mouchiroud, L.; Fernando, S.C.; Anderson, C.L.; Katsyuba, E.; Piersigilli, A.; Hottiger, M.O.; Schoonjans, K.; Auwerx, J. Loss of Sirt1 function improves intestinal anti-bacterial defense and protects from colitis-induced colorectal cancer. PLoS ONE 2014, 9, e102495. [Google Scholar] [CrossRef] [PubMed]
- Kinchen, J.; Chen, H.H.; Parikh, K.; Antanaviciute, A.; Jagielowicz, M.; Fawkner-Corbett, D.; Ashley, N.; Cubitt, L.; Mellado-Gomez, E.; Attar, M.; et al. Structural Remodeling of the Human Colonic Mesenchyme in Inflammatory Bowel Disease. Cell 2018, 175, 372–386.e17. [Google Scholar] [CrossRef]
- Chalubinski, M.; Zemanek, K.; Skowron, W.; Wojdan, K.; Gorzelak, P.; Broncel, M. The effect of 7-ketocholesterol and 25-hydroxycholesterol on the integrity of the human aortic endothelial and intestinal epithelial barriers. Inflamm. Res. 2013, 62, 1015–1023. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Wang, Y.; Chao, Y.; Zhang, J.; Jia, Y.; Tie, J.; Hu, D. Regulation of SIRT1 and Its Roles in Inflammation. Front. Immunol. 2022, 13, 831168. [Google Scholar] [CrossRef]
- Boeckel, J.N.; Jaé, N.; Heumüller, A.W.; Chen, W.; Boon, R.A.; Stellos, K.; Zeiher, A.M.; John, D.; Uchida, S.; Dimmeler, S. Identification and Characterization of Hypoxia-Regulated Endothelial Circular RNA. Circ. Res. 2015, 117, 884–890. [Google Scholar] [CrossRef]
- Chen, L.L. The expanding regulatory mechanisms and cellular functions of circular RNAs. Nat. Rev. Mol. Cell Biol. 2020, 21, 475–490. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; He, T.; Chen, Q. The Roles of CircRNAs in Regulating Muscle Development of Livestock Animals. Front. Cell Dev. Biol. 2021, 9, 619329. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhang, H.-N.; Chen, H.-Z.; Gao, P.; Zhu, L.-H.; Li, H.-L.; Lv, X.; Zhang, Q.-J.; Zhang, R.; Wang, Z.; et al. SIRT1 acts as a modulator of neointima formation following vascular injury in mice. Circ. Res. 2011, 108, 1180–1189. [Google Scholar] [CrossRef]
- Kiesler, P.; Fuss, I.J.; Strober, W. Experimental Models of Inflammatory Bowel Diseases. Cell Mol. Gastroenterol. Hepatol. 2015, 1, 154–170. [Google Scholar] [CrossRef] [PubMed]
- Wirtz, S.; Popp, V.; Kindermann, M.; Gerlach, K.; Weigmann, B.; Fichtner-Feigl, S.; Neurath, M.F. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 2017, 12, 1295–1309. [Google Scholar] [CrossRef]
- Liu, F.; Song, Y.; Liu, D. Hydrodynamics-based transfection in animals by systemic administration of plasmid DNA. Gene Ther. 1999, 6, 1258–1266. [Google Scholar] [CrossRef] [PubMed]
- Yasser, M.; Ribback, S.; Evert, K.; Utpatel, K.; Annweiler, K.; Evert, M.; Dombrowski, F.; Calvisi, D.F. Early Subcellular Hepatocellular Alterations in Mice Post Hydrodynamic Transfection: An Explorative Study. Cancers 2023, 15, 328. [Google Scholar] [CrossRef]
- Wirtz, S.; Neufert, C.; Weigmann, B.; Neurath, M.F. Chemically induced mouse models of intestinal inflammation. Nat. Protoc. 2007, 2, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Ghia, J.E.; Li, N.; Wang, H.; Collins, M.; Deng, Y.; El-Sharkawy, R.T.; Côté, F.; Mallet, J.; Khan, W.I. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009, 137, 1649–1660. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Ko, J.-H.; Jeon, Y.-D.; Han, Y.-H.; Kim, H.-J.; Poudel, A.; Jung, H.-J.; Ku, S.-K.; Kim, S.-J.; Park, S.-H.; et al. Ixeris dentata NAKAI Reduces Clinical Score and HIF-1 Expression in Experimental Colitis in Mice. Evid. Based Complement Altern. Med. 2013, 2013, 671281. [Google Scholar] [CrossRef] [PubMed]
- Angstenberger, M.; Wegener, J.W.; Pichler, B.J.; Judenhofer, M.S.; Feil, S.; Alberti, S.; Feil, R.; Nordheim, A. Severe intestinal obstruction on induced smooth muscle-specific ablation of the transcription factor SRF in adult mice. Gastroenterology 2007, 133, 1948–1959. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Nam, D.; Park, K.S. Substance P enhances cellular migration and inhibits senescence in human dermal fibroblasts under hyperglycemic conditions. Biochem. Biophys. Res. Commun. 2020, 522, 917–923. [Google Scholar] [CrossRef] [PubMed]
Primer Sequence | ||
---|---|---|
Mouse ZFP609 | Forward | GGCCACTAAAGAAAGTCAAGTCTG |
Reverse | GGACATCTTAGAGTCAACGTCCC | |
Human SIRT1 | Forward | TGTTTCATGTGGAATACCTGA |
Reverse | TGAAGAATGGTCTTGGATCTT | |
Mouse GAPDH | Forward | TGGATTTGGACGCATTGGTC |
Reverse | TTTGCACTGGTACGTGTTGAT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Song, Y.; Shen, M.; Liu, X.; Zhang, W.; Jiang, H.; Han, M. Smooth Muscle Silent Information Regulator 1 Contributes to Colitis in Mice. Int. J. Mol. Sci. 2025, 26, 1807. https://doi.org/10.3390/ijms26051807
Liu X, Song Y, Shen M, Liu X, Zhang W, Jiang H, Han M. Smooth Muscle Silent Information Regulator 1 Contributes to Colitis in Mice. International Journal of Molecular Sciences. 2025; 26(5):1807. https://doi.org/10.3390/ijms26051807
Chicago/Turabian StyleLiu, Xiaoqin, Yu Song, Mengmeng Shen, Xinlong Liu, Wendi Zhang, Haibin Jiang, and Mei Han. 2025. "Smooth Muscle Silent Information Regulator 1 Contributes to Colitis in Mice" International Journal of Molecular Sciences 26, no. 5: 1807. https://doi.org/10.3390/ijms26051807
APA StyleLiu, X., Song, Y., Shen, M., Liu, X., Zhang, W., Jiang, H., & Han, M. (2025). Smooth Muscle Silent Information Regulator 1 Contributes to Colitis in Mice. International Journal of Molecular Sciences, 26(5), 1807. https://doi.org/10.3390/ijms26051807