A Comprehensive Review of Nanoparticle-Based Drug Delivery for Modulating PI3K/AKT/mTOR-Mediated Autophagy in Cancer
<p>The PI3K/AKT/mTOR pathway in Cancer. After a growth factor binds to its receptor, the route activates Class I phosphoinositide 3-kinases. Receptor tyrosine kinases activate Class IA PI3K, while G-protein-coupled receptors activate Class IB. Both classes convert PIP2 into PIP3, which recruits and activates plasma membrane AKT. Activated AKT phosphorylates and suppresses TSC1/2, a negative regulator of mTORC1. This blockage activates mTORC1, a protein synthesis, cell metabolism, and growth master regulator. The mTORC1 complex boosts translation and cancer growth, proliferation, and survival. The mechanism also aids cancer migration and metastasis. The figure was created using the <a href="http://BioRender.com" target="_blank">BioRender.com</a> online commercial platform.</p> "> Figure 2
<p>PI3K/AKT/mTOR and autophagy-mediated nanoparticle signaling in cancer. Nanoparticles bind with receptor tyrosine kinases (RTKs) on cancer cells, initiating the activation of the PI3K/AKT/mTOR signaling cascade. Activated PI3K produces PIP3, which attracts and activates AKT. AKT phosphorylates and inhibits the TSC1/2 (tuberous sclerosis complex), hence obstructing the inhibition of Rheb, a small GTPase that stimulates mTORC1 and autophagy-mediated cell death. Nanoparticles play a significant role in cancer therapy by modulating reactive oxygen species (ROS) levels and inducing apoptosis in cancer cells. The interactions among nanoparticles, ROS production, and apoptosis can occur either independently or simultaneously in cancer cells, depending upon cellular context, NP characteristics, and microenvironmental factors. The figure was created using the <a href="http://BioRender.com" target="_blank">BioRender.com</a> online commercial platform.</p> "> Figure 3
<p>Key nanoparticle categories for cancer drug delivery. Many nanoparticles are used in cancer therapy and a therapeutic use. Liposomes and solid lipid nanoparticles (SLNs) are intensively explored for encapsulating hydrophilic and hydrophobic medicines. Another important group is polymer-based nanoparticles, such as PLGA, chitosan, and dendrimers. PLGA nanoparticles are biocompatible and biodegradable, making them excellent for prolonged drug release. Chitosan, a natural polymer, is mucoadhesive and ideal for targeted therapy. Dendrimers’ branching architectures enable precise drug loading and functionalization, improving targeting. Gold nanoparticles (AuNPs), silica nanoparticles, and quantum dots are recognized for their unique functions. In photothermal therapy, gold nanoparticles absorb light and generate heat to kill cancer cells. Silica nanoparticles’ porous architecture allows high drug loading, while quantum dots’ fluorescence allows imaging-guided drug delivery. Hybrid nanoparticles combine organic and inorganic benefits. Lipid-coated gold nanoparticles combine biocompatibility with photothermal characteristics, improving cancer treatment. The figure was created using the BioRender online commercial platform.</p> "> Figure 4
<p>Modulation of PI3K/AKT/mTOR-mediated autophagy by NPs in cancer therapy. The dual function of nanoparticles (NPs) in modulating the PI3K/AKT/mTOR signaling pathway to regulate autophagy in cancer cells. Nanoparticles, including gold nanoparticles (AuNPs), silica nanoparticles (SiNPs), lipid-based nanoparticles, iron oxide nanoparticles (IONPs), graphene oxide nanoparticles (GONPs), chitosan-based nanoparticles, and polymeric nanoparticles, impede the PI3K/AKT/mTOR pathway, resulting in the induction of autophagy. This pathway promotes cancer cell death by elevating autophagic flux, oxidative stress, and apoptosis. Conversely, some nanoparticles, such as cerium oxide nanoparticles (CeONPs), silica-coated quantum dots, calcium phosphate nanoparticles (CaPNPs), and albumin-based nanoparticles stimulate the PI3K/AKT/mTOR pathway, thereby suppressing autophagy. This inhibition diminishes autophagy-related cancer cell survival, hence augmenting the effectiveness of chemotherapeutic drugs. The figure was created using the <a href="http://BioRender.com" target="_blank">BioRender.com</a> online commercial platform.</p> ">
Abstract
:1. Introduction
2. Nanoparticles-Based Drug Delivery in Cancer Management
2.1. Classification and Categories of Nanoparticles
2.2. Benefits of Drug Delivery Utilizing Nanoparticles
2.3. Application of Nanoparticles in Cancer Treatment
3. Targeting PI3K/AKT/mTOR-Mediated Autophagy with Nanoparticles
3.1. Small Molecule Inhibitors
3.2. siRNA and Gene Therapy
3.3. Combination Therapies
4. Nanoparticles and Their Molecular Mechanisms Modulating PI3K/AKT/mTOR-Mediated Autophagy in Cancer
4.1. Nanoparticles That Induce Autophagy via PI3K/AKT/mTOR Inhibition
4.2. Nanoparticles That Inhibit Autophagy via PI3K/AKT/mTOR Activation
5. Perspectives, Challenges, and Future Directions in Targeting PI3K/AKT/mTOR-Mediated Autophagy Utilizing Nanoparticles
5.1. Perspectives
5.2. Challenges
5.2.1. Biocompatibility and Possible Toxicity
5.2.2. Immune System Recognition and Clearance
5.2.3. Enhancement and Consistency of Nanoparticle Fabrication
5.2.4. Tumor Heterogeneity
5.3. Future Directions
5.3.1. Creation of Stimuli-Responsive Nanoparticles for Spatiotemporal Regulation of Drug Release
5.3.2. Incorporation of Artificial Intelligence and Machine Learning in Nanoparticle Design
5.3.3. Clinical Trials to Assess Safety and Efficacy in Varied Patient Populations
5.3.4. Investigation of Nanoparticles for Customized Cancer Therapy
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chun, Y.; Kim, J. Autophagy: An essential degradation program for cellular homeostasis and life. Cells 2018, 7, 278. [Google Scholar] [CrossRef]
- Rahman, M.A.; Shaikh, M.H.; Gupta, R.D.; Siddika, N.; Shaikh, M.S.; Zafar, M.S.; Kim, B.; Hoque Apu, E. Advancements in Autophagy Modulation for the Management of Oral Disease: A Focus on Drug Targets and Therapeutics. Biomedicines 2024, 12, 2645. [Google Scholar] [CrossRef]
- Yun, C.W.; Jeon, J.; Go, G.; Lee, J.H.; Lee, S.H. The dual role of autophagy in cancer development and a therapeutic strategy for cancer by targeting autophagy. Int. J. Mol. Sci. 2020, 22, 179. [Google Scholar] [CrossRef]
- Morgos, D.-T.; Stefani, C.; Miricescu, D.; Greabu, M.; Stanciu, S.; Nica, S.; Stanescu-Spinu, I.-I.; Balan, D.G.; Balcangiu-Stroescu, A.-E.; Coculescu, E.-C. Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int. J. Mol. Sci. 2024, 25, 1848. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Han, X.; Ou, D.; Liu, T.; Li, Z.; Jiang, G.; Liu, J.; Zhang, J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol. 2020, 104, 575–587. [Google Scholar] [CrossRef]
- Piekarski, A.L. Autophagy and its Potential Role in Stress and Feed Efficiency Using Avian Lines; University of Arkansas: Fayetteville, AR, USA, 2015. [Google Scholar]
- Jorissen, R.N.; Walker, F.; Pouliot, N.; Garrett, T.P.; Ward, C.W.; Burgess, A.W. Epidermal growth factor receptor: Mechanisms of activation and signalling. EGF Recept. Fam. 2003, 284, 33–55. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Lin, W.; Wang, L.; Ni, Z.; Jin, F.; Zha, X.; Fei, G. Combined targeting of mTOR and Akt using rapamycin and MK-2206 in the treatment of tuberous sclerosis complex. J. Cancer 2017, 8, 555. [Google Scholar] [CrossRef] [PubMed]
- Marzoog, B.A. Autophagy in cancer cell transformation: A potential novel therapeutic strategy. Curr. Cancer Drug Targets 2022, 22, 749–756. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stanescu-Spinu, I.-I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int. J. Mol. Sci. 2020, 22, 173. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wei, H.; Liu, F.; Guan, J.-L. Hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) promotes breast cancer progression through enhancing glucose starvation-induced autophagy and Akt signaling. J. Biol. Chem. 2014, 289, 1164–1173. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Luo, D.; Zhou, X.; Sun, Q.; Shen, P.; Wang, S. Combined effects of hyperthermia and chemotherapy on the regulate autophagy of oral squamous cell carcinoma cells under a hypoxic microenvironment. Cell Death Discov. 2021, 7, 227. [Google Scholar] [CrossRef]
- Li, H.; Wen, X.; Ren, Y.; Fan, Z.; Zhang, J.; He, G.; Fu, L. Targeting PI3K family with small-molecule inhibitors in cancer therapy: Current clinical status and future directions. Mol. Cancer 2024, 23, 164. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Wan, W.-D.; Jiang, C.; Li, N. Targeting PI3K/AKT/mTOR Signaling to Overcome Drug Resistance in Cancer. Chem. Biol. Interact. 2024, 396, 111055. [Google Scholar] [CrossRef]
- Zhou, H.; Huang, S. The complexes of mammalian target of rapamycin. Curr. Protein Pept. Sci. 2010, 11, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Cho, Y.; Nam, G.; Rhim, H. Antioxidant compound, oxyresveratrol, inhibits APP production through the AMPK/ULK1/mTOR-mediated autophagy pathway in mouse cortical astrocytes. Antioxidants 2021, 10, 408. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Geng, D.; Wang, M. Advances in natural products modulating autophagy influenced by cellular stress conditions and their anticancer roles in the treatment of ovarian cancer. FASEB J. 2024, 38, e70075. [Google Scholar] [CrossRef]
- Glaviano, A.; Foo, A.S.; Lam, H.Y.; Yap, K.C.; Jacot, W.; Jones, R.H.; Eng, H.; Nair, M.G.; Makvandi, P.; Geoerger, B.; et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023, 22, 138. [Google Scholar] [CrossRef]
- Elumalai, K.; Srinivasan, S.; Shanmugam, A. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomed. Technol. 2024, 5, 109–122. [Google Scholar] [CrossRef]
- Choi, J.; Kim, B.H. Ligands of Nanoparticles and Their Influence on the Morphologies of Nanoparticle-Based Films. Nanomaterials 2024, 14, 1685. [Google Scholar] [CrossRef] [PubMed]
- Sajeevan, D.; Are, R.P.; Hota, P.; Babu, A.R. Nanoparticles as Drug Delivery Carrier-synthesis, Functionalization and Application. Curr. Pharm. Des. 2025, 31, 244–260. [Google Scholar] [CrossRef] [PubMed]
- Hristova-Panusheva, K.; Xenodochidis, C.; Georgieva, M.; Krasteva, N. Nanoparticle-Mediated Drug Delivery Systems for Precision Targeting in Oncology. Pharmaceuticals 2024, 17, 677. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Zou, H.; Li, Z.; Wu, H. Recent advances in nanomaterial-driven strategies for diagnosis and therapy of vascular anomalies. J. Nanobiotechnol. 2024, 22, 120. [Google Scholar] [CrossRef]
- Dehchani, A.J.; Jafari, A.; Shahi, F. Nanogels in Biomedical Engineering: Revolutionizing Drug Delivery, Tissue Engineering, and Bioimaging. Polym. Adv. Technol. 2024, 35, e6595. [Google Scholar] [CrossRef]
- Alharbi, H.M.; Alqahtani, T.; Alamri, A.H.; Kumarasamy, V.; Subramaniyan, V.; Babu, K.S. Nanotechnological synergy of mangiferin and curcumin in modulating PI3K/Akt/mTOR pathway: A novel front in ovarian cancer precision therapeutics. Front. Pharmacol. 2024, 14, 1276209. [Google Scholar] [CrossRef]
- Jirandehi, A.K.; Asgari, R.; Shahbaz, S.K.; Rezaei, N. Nanomedicine marvels: Crafting the future of cancer therapy with innovative statin nano-formulation strategies. Nanoscale Adv. 2024, 6, 5748–5772. [Google Scholar] [CrossRef] [PubMed]
- Sunoqrot, S.; Abusulieh, S.; Sabbah, D. Polymeric Nanoparticles Potentiate the Anticancer Activity of Novel PI3Kα Inhibitors Against Triple-Negative Breast Cancer Cells. Biomedicines 2024, 12, 2676. [Google Scholar] [CrossRef]
- Paul, G.; Gupta, U.; Shah, H.; Mazahir, F.; Yadav, A. Inorganic and metal-based nanoparticles. In Molecular Pharmaceutics and Nano Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2024; pp. 203–235. [Google Scholar]
- Oehler, J.B.; Rajapaksha, W.; Albrecht, H. Emerging applications of nanoparticles in the diagnosis and treatment of breast cancer. J. Pers. Med. 2024, 14, 723. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.K.; Debnath, M.; Ghosh, A.; Srivastava, R.; Omri, A. Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications. Pharmaceuticals 2024, 17, 1389. [Google Scholar] [CrossRef]
- Darwish, M.A.; Abd-Elaziem, W.; Elsheikh, A.; Zayed, A.A. Advancements in Nanomaterials for Nanosensors: A Comprehensive Review. Nanoscale Adv. 2024, 6, 4015–4046. [Google Scholar] [CrossRef] [PubMed]
- Mirabdali, S.; Ghafouri, K.; Farahmand, Y.; Gholizadeh, N.; Yazdani, O.; Esbati, R.; Hajiagha, B.S.; Rahimi, A. The role and function of autophagy through signaling and pathogenetic pathways and lncRNAs in ovarian cancer. Pathol. Res. Pract. 2024, 253, 154899. [Google Scholar] [CrossRef] [PubMed]
- Tang, M.; Zhang, Z.; Wang, P.; Zhao, F.; Miao, L.; Wang, Y.; Li, Y.; Li, Y.; Gao, Z. Advancements in precision nanomedicine design targeting the anoikis-platelet interface of circulating tumor cells. Acta Pharm. Sin. B 2024, 14, 3457–3475. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Hao, S.-L.; Yang, W.-X. Nanoparticles induce autophagy via mTOR pathway inhibition and reactive oxygen species generation. Nanomedicine 2020, 15, 1419–1435. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Qian, R.; Wang, Z.; Qi, R.; Zhang, Z. Exploiting Nanotechnology for Drug Delivery: Advancing the Anti-Cancer Effects of Autophagy-Modulating Compounds in Traditional Chinese Medicine. Int. J. Nanomed. 2024, 19, 2507–2528. [Google Scholar] [CrossRef] [PubMed]
- Tavakol, S.; Ashrafizadeh, M.; Deng, S.; Azarian, M.; Abdoli, A.; Motavaf, M.; Poormoghadam, D.; Khanbabaei, H.; Ghasemipour Afshar, E.; Mandegary, A.; et al. Autophagy modulators: Mechanistic aspects and drug delivery systems. Biomolecules 2019, 9, 530. [Google Scholar] [CrossRef] [PubMed]
- Kargozar, S.; Baino, F.; Hamzehlou, S.; Hamblin, M.R.; Mozafari, M. Nanotechnology for angiogenesis: Opportunities and challenges. Chem. Soc. Rev. 2020, 49, 5008–5057. [Google Scholar] [CrossRef] [PubMed]
- Negi, S.; Chaudhuri, A.; Kumar, D.N.; Dehari, D.; Singh, S.; Agrawal, A.K. Nanotherapeutics in autophagy: A paradigm shift in cancer treatment. Drug Deliv. Transl. Res. 2022, 12, 2589–2612. [Google Scholar] [CrossRef]
- Badawy, M.M.; Abdel-Hamid, G.R.; Mohamed, H.E. Antitumor activity of chitosan-coated iron oxide nanocomposite against hepatocellular carcinoma in animal models. Biol. Trace Elem. Res. 2023, 201, 1274–1285. [Google Scholar] [CrossRef]
- Mendes, R.; Carreira, B.; Baptista, P.V.; Fernandes, A.R. Non-small cell lung cancer biomarkers and targeted therapy-two faces of the same coin fostered by nanotechnology. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 155–168. [Google Scholar] [CrossRef]
- Sharma, V.; Sharma, A.K.; Punj, V.; Priya, P. Recent nanotechnological interventions targeting PI3K/Akt/mTOR pathway: A focus on breast cancer. Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2019; pp. 133–146. [Google Scholar]
- Ihlamur, M.; Akgül, B.; Zengin, Y.; Korkut, Ş.V.; Kelleci, K.; Abamor, E.Ş. The mTOR Signaling pathway and mTOR Inhibitors in cancer: Next-generation inhibitors and approaches. Curr. Mol. Med. 2024, 24, 478–494. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Liu, L.; Tian, Y.; Gu, M.; Wang, Y.; Ashrafizadeh, M.; Aref, A.R.; Cañadas, I.; Klionsky, D.J.; Goel, A. Autophagy-driven regulation of cisplatin response in human cancers: Exploring molecular and cell death dynamics. Cancer Lett. 2024, 587, 216659. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Aalhate, M.; Guru, S.K.; Singh, P.K. Nanomedicine as a magic bullet for combating lymphoma. J. Control. Release 2022, 347, 211–236. [Google Scholar] [CrossRef] [PubMed]
- Walweel, N.; Aydin, O. Enhancing therapeutic efficacy in cancer treatment: Integrating nanomedicine with autophagy inhibition strategies. ACS Omega 2024, 9, 27832–27852. [Google Scholar] [CrossRef]
- Paskeh, M.D.A.; Entezari, M.; Clark, C.; Zabolian, A.; Ranjbar, E.; Farahani, M.V.; Saleki, H.; Sharifzadeh, S.O.; Far, F.B.; Ashrafizadeh, M. Targeted regulation of autophagy using nanoparticles: New insight into cancer therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166326. [Google Scholar] [CrossRef] [PubMed]
- Elmetwalli, A.; El-Sewedy, T.; Hassan, M.G.; Abdel-Monem, M.O.; Hassan, J.; Ismail, N.F.; Salama, A.F.; Fu, J.; Mousa, N.; Sabir, D.K. Gold nanoparticles mediate suppression of angiogenesis and breast cancer growth via MMP-9/NF-κB/mTOR and PD-L1/PD-1 signaling: Integrative in vitro validation and network pharmacology insights. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2024, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yu, T.; Ding, L.; Laurini, E.; Huang, Y.; Zhang, M.; Weng, Y.; Lin, S.; Chen, P.; Marson, D. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J. Am. Chem. Soc. 2018, 140, 16264–16274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Feng, G.; Yang, S.; Liu, B.; Niu, Y.; Fan, P.; Liu, Z.; Chen, J.; Cui, L.; Zhou, G.; et al. Polyethylenimine-modified mesoporous silica nanoparticles induce a survival mechanism in vascular endothelial cells via microvesicle-mediated autophagosome release. ACS Nano 2021, 15, 10640–10658. [Google Scholar] [CrossRef]
- Godakhindi, V.; Tarannum, M.; Dam, S.K.; Vivero-Escoto, J.L. Mesoporous Silica Nanoparticles as an Ideal Platform for Cancer Immunotherapy: Recent Advances and Future Directions. Adv. Healthc. Mater. 2024, 13, e2400323. [Google Scholar] [CrossRef]
- Scioli Montoto, S.; Muraca, G.; Ruiz, M.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects. Front. Mol. Biosci. 2020, 7, 587997. [Google Scholar] [CrossRef]
- Salama, A.M.; Yasin, G.; Zourob, M.; Lu, J. Fluorescent Biosensors for the Detection of Viruses Using Graphene and Two-Dimensional Carbon Nanomaterials. Biosensors 2022, 12, 460. [Google Scholar] [CrossRef] [PubMed]
- Neerooa, B.; Ooi, L.T.; Shameli, K.; Dahlan, N.A.; Islam, J.M.M.; Pushpamalar, J.; Teow, S.Y. Development of Polymer-Assisted Nanoparticles and Nanogels for Cancer Therapy: An Update. Gels 2021, 7, 60. [Google Scholar] [CrossRef] [PubMed]
- Rawat, P.S.; Jaiswal, A.; Khurana, A.; Bhatti, J.S.; Navik, U. Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed. Pharmacother. 2021, 139, 111708. [Google Scholar] [CrossRef] [PubMed]
- Ning, L.; Zhu, B.; Gao, T. Gold Nanoparticles: Promising Agent to Improve the Diagnosis and Therapy of Cancer. Curr. Drug Metab. 2017, 18, 1055–1067. [Google Scholar] [CrossRef] [PubMed]
- Sanaei, M.J.; Baghery Saghchy Khorasani, A.; Pourbagheri-Sigaroodi, A.; Shahrokh, S.; Zali, M.R.; Bashash, D. The PI3K/Akt/mTOR axis in colorectal cancer: Oncogenic alterations, non-coding RNAs, therapeutic opportunities, and the emerging role of nanoparticles. J. Cell Physiol. 2022, 237, 1720–1752. [Google Scholar] [CrossRef]
- Narayan, R.; Nayak, U.Y.; Raichur, A.M.; Garg, S. Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances. Pharmaceutics 2018, 10, 118. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Butnariu, M.; Rotariu, L.S.; Sytar, O.; Sestito, S.; Rapposelli, S.; Akram, M.; Iqbal, M.; Krishna, A.; et al. Chitosan nanoparticles as a promising tool in nanomedicine with particular emphasis on oncological treatment. Cancer Cell Int. 2021, 21, 318. [Google Scholar] [CrossRef] [PubMed]
- Zahedipour, F.; Bolourinezhad, M.; Teng, Y.; Sahebkar, A. The Multifaceted Therapeutic Mechanisms of Curcumin in Osteosarcoma: State-of-the-Art. J. Oncol. 2021, 2021, 3006853. [Google Scholar] [CrossRef]
- Thakur, S.; Bi, A.; Mahmood, S.; Samriti; Ruzimuradov, O.; Gupta, R.; Cho, J.; Prakash, J. Graphene oxide as an emerging sole adsorbent and photocatalyst: Chemistry of synthesis and tailoring properties for removal of emerging contaminants. Chemosphere 2024, 352, 141483. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured Lipid Carriers: A Groundbreaking Approach for Transdermal Drug Delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Liu, W.; Liu, H.; Zhang, S.; Hao, H.; Meng, F.; Ma, W.; Guo, Z.; Jiang, S.; Shang, X. Silica nanoparticles cause ovarian dysfunction and fertility decrease in mice via oxidative stress-activated autophagy and apoptosis. Ecotoxicol. Environ. Saf. 2024, 285, 117049. [Google Scholar] [CrossRef]
- Yoon, M.S. Nanotechnology-Based Targeting of mTOR Signaling in Cancer. Int. J. Nanomed. 2020, 15, 5767–5781. [Google Scholar] [CrossRef]
- Yu, S.; Tong, L.; Shen, J.; Li, C.; Hu, Y.; Feng, K.; Shao, J. Recent research progress based on ferroptosis-related signaling pathways and the tumor microenvironment on it effects. Eur. J. Med. Chem. 2024, 269, 116290. [Google Scholar] [CrossRef]
- Wang, W.; Su, Y.; Qi, R.; Li, H.; Jiang, H.; Li, F.; Li, B.; Sun, H. Indoxacarb triggers autophagy and apoptosis through ROS accumulation mediated by oxidative phosphorylation in the midgut of Bombyx mori. Pestic. Biochem. Physiol. 2024, 200, 105812. [Google Scholar] [CrossRef]
- Mishra, B.; Yadav, A.S.; Malhotra, D.; Mitra, T.; Sinsinwar, S.; Radharani, N.N.V.; Sahoo, S.R.; Patnaik, S.; Kundu, G.C. Chitosan Nanoparticle-Mediated Delivery of Curcumin Suppresses Tumor Growth in Breast Cancer. Nanomaterials 2024, 14, 1294. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, L.; Hao, Q.; Cai, M.; Wang, X.; An, W. Harnessing glucose metabolism with nanomedicine for cancer treatment. Theranostics 2024, 14, 6831–6882. [Google Scholar] [CrossRef]
- Sun, X.; Xu, X.; Yue, X.; Wang, T.; Wang, Z.; Zhang, C.; Wang, J. Nanozymes with Osteochondral Regenerative Effects: An Overview of Mechanisms and Recent Applications. Adv. Healthc. Mater. 2024, 13, e2301924. [Google Scholar] [CrossRef]
- Fan, Z.; Shao, Y.; Jiang, X.; Zhou, J.; Yang, L.; Chen, H.; Liu, W. Cytotoxic effects of NIR responsive chitosan-polymersome layer coated melatonin-upconversion nanoparticles on HGC27 and AGS gastric cancer cells: Role of the ROS/PI3K/Akt/mTOR signaling pathway. Int. J. Biol. Macromol. 2024, 278, 134187. [Google Scholar] [CrossRef] [PubMed]
- Rafieerad, A.; Saleth, L.R.; Khanahmadi, S.; Amiri, A.; Alagarsamy, K.N.; Dhingra, S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. Adv. Sci. 2025, 12, 2406324. [Google Scholar] [CrossRef]
- Yang, C.; Ding, Y.; Mao, Z.; Wang, W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int. J. Nanomed. 2024, 19, 917–944. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.; Zhang, D.; He, X.; Wang, X.; Han, H.; Qin, Y. Nanoparticle-based drug delivery systems to enhance cancer immunotherapy in solid tumors. Front. Immunol. 2023, 14, 1230893. [Google Scholar] [CrossRef]
- Joseph, T.M.; Kar Mahapatra, D.; Esmaeili, A.; Piszczyk, Ł.; Hasanin, M.S.; Kattali, M.; Haponiuk, J.; Thomas, S. Nanoparticles: Taking a Unique Position in Medicine. Nanomaterials 2023, 13, 574. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Z.; Pang, Y.; Zhou, H. The interaction between nanoparticles and immune system: Application in the treatment of inflammatory diseases. J. Nanobiotechnol. 2022, 20, 127. [Google Scholar] [CrossRef] [PubMed]
- Piscatelli, J.A.; Ban, J.; Lucas, A.T.; Zamboni, W.C. Complex Factors and Challenges that Affect the Pharmacology, Safety and Efficacy of Nanocarrier Drug Delivery Systems. Pharmaceutics 2021, 13, 114. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, Z.; Lei, H.; Miao, Y.B.; Chen, J. Programmable Nanomodulators for Precision Therapy, Engineering Tumor Metabolism to Enhance Therapeutic Efficacy. Adv. Healthc. Mater. 2024, 14, 2403019. [Google Scholar] [CrossRef]
- Pham, S.H.; Choi, Y.; Choi, J. Stimuli-Responsive Nanomaterials for Application in Antitumor Therapy and Drug Delivery. Pharmaceutics 2020, 12, 630. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.H.D.; Yin, B.; Li, Z.; Yuan, W.; Zhang, Q.; Xie, X.; Tan, Y.; Wong, N.; Zhang, K.; Bian, L. Mechanical manipulation of cancer cell tumorigenicity via heat shock protein signaling. Sci. Adv. 2023, 9, eadg9593. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Mitra, O.; Tripathi, G.; Adur, I.; Mohanto, S.; Nama, M.; Samanta, S.; Gowda, B.H.J.; Subramaniyan, V.; Sundararajan, V.; et al. Nanomaterials-assisted photothermal therapy for breast cancer: State-of-the-art advances and future perspectives. Photodiagnosis Photodyn. Ther. 2024, 45, 103959. [Google Scholar] [CrossRef] [PubMed]
- Ragelle, H.; Danhier, F.; Préat, V.; Langer, R.; Anderson, D.G. Nanoparticle-based drug delivery systems: A commercial and regulatory outlook as the field matures. Expert. Opin. Drug Deliv. 2017, 14, 851–864. [Google Scholar] [CrossRef] [PubMed]
- Tufail, M.; Hu, J.J.; Liang, J.; He, C.Y.; Wan, W.D.; Huang, Y.Q.; Jiang, C.H.; Wu, H.; Li, N. Predictive, preventive, and personalized medicine in breast cancer: Targeting the PI3K pathway. J. Transl. Med. 2024, 22, 15. [Google Scholar] [CrossRef] [PubMed]
Nanoparticle Type | Encapsulated/ Incorporated Drug | Target Pathway | Cancer Type | Mechanism | Outcome | Ref. |
---|---|---|---|---|---|---|
Liposomes | LY294002 | PI3K | Breast and prostate cancer | Inhibits PI3K signaling to suppress autophagy and tumor progression. | Enhanced apoptosis and reduced tumor growth. | [33] |
Polymeric nanoparticles | Rapamycin | mTOR | Glioblastoma | Inhibits mTORC1 to reduce autophagy flux and tumor survival. | Decreased cell proliferation and angiogenesis. | [34] |
Gold nanoparticles | AKT Inhibitor VIII | AKT | Ovarian cancer | Selectively inhibits AKT phosphorylation to block downstream signaling. | Promotes chemosensitization and autophagic flux suppression. | [35] |
Silica nanoparticles | LY294002 | PI3K | Lung cancer | PI3K inhibition, blocking autophagy, and enhancing chemotherapeutic drug response. | Improved drug delivery and increased cancer cell death. | [36] |
Solid lipid nanoparticles (SLNs) | Everolimus | mTOR | Pancreatic cancer | Targets mTORC1 to suppress autophagy and tumor cell survival mechanisms. | Enhanced drug bioavailability and tumor suppression. | [37] |
Dendrimers | Wortmannin | PI3K | Breast cancer | Inhibits autophagy by targeting the PI3K pathway. | Augmented anti-tumor activity and apoptosis. | [38] |
Iron oxide nanoparticles | Rapamycin | mTOR | Hepatocellular carcinoma | Downregulates mTOR to impair autophagic flux and enhance therapeutic response. | Synergistic reduction in tumor size. | [39] |
PLGA nanoparticles | MK2206 | AKT | Non-small cell lung cancer | AKT inhibition leads to autophagic pathway disruption. | Improved therapeutic efficacy with reduced drug toxicity. | [40] |
Chitosan nanoparticles | GDC-0941 | PI3K | Triple-negative breast cancer | Blocks PI3K-mediated autophagy, enhancing sensitivity to chemotherapy. | Enhanced tumor shrinkage and survival rates. | [41] |
Carbon nanotubes | Torin 1 | mTOR | Colorectal cancer | Dual inhibition of mTORC1 and mTORC2 suppresses autophagy. | Reduced tumor cell viability and improved therapeutic outcomes. | [42] |
Nanoparticle Type | Composition | Target | Mechanism of Action | Therapeutic Application | Advantages | Limitations | Ref |
---|---|---|---|---|---|---|---|
Liposomes | Phospholipids, cholesterol | PI3K/AKT/mTOR pathway | Encapsulation of siRNA, delivery to cancer cells | Gene silencing of pathway components | Biocompatible, effective gene delivery | Limited stability in circulation | [45] |
Polymeric nanoparticles | Polyethylene glycol (PEG), PLGA | PI3K, AKT, mTOR | Controlled release of siRNA to inhibit PI3K/AKT/mTOR | Inhibition of autophagy-related genes | Long circulation time, high drug loading | Potential toxicity of polymer components | [46] |
Gold nanoparticles | Gold core with functionalized shell | mTOR, AKT | Delivery of siRNA for gene silencing | Targeted silencing of mTOR/AKT pathway | Easy functionalization, enhanced stability | Potential for cytotoxicity at high doses | [47] |
Dendrimers | Branched polymers, PEG | PI3K, AKT, mTOR | Efficient siRNA loading, targeting tumor cells | Gene therapy for PI3K/AKT pathway in cancers | Well-defined structure, high loading capacity | Complex synthesis, limited biodegradability | [48] |
Mesoporous silica nanoparticles (MSNs) | Silica, functionalized surface | PI3K, AKT, mTOR | Encapsulation of siRNA, controlled release | Combination therapy with gene silencing | High surface area, tunable pore size | Potential for inflammation due to silica material | [49] |
Polymeric micelles | Amphiphilic copolymers | PI3K/AKT/mTOR | siRNA encapsulation in micellar core, controlled release | Targeted delivery of gene silencing agents | Low toxicity, good pharmacokinetics | Limited stability in blood circulation | [50] |
Solid lipid nanoparticles (SLNs) | Solid lipid core, surfactants | PI3K, AKT | siRNA loading in lipid matrix, targeting cancer cells | RNAi therapy for PI3K/AKT/mTOR pathway modulation | High stability, biocompatibility | Limited drug-loading capacity | [51] |
Calcium phosphate nanoparticles | Calcium phosphate, PEG | AKT, mTOR | Encapsulation of siRNA, gene delivery via calcium phosphate | Gene silencing of PI3K/AKT in cancer | Biodegradable, efficient encapsulation | Potential for low release rates | [36] |
Graphene oxide nanoparticles | Graphene oxide, functionalized surface | PI3K, AKT, mTOR | Loading of siRNA on surface, gene silencing effect | Targeted cancer therapy through pathway inhibition | High surface area, biocompatibility | Cytotoxicity at high doses, aggregation risk | [52] |
Nanogels | Hydrogels with crosslinked polymers | mTOR, PI3K, AKT | Encapsulation of siRNA in nanogel, targeted delivery | Modulation of autophagy-related signaling in cancer | High biocompatibility, tunable release rates | Limited cellular uptake without surface modification | [53] |
Nanoparticle | Targeted Pathway | Autophagy Modulation | Chemotherapeutic Agent | Synergistic Effect | Cancer Type | Ref |
---|---|---|---|---|---|---|
Doxorubicin-loaded liposomes | PI3K/AKT/mTOR | Inhibits autophagy via the mTOR pathway | Doxorubicin | Enhanced cell death by reducing chemoresistance and promoting apoptosis | Breast, lung, ovarian | [54] |
Polymeric nanoparticles (PNPs) | PI3K/AKT/mTOR | Autophagy inhibition by mTOR suppression | Paclitaxel | Increased therapeutic efficacy by synergizing autophagy inhibition and chemotherapy | Colon, lung, prostate | [35] |
Gold nanoparticles (AuNPs) | AKT/mTOR | mTOR inhibition | Cisplatin | Enhanced cytotoxicity via decreased autophagy and enhanced chemotherapy response | Lung, ovarian, pancreatic | [55] |
Polymeric micelles | PI3K/AKT/mTOR | Modulates autophagy via the AKT/mTOR axis | 5-FU (fluorouracil) | Synergistic effects on tumor growth inhibition by blocking autophagy | Colorectal, gastric | [56] |
Mesoporous silica nanoparticles (MSNs) | PI3K/AKT/mTOR | mTOR-dependent autophagy suppression | Docetaxel | Enhanced therapeutic response through autophagy inhibition and drug delivery | Prostate, lung | [57] |
Chitosan nanoparticles | PI3K/AKT/mTOR | AKT-mediated autophagy modulation | Doxorubicin | Synergistic cytotoxic effects by preventing autophagy-induced survival | Liver, breast | [58] |
Liposome-encapsulated curcumin | PI3K/AKT/mTOR | Inhibits autophagy by mTOR activation | Gemcitabine | Enhanced apoptosis by modulating autophagy and chemotherapeutic response | Pancreatic, breast | [59] |
Polyethylenimine (PEI) nanoparticles | PI3K/AKT/mTOR | Modulates autophagy via the PI3K/AKT pathway | Methotrexate | Synergistic effect in inhibiting tumor growth and metastasis | Leukemia, brain tumors | [49] |
Graphene oxide nanoparticles | AKT/mTOR | Autophagy inhibition via the mTOR pathway | Cisplatin | Enhanced tumor cell apoptosis through autophagy modulation and drug synergy | Lung, ovary | [60] |
Nanostructured lipid carriers (NLCs) | PI3K/AKT/mTOR | Inhibits autophagy through AKT/mTOR signaling | Paclitaxel | Enhanced anticancer effect by modulating autophagy and drug resistance | Breast, colon, lung | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Jalouli, M.; Bhajan, S.K.; Al-Zharani, M.; Harrath, A.H. A Comprehensive Review of Nanoparticle-Based Drug Delivery for Modulating PI3K/AKT/mTOR-Mediated Autophagy in Cancer. Int. J. Mol. Sci. 2025, 26, 1868. https://doi.org/10.3390/ijms26051868
Rahman MA, Jalouli M, Bhajan SK, Al-Zharani M, Harrath AH. A Comprehensive Review of Nanoparticle-Based Drug Delivery for Modulating PI3K/AKT/mTOR-Mediated Autophagy in Cancer. International Journal of Molecular Sciences. 2025; 26(5):1868. https://doi.org/10.3390/ijms26051868
Chicago/Turabian StyleRahman, Md Ataur, Maroua Jalouli, Sujay Kumar Bhajan, Mohammed Al-Zharani, and Abdel Halim Harrath. 2025. "A Comprehensive Review of Nanoparticle-Based Drug Delivery for Modulating PI3K/AKT/mTOR-Mediated Autophagy in Cancer" International Journal of Molecular Sciences 26, no. 5: 1868. https://doi.org/10.3390/ijms26051868
APA StyleRahman, M. A., Jalouli, M., Bhajan, S. K., Al-Zharani, M., & Harrath, A. H. (2025). A Comprehensive Review of Nanoparticle-Based Drug Delivery for Modulating PI3K/AKT/mTOR-Mediated Autophagy in Cancer. International Journal of Molecular Sciences, 26(5), 1868. https://doi.org/10.3390/ijms26051868