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Abstract: Sudden unexpected death in epilepsy (SUDEP) is a critical concern for individ-
uals suffering from epilepsy, with respiratory dysfunction playing a significant role in
its pathology. Fatal seizures are often characterized by central apnea and hypercapnia
(elevated CO2 levels), indicating a failure in ventilatory control. Research has shown
that both human epilepsy patients and animal models exhibit a reduced hypercapnic
ventilatory response in the interictal (non-seizure) period, suggesting an impaired ability
to regulate breathing in response to high CO2 levels. This review examines the role of
central chemoreceptors—specifically the retrotrapezoid nucleus, raphe nuclei, nucleus
tractus solitarius, locus coeruleus, and hypothalamus in this pathology. These structures
are critical for sensing CO2 and maintaining respiratory homeostasis. Emerging evidence
also implicates neuropeptidergic pathways within these chemoreceptive regions in SUDEP.
Neuropeptides like galanin, pituitary adenylate cyclase-activating peptide (PACAP), orexin,
somatostatin, and bombesin-like peptides may modulate chemosensitivity and respiratory
function, potentially exacerbating respiratory failure during seizures. Understanding the
mechanisms linking central chemoreception, respiratory control, and neuropeptidergic
signaling is essential to developing targeted interventions to reduce the risk of SUDEP in
epilepsy patients.

Keywords: SUDEP; central respiratory chemoreception; epilepsy; retrotrapezoid nucleus;
hypercapnia; neuropeptide; hypercapnic ventilatory response; galanin; PACAP; orexin;
somatostatin

1. Introduction
Epilepsy is a neurological condition that affects an estimated 50 million people glob-

ally [1]. The annual cumulative incidence of epilepsy is 70 per 100,000 persons [2] and is
associated with a heightened risk of premature death [3,4]. Mortality rates among people
with epilepsy are up to 20 times higher than those in the general population [5–8], with
an average reduction in life expectancy of about 11.84 years in males and 10.91 years in
females [9]. This increased mortality is attributed to various factors, including psychiatric
comorbidities, cardiovascular disorders, accidents, suicide, and sudden death [3].

Among the causes of death in epilepsy, sudden unexpected death in epilepsy (SUDEP)
is particularly notable, ranking as the leading direct epilepsy-related cause of death and
second only to stroke in terms of years of potential life lost in the United States [10].
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SUDEP, by definition, refers to the unexpected death of a patient with epilepsy, with or
without evidence for a seizure, not due to trauma, drowning, or status epilepticus (SE),
with no other clear cause found during an autopsy [11,12]. The annual mortality rate due
to SUDEP ranges from 0.4 to 2 per 1000 individuals with epilepsy [13–15]. Despite the
severity of SUDEP, the underlying cellular and molecular mechanisms remain incompletely
understood, and preventive therapies have not been established for those patients who fall
into the high-risk group. Current research implicates central apnea, coupled with a cascade
of autonomic dysregulation, as a key component of SUDEP’s pathophysiology [16]. Central
apnea refers to the cessation of breathing due to centrally mediated mechanisms and is
characterized with hypercapnia. Central CO2 chemoreceptors (CCR) detect blood CO2

levels to regulate breathing through their projections to lower-order regulatory regions,
making them highly relevant to this pathology. However, despite their critical role, the
involvement of central chemoreception in epilepsy remains to be fully established.

This review aims to explore the role of central respiratory chemoreception in the
pathophysiology of SUDEP, providing a detailed molecular understanding of how dis-
ruptions in this process may contribute to sudden death in epilepsy. By shedding light
on this under-researched area, the review seeks to inform future research and therapeutic
strategies aimed at reducing the incidence of SUDEP in individuals with epilepsy.

2. Risk Factors for SUDEP
Some epileptic patients are more predisposed to SUDEP than others. Considerable

efforts have been made to identify risk factors and develop stratification methods to
predict SUDEP and apply preventative measures to mitigate the risk of death. These
include the SUDEP-7 inventory [17], the SUDEP-3 inventory [18], individualized prediction
tools [19,20], and the SUDEP safety checklist [21]. Some of these tools contain up to
22 risk factors [19]. The most recent SUDEP-CARE score [22] concentrated on seven critical
risk factors strongly associated with SUDEP. These include generalized seizure frequency,
nocturnal seizures, respiratory symptoms during or after a seizure, intellectual disability,
current or past depression, the ability to alert someone of an oncoming seizure, and seizure-
related falls.

Indeed, clinical research highlights that a higher frequency of tonic–clonic seizures
per year is strongly correlated with increased SUDEP risk [23–25]. Additionally, the annual
mortality rate due to SUDEP escalates to 4–9 per 1000 among epileptic patients that are
refractory (drug resistant) [14,15,26]. In severe chronic refractory epilepsy patients who
attend epilepsy referral centers, SUDEP is the leading cause of death, accounting for up to
50% of all fatalities [15]. Patients with multiple risk factors, such as those with refractory
epilepsy experiencing generalized tonic–clonic seizures, face a significantly heightened
risk [27]. Furthermore, nighttime seizures [24,25,28], particularly nocturnal generalized
tonic–clonic seizures within the year preceding SUDEP, are associated with a 15-fold
increase in risk [25]. Also, clinical studies in epilepsy monitoring units highlighted that
an early postictal alteration in respiratory function induced by a generalized tonic–clonic
seizure constitutes a critical risk factor for SUDEP [13]. These findings emphasize the
necessity of close supervision and proactive management for patients with significant risk
factors to mitigate the likelihood of SUDEP.

In addition to these, a long history of seizures and the duration of epilepsy also serve
as notable risk factors [20]. Although SUDEP can affect all age groups, its incidence is
high among young adults aged 20–45 years [29,30]. Also, in approximately 30% to 50%
of SUDEP cases, genetic factors have been identified through postmortem testing [31,32].
In some cases, the underlying cause of epilepsy can be genetic; in others, patients with
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non-genetic forms of epilepsy may still possess genetic mutations [33] that may contribute
to SUDEP.

3. Pathophysiology of SUDEP: Respiratory Arrest
Historically, SUDEP was predominantly attributed to cardiac arrest. However, recent

research has uncovered a more complex and heterogeneous pathophysiology. In clinical
studies investigating the incidence and mechanisms of cardiorespiratory arrests in epilepsy
monitoring units (MORTEMUS), it was described that SUDEP generally follows a spe-
cific postictal sequence [16]. It typically begins with a centrally mediated disruption of
respiratory and cardiac function, often triggered by a generalized tonic–clonic seizure.
This sequence can result in immediate death or a brief period of partially restored car-
diorespiratory function, which is subsequently followed by terminal apnea and cardiac
arrest [13].

Respiratory complications are reported in most witnessed and recorded SUDEP cases,
including respiratory arrest, labored breathing, suffocation in a prone position, and la-
ryngeal spasm [26,34,35]. The historical understanding of respiratory issues associated
with SUDEP dates back to 1899, when Hughlings Jackson observed that patients would
stop breathing and turn blue following generalized seizures, indicating blood deoxygena-
tion [36]. Even during focal unaware seizures, a reduction in oxygen saturation to as low
as 30% has been documented in epileptic patients [37] highlighting the significance of
respiratory disturbances during SUDEP (Figure 1a).

There is increasing evidence that respiratory problems often precede cardiac arrhyth-
mias in SUDEP. Some seizures are characterized by apnea-induced hypoxemia without
associated cardiac arrhythmia [38,39] (Figure 1b). Additionally, video-EEG recordings
rarely show cardiac problems as the primary cause of SUDEP, instead pointing to respira-
tory arrest [34,35,40–43]. Moreover, prolonged generalized EEG suppression in SUDEP [44]
indicates that it is more expected for generalized seizures to affect breathing directly and
not necessarily the cardioregulation, as the heart can function autonomously. Recent animal
studies supported these findings by directly showing that central apnea often precedes
terminal bradycardia following terminal seizures (Figure 1c) in genetic-induced [45–51],
electroshock-induced [50], and chemically induced [52] models of SUDEP. Hence, respira-
tory arrest is suggested to be the primary cause of SUDEP.

When it comes to cardiac arrest, for a long time, the decrease in heart rate postictally
was believed to result from increased vagal output [53]. However, further investigation
using muscarinic receptor antagonists has provided evidence that bradycardia is indeed
caused by apnea-induced hypoxia rather than parasympathetic dominance [45]. Conse-
quently, the primary cause of postictal death is increasingly being attributed to central
apnea or respiratory arrest, as reviewed multiple times [54,55], emphasizing the critical role
of postictal respiratory dysfunction in many cases of SUDEP. Nevertheless, it is important
to note that SUDEP likely involves multifactorial mechanisms, including impaired arousal
mechanisms from sleep, as suggested by recent findings [56,57].
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Figure 1. Fatal seizures are characterized by central apnea, hypoxia, and hypercapnia, and epilepsy
is associated with an ablated hypercapnic ventilatory response (HCVR). (a) Percentage oxygen
saturation (%O2, blue trace) decreases, and partial pressure of CO2 (Pco2, red trace) increases during
a seizure (pink box). Elevated Pco2 persists for up to 4 h after the seizure, adapted from [37,45]. (b) A
recovery seizure with apnea is followed by an increase in heart rate, adapted from [38]. (c) A terminal
seizure, in which respiratory arrest is followed by secondary bradycardia, is shown, adapted from [45].
(d) HCVR is reduced in epileptic conditions, with more severe ablation observed in the presence of
risk factors such as postictal timing, late-stage epileptogenesis, genetic factors, and nocturnal seizures.
Summary trace gathered from [58–61].

4. Animal Models of SUDEP to Study Respiratory Dysfunction
in Epilepsy
4.1. Choice of Animal Models

Animal models are important tools to understand the underlying mechanisms for
central apnea and respiratory arrest in SUDEP. A wide variety of animal models have
been developed to date [62], each tailored to address specific research questions. This
diversity underscores the absence of a universal gold standard model for SUDEP. When
investigating respiratory dysfunction, it is essential to consider previously identified risk
factors alongside the established definition of SUDEP, including the following:

• Unexpected death with or without evidence for a seizure, not due to other causes
(including SE);



Int. J. Mol. Sci. 2025, 26, 1598 5 of 36

• Whether the seizures are acute or chronic;
• The duration and history of epilepsy;
• The frequency of seizures;
• The type of seizures;
• Whether the seizures are spontaneous;
• Genetic predisposition;
• Nocturnal seizures;
• The absence of other neurological, neurodevelopmental, or non-neurologic pathology.

Most animal model studies on SUDEP to date have been acute, primarily focus-
ing on the periods surrounding terminal seizures, specifically the ictal and postictal
phases [45,49,52,63–67]. However, SUDEP occurs in individuals with chronic epilepsy
and in rare cases happens without seizure [11,12], and it is still unclear why long-term and
frequent seizures are more prone to fatal outcomes.

Frequent seizures could potentially have an accumulative effect on normal respiratory
function (interictal breathing), progressively increasing the risk of respiratory failure and
thus the likelihood of SUDEP. In favor for this idea, numerous direct and indirect neural
pathways link the cortex to brainstem respiratory centers [68,69], and evidence suggests that
seizure activity can spread to lower brain regions, leading to depolarization in areas like the
brainstem [64,65,70–73]. Hence, the normal functioning of lower order brain regions can be
affected and impaired over time under the chronic effect of seizures. Indeed, functional
connectivity studies using magnetic resonance imaging (MRI) have identified disruptions in
brainstem arousal centers in patients with temporal lobe epilepsy (TLE) [74]. Additionally,
cumulative neuronal changes were observed in brainstem centers that control breathing
in postmortem SUDEP patients [75–80]. Some epilepsy patients also experience breathing
difficulties not only during seizures but also interictally, further indicating that chronic
epilepsy can lead to long-term alterations in respiratory regulation, resulting in persistent
respiratory symptoms [81]. Hence, while acute epilepsy models provide valuable insight
into the immediate cardiorespiratory complications of terminal seizures, they are limited
in their ability to mimic the chronic effects of epilepsy. As a result, chronic spontaneous
epilepsy models are essential for understanding how long-term seizure activity affects
autonomic regulation and contributes to the development of SUDEP.

In chronic epilepsy models, the history, frequency and type of seizures should also
be taken into account when deducing conclusions about SUDEP pathology. Furthermore,
animal models can be classified based on the induction of epileptic seizures including
chemical, audio, electrical stimuli, or genetic predisposition (Table 1). While most of
these models can be used in both acute and chronic setups, not all are characterized with
spontaneous seizures. SUDEP rates also vary between models and in some cases depend
on the intensity of the stimulus, like the dose and administration route [82]. Among all
the animal models, here, we will provide a brief introduction on the ones used to explore
respiratory symptoms in SUDEP.

4.2. Animal Models Used to Study Pathophysiology of SUDEP

Kainic acid and pilocarpine are chemically induced, chronic models of TLE char-
acterized with tonic–clonic seizures [83–86]. They can be administered systemically or
intrahippocampally and follow similar patterns of events that happen in TLE. First, they
manifest a stage of SE for 6–12 h shortly after administration. After SE follows a latent
period of 2–3 weeks, which is a seizure-free time interval, where there is reorganization
of neuronal networks. Spontaneous seizures begin to appear gradually increasing in the
number of seizures per day over time. There is usually a high death toll during SE; however,
by definition, these cannot be defined as SUDEP. Rats that survive SE can be used as chronic
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models, which are also associated with a lower survival rate with no obvious causes of
death [87,88], as is the case in SUDEP. Nevertheless, the presence of an increasing frequency
of tonic–clonic seizures makes them appealing to study SUDEP. Moreover, these chemically
induced models manifest autonomic dysfunctions, including respiratory dysregulation,
as is the case in SUDEP. For example, in KA injected rats, seizures are associated with
massive increases in parasympathetic (vagus nerves) and sympathetic (cervical sympa-
thetic ganglion > renal nerve > splanchnic nerve) activity [89]. KA rats have also shown
suppression of phrenic nerve activity [90], which is the only motor nerve innervating
the diaphragm and is regulated by the central respiratory centers. Indeed, anesthetized
setups with induced seizures through an injection of kainic acid were characterized with
central apneas, indicating a compromise in central breathing regulation [65,67,91]. Also,
epileptogenesis (the process by which the brain network is altered toward increased seizure
susceptibility, thus having an enhanced probability to generate spontaneous recurrent
seizures) in KA rats exhibits increased severity with duration and reaches a plateau in
the number of seizures/day after about 4 months [92]. The epileptogenesis studies in a
pilocarpine model reveal that the number of seizures reach maximum after 1.5–3 months
depending on the dose; then, they decrease afterwards [93]. Since SUDEP increases with
the severity of epilepsy, these models allow for the study of the progressive autonomic
instability to draw conclusions about interictal pathophysiologies [60].

Audiogenic models include Wistar audiogenic rats (WARs) and dilute brown agouti
coat color (DBA) mice. In both cases, an audiogenic stimulation triggers tonic–clonic
seizures [94,95]. Hyperexcitation starts at the level of the inferior colliculus of the midbrain
and propagates to cortical and other subcortical structures, including the brainstem, the
periaqueductal gray complex, and the amygdala [96–98]. DBA mice develop 100% postictal
respiratory arrest and death after a few days of stimulation [48,49]. This makes them
a controlled model for SUDEP, in which a reproducible trend of autonomic alterations
happens, replicative of seizure-induced death in humans [94]. Hence, DBA mice are
attractive to investigate ictal and postictal events during SUDEP. Unlike DBA, WARs are
not characterized with seizure-induced death, but they still develop respiratory impairment,
with changes in baseline breathing [95,99]. Both these models can also be used as chronic
seizure models by repetitive audiogenic stimulation. Chronic WARs, also called kindled
WARs, are obtained with two audiogenic stimulations/day for about 2 weeks and develop
also limbic seizures [95,100]. There are two types of DBA mice (DBA/1 and DBA/2). While
DBA/2 mice are only susceptible to seizures at a relatively young age, postnatal day (P)21 to
P28, DBA/1 mice are susceptible until P100 [49]. Since both DBA mice develop respiratory
arrest following audiogenic stimulus, they require resuscitation to survive from seizures
and become chronic [49]. The high rate of seizure-mediated deaths makes these models
attractive to study SUDEP.

The amygdala rapid kindling (ARK) model is another model for TLE. Kindling in-
volves multiple electrical stimuli to the amygdala. This initiates focal seizures with minimal
behavioral response that changes progressively over repetitions and begins spreading
to other brain regions and becomes generalized afterwards [101,102]. For spontaneous
seizures to occur in ARK, a mean of 348 stimulations are required [103]. Spontaneous
seizures persist for as long as 7 months following termination of the stimulation. ARK
models are also characterized with cardiorespiratory impairments, with changes in baseline
breathing [101] and heart rate [104,105]. While the occurrence of SUDEP is not docu-
mented in the ARK model, it is a model of chronic epilepsy with spontaneous generalized
tonic–clonic seizures to investigate the epileptogenesis.

There are also genes that can increase susceptibility to epilepsy and respiratory dys-
function precipitating to SUDEP. Postmortem tests identified genetic factors in 30% to 50%
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of SUDEP cases [31,32]. These include the Scn1a gene (that codes for sodium channels) and
Kcna1 and Kcnq2 genes (coding potassium channels).

Dravet syndrome (DS) is associated with a loss-of-function (LoF) missense mutation at
the Scn1a gene and is a severe form of epilepsy with a high incidence of SUDEP [106–108].
The Scn1a gene encodes for NaV1.1 voltage-gated sodium channel. The mutation of NaV1.1
causes failure of excitability of hippocampal GABAergic inhibitory interneurons leading to
hyperexcited epilepsy syndrome [109]. The mouse model of DS recapitulates many aspects
of the clinical condition and offers a research tool for understanding mechanisms of SUDEP
in DS. Global heterozygous knockout (KO) of Scn1a is a popular model for DS and leads to
an early onset of seizures, starting at P21 [109,110], with high susceptibility to hyperther-
mia [111]. The seizures are spontaneous with age-dependent severity [111]. The deaths are
spontaneous, sporadic, and premature; by P28, 50% of mice die following a tonic–clonic
seizure [110]. Furthermore, these mice have autonomic symptoms, including reduced
interictal heart rate variability and bradyarrhythmia [110]. SUDEP, in these mice, is pre-
vented by administration of atropine, indicating that there is parasympathetic hyperactivity
during seizures, leading to death [110]. Moreover mouse models of DS carrying a missense
mutation in the Scn1a gene, conditionally in inhibitory neurons, exhibit hypoventilation
and frequent apneas under baseline conditions [59]. Therefore, these models serve as a
valuable representation of a genetic type of SUDEP with aberrant autonomic symptoms.

Mutations at the level of voltage-gated potassium channel subfamilies are also associ-
ated with epilepsy, respiratory dysfunction, and SUDEP in humans [112]. There are various
mice models that replicate these mutations such as Kcna1 gene KO mice, which lack Kv1.1
voltage-gated potassium channel that controls action potential firing properties in brain
and heart [113]. These mice experience spontaneous seizures starting around P14 [114,115].
Median survival rate for Kcna1 KO mice is 47 days [116] with deaths occurring between
P14–70 in about 75% of animals [117]. These mice display apnea during seizures and
present baseline breathing irregularities, including mild tachypnea, increased respiratory
variability, an absence of post-sigh apneas, and frequent hypoxia [51,118]. The respiratory
dysfunction progresses with age in Kcna1 gene KO mice [118].

Similarly, mutations in the Kcnq gene, which encodes for the Kv7 family of potassium
channels, are associated with specific types of epilepsy linked to human SUDEP [119]. Kv7
channels generate a slow-activating potassium current, also known as the M-current, that
plays a crucial role in regulating neuronal excitability by preventing excessive neuronal
firing. Both LoF [120] and gain-of-function (GoF) [121] mutations of Kcnq2 are seen to
result in neuronal hyperexcitability, increasing susceptibility to spontaneous firing and
seizures. In mice, Kcnq2 GoF mutations carrying the R201C variant in excitatory forebrain
neurons are characterized with tonic–clonic seizures with premature lethality, beginning as
early as P40, with almost complete lethality by P100 [121]. Humans with GoF suffer from
neonatal-onset encephalopathy, myoclonus, multifocal seizures later in life, respiratory
dysfunction (perinatal respiratory failure and/or chronic hypoventilation), developmental
problems, and early mortality [122]. When this mutation is induced in Phox2b-expressing
respiratory neurons in mice, profound hypoventilation is observed but not necessarily
death [61]. In summary, mice with Kv1 and newly emerging Kv7 mutation are models
for SUDEP with spontaneous seizures and respiratory anomalies while remaining genetic
models for SUDEP.

4.3. How Close Are These Models to Human SUDEP?

Although these models have significantly advanced our understanding of the mecha-
nisms underlying respiratory dysfunction during seizures and SUDEP, they also present
limitations in accurately reflecting human clinical observations. As mentioned ear-
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lier, one major limitation is that most SUDEP studies in animal models rely on acute
seizures [45,49,52,63–67], which may not fully replicate the chronic nature of human
epilepsy or SUDEP. This challenge makes it difficult to study the long-term effects of
seizures and to develop chronic therapies for SUDEP.

Among the chronic models reviewed here, WAR, DBA, and ARK require repeated in-
duction to provoke seizures [48,49,95], a characteristic that differs from human cases where
seizures typically occur spontaneously. Chronic KA, pilocarpine and genetic epilepsies can
be preferred for spontaneously occurring seizures. However monitoring large numbers of
animals over extended periods to capture SUDEP incidence remains challenging, particu-
larly in chronic KA [92] and pilocarpine rats [84], where the SUDEP incidence is relatively
low compared to genetic epilepsy models [109–111,115,116,121,123]. Furthermore, while
these models exhibit spontaneous seizures, their initial seizure induction is chemically
triggered, which does not accurately reflect the natural occurrence of seizures in humans.

Additionally, KA and pilocarpine models, which serve as models for TLE, typically
begin with a phase of SE [84,92]. This differs from human clinical circumstances in two ways.
First, SE is more common in children [124,125], whereas in animal studies, adult rodents are
often used, as younger animals have higher mortality rates and longer latent periods [84].
Second, in human clinical settings, SE onset is not necessarily associated with TLE [126,127].
Moreover, although TLE is strongly linked to refractory epilepsy [128,129], there is no
conclusive evidence that these chemically induced models exhibit drug resistance.

Genetic models may provide a closer approximation of genetic epilepsies; however, it
is important to acknowledge that not all clinical SUDEP cases have a genetic basis [31,32].
Although their high SUDEP incidence makes them convenient for experimental studies,
SUDEP remains a rare occurrence in human clinical settings [10].

Furthermore, the anatomical origin of seizures in some models, such as audiogenic
models (DBA and WAR), originates in the brainstem, which differs from the primary
seizure focus in human epilepsy [95–98,128]. Additionally, in DBA, genetic, and acute KA
or pilocarpine models, death occurs immediately following severe seizures. However, in
humans, SUDEP may or may not occur after seizures [11,12], and seizures themselves are
not always fatal.

Therefore, careful consideration of each model’s characteristics, strengths, and limita-
tions is essential when interpreting preclinical data and translating findings into diagnostic
and therapeutic applications for patients [62].
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Table 1. Animal models of SUDEP.

Stimulus Model Species Acute/Chronic Spontaneous/
Induced

Seizure Type Death Rate References

Chemical Kainic acid Rat/Mouse Acute Spontaneous SE with generalized seizures,
including tonic–clonic

High * [65]

Chronic Spontaneous TLE with generalized seizures,
including tonic–clonic

Low * [92]

Pilocarpine Rat/Mouse Acute Spontaneous SE with generalized seizures,
including tonic–clonic

High * [84]

Chronic Spontaneous TLE with generalized seizures,
including tonic–clonic

Low * [84]

Audio Wistar audiogenic
rat (WAR)

Rat Acute Induced Tonic–clonic seizures (acute) Low [95]
Chronic (audiogenic
kindling)

Induced TLE Low [95]

DBA/1 Mouse Acute or
Chronic (with resuscitation)

Induced General convulsive seizures High (90–100%) with
postictal respiratory arrest
after 3–4 days of stimulus.

[49]

Electrical Amygdala rapid
kindling (ARK)

Rat/Mouse Chronic after >300 stimuli Induced
(Spontaneous
seizures may occur)

TLE with generalized seizures,
including tonic–clonic

Low [103,129]

Genetic Scn1a (LoF) Mouse Chronic (until premature
death)

Spontaneous/
Heat-induced

Dravet syndrome with
tonic–clonic seizures

High premature deaths (46%,
by PD28)

[109–111]

Kcna1 KO Mouse Chronic (until premature
death)

Spontaneous Early-onset generalized
spontaneous tonic–clonic seizures
(up to ~24/d beginning at P14)

High premature deaths (75%,
P14–70)

[115,116,123]

KcnqR201C (GoF) Mouse Chronic (until premature
death)

Spontaneous Tonic–clonic seizures
Absence seizures

High premature deaths
starts at ~P30 and reaches
100% by ~P80

[121]

* depends on the dose, administration route, and strain of the anima.
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5. Disruption of Central Chemorespiratory Mechanisms in SUDEP
Research indicates that central apnea during seizures is associated with increased

levels of end-tidal and transcutaneous CO2 in human patients [45,130] and animals [131]
(Figure 1a). While the rise in end-tidal CO2 persists for 7 min [130], transcutaneous
CO2 levels remain elevated for up to 4 h post-seizure [45] in humans. These findings
suggest a prolonged suppression of CO2 chemoreception (Figure 2), which is the brain’s
mechanism for detecting changes in the partial pressure of CO2 in the blood (Pco2) and
regulating breathing accordingly. Patients with epilepsy who experience sustained postictal
CO2 elevation are at a higher risk of SUDEP [45], highlighting the need for a detailed
investigation of CO2 chemoreception.

Seizure apnea

hypoxia

attenuated
chemoreflex

bradycardia hypercapnia

SUDEP

altered central 
chemoreception

Figure 2. A schematic summary of the cardiorespiratory symptoms and the contribution of central
chemoreception in the SUDEP cascade. Repetitive seizures induce alterations in the central chemore-
ceptive centers, leading to impaired chemoreflex. This dysfunction contributes to central apnea,
exacerbating hypoxia and hypercapnia. Hypoxia is proposed to cause cardiac asystole, culminating
in SUDEP.

A common method to measure CO2 chemoreception is the ventilatory response to
elevated blood CO2, known as the hypercapnic ventilatory response (HCVR). A series
of studies indicate that HCVR decreases in epileptic conditions (summarized in Table 2)
with the influence of several risk factors, including the timing in relation to the seizure,
epileptogenesis, genetic factors, and the vigilance state (Figure 1d).

In epilepsy monitoring units, rebreathing techniques used to measure interictal HCVR
have revealed significant interindividual differences. Some patients exhibited severe hy-
poventilation, leading to prolonged end-tidal hypercapnia, indicating reduced HCVR and,
consequently, diminished respiratory CO2 chemosensitivity. Furthermore, the interictal
HCVR was correlated with postictal end-tidal CO2 concentration and duration following
generalized convulsive seizures, revealing an inverse relationship between these param-
eters [81]. This suggests that certain patients are more prone to prolonged postictal CO2

elevation after generalized convulsive seizures. Further studies extended these findings by
testing HCVR after seizures, revealing a blunted CO2 sensitivity postictally for up to three
hours following both focal and generalized seizures, thereby potentially increasing the risk
of severe respiratory depression and SUDEP [58] (Figures 1d and 2).

Similarly, chronic animal models of epilepsy demonstrate impaired ability to adjust
to variations in Pco2. In a study on epileptic rats induced by pilocarpine and subjected to
artificial hyperventilation using a respiratory pump to elevate blood CO2, it was found
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that anesthetized epileptic rats had an altered capacity to compensate for changes in
arterial CO2. However, when peripheral chemoreceptor responses were assessed in the
same animals using potassium cyanide injections, no significant differences were observed
between epileptic and healthy groups. This suggests that the observed alterations in CO2

sensitivity were not of peripheral origin [132]. Seventeen years later, these conclusions
were supported by another study measuring ventilatory response to hypercapnic and
hypoxic exposures in pilocarpine rats. The results have indicated a decrease in central
(hypercapnia) but not peripheral (hypoxia) chemosensitivity 15 and 30 days post-status
epilepticus (post-SE) in awake conditions [133]. Testing HCVR in kainic acid-induced
mice also showed decreased HCVR for up to five weeks post-SE, with partial recovery
by the seventh week [60] (Figure 1d). Amongst audiogenic models, naïve WARs exposed
to hypercapnia revealed decreased chemosensitivity compared to healthy controls [134].
However, when WARs were chronically induced by audiogenic kindling (10 days), their
HCVR remained diminished but was not significantly different from naïve WARs [99]. This
suggests a genetic predisposition in WARs to reduced chemosensitivity, which seizures do
not exacerbate. Moreover, the ARK model of TLE also demonstrated reduced HCVR in
kindled rats (10 stimulation/day for 2 days) compared to healthy ones [101].

Similar observations were seen in genetic models of SUDEP. In the model of DS with a
mutation on Scn1a gene globally [58] or conditionally in interneurons [59], a decrease in
HCVR was observed at P15-P34 (Figure 1d). These mice usually die prematurely (starting
at P15) [59], explaining why the experiments were conducted at a young age. Further,
supporting these observations, genetically derived epileptic mice with a GoF mutation in
Kcnq2 gene in the retrotrapezoid nucleus (RTN) displayed decreased central chemoreflex
during the light/inactive phase [61] (Figure 1d). The RTN being a CO2-sensitive population,
this aligns with the idea that SUDEP risk may be heightened at night, drawing attention
to the role of central chemoreceptive mechanisms in SUDEP. These findings suggest that
dysregulation at the level of central chemoreception may contribute to epilepsy-related
respiratory arrest, resulting in mortality.

Conversely, in a few studies, an increase in CO2 sensitivity was observed in epilep-
tic conditions (Table 3). For instance, in pilocarpine-induced rats with chronic epilepsy,
a decrease in latency to awaken from obstructive sleep apneas during REM sleep was
observed, indicating enhanced chemosensitivity and arousal mechanisms [135]. Sup-
porting this, another study on pilocarpine-induced epileptic rats reported an enhanced
ventilatory response to hypoxia and hypercapnia in some epileptic rats compared to the
controls [136]. The pilocarpine model is suggested to become chronic after approximately
44 days [137,138]. These studies, conducted 6–12 weeks post-SE, propose that there might
be potential neuroplasticity in brain regions involved in respiratory control, arousal mecha-
nisms, and autonomic modulation enhancing chemosensitivity. However, the latter study
also identified a low steady respiratory pattern and a sharp decrease in interictal oxygen
consumption, which, contrary to the findings, might indicate decreased chemosensitiv-
ity. Since oxygen consumption reflects respiratory gas exchange during ventilation, its
reduction could point to ventilatory pauses or gasping, contradicting the hypothesis of
increased chemosensitivity. Despite this contradiction, a recent study using Kcna KO mice
similarly demonstrated an increase in HCVR [139]. It is important to note that comparing
findings across different studies is challenging due to variations in experimental models,
strains, the timing of respiratory recordings, and the severity of hypoxia and hypercapnia
exposures. Even within the same model, differences may arise from the strain or the route
of administration. Nevertheless, collectively, these studies suggest that the ventilatory
response to hypercapnia is altered in SUDEP models, highlighting the need for further
research to understand the underlying mechanisms.
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Table 2. Suggested involvement of decreased central respiratory CO2 chemosensitivity in SUDEP (n/a: not available).

Species Model Condition Epileptogenesis Evidence Reference

Human n/a n/a n/a Increased postictal transcutaneous CO2 in human
epileptic patients

[45]

n/a n/a n/a Increased postictal end-tidal CO2 in human
epileptic patients

[130]

n/a n/a n/a Decreased interictal HCVR in epilepsy monitoring
unit patients

[81]

n/a n/a n/a Blunted HCVR after focal and GCSs vs interictal in
human epileptic patients

[58]

Rats WAR: naïve Chronic unanesthetized P30–40 Decreased HCVR [134]
WAR: naïve and audiogenic kindled for 10
days (2 stimuli/day)

Chronic unanesthetized Straight after kindling Decreased interictal HCVR in both naïve and
kindled WARs with no difference in between

[99]

ARK Wistar: acute electrical stimulation of
basolateral amygdala for 2 consecutive days
(10 stimuli/day)

Chronic unanesthetized 10 days after ARK Decreased HCVR [101]

Pilocarpine Wistar (intraperitoneal) Chronic anesthetized 6–10 months post-SE Alteration in ability to compensate for changes in
arterial CO2

[132]

Pilocarpine Wistar (intrahippocampal) Chronic unanesthetized 15–30 days post-SE Decreased interictal HCVR [133]

Mouse Kainic acid (intrahippocampal) Chronic unanesthetized 5–7 weeks post SE Decreased interictal HCVR 5 weeks post-SE
induction with its partial recovery at week 7

[60]

Scn1a mutation Chronic unanesthetized P22–P34 Blunted postictal HCVR (normal interictal) [58]
Scn1a mutation Chronic unanesthetized P15 Decreased interictal HCVR [59]
Kcnq2 GoF Chronic unanesthetized P30–50 Decreased interictal HCVR during the

light/inactive phase
[61]

Table 3. Suggested involvement of increased central respiratory CO2 chemosensitivity in SUDEP.

Species Model Condition Epileptogenesis Evidence Reference

Rats Pilocarpine Wistar (intraperitoneal) Chronic unanesthetized 4–8 weeks after first
spontaneous seizure

Decreased in the latency to awaken from
obstructive sleep apneas during REM sleep

[135]

Pilocarpine Sprague-Dawley
(intraperitoneal)

Chronic unanesthetized 12 weeks post-SE Low steady respiratory pattern (breathing rhythm)
but enhanced ventilatory response to hypoxia and
hypercapnia in

[136]

Mouse Kcna KO Chronic unanesthetized P49 Increased HCVR [139]
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6. Mechanisms for Disrupted Chemoreception
Although there is evidence supporting decreased central chemoreception in chronic

epilepsy, it remains uncertain whether elements of respiratory control are compromised in
epileptic conditions. Some hypotheses suggest that repeated seizure activity disrupts
respiratory control through feed-forward mechanisms, such as spreading depolariza-
tion [64,71,72] or by activating inhibitory subcortical projections to brainstem respiratory
centers [70,73]. During terminal seizures in KA rats, the timing of brainstem depolariza-
tion suggests that it is a consequence, rather than a cause, of respiratory collapse [65].
Therefore, additional mechanisms—such as the impairment of central chemoreceptive
networks—could contribute to respiratory dysfunction.

Central chemoreception involves detecting changes in Pco2 in the brain and regulating
breathing accordingly. This process is modulated by neurons from different nuclei in the
lower brainstem called central CO2 chemoreceptors (CCRs), ensuring Pco2 levels remain
within a narrow range [140,141]. The RTN, raphe nucleus, the nucleus of the solitary tract
(NTS), locus coeruleus (LC), and hypothalamus play crucial roles in this regulation [142]
(Table 4). Once activated by elevated Pco2, their projections to respiratory regulatory
regions, including the ventral respiratory column (VRC), allows them to modulate breathing
to maintain blood CO2 homeostatis [143] (Figure 3).
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Figure 3. Schema depicting the role of central chemoreception and its dysfunction in the context of
epilepsy, highlighting the involvement of neuropeptides. Central chemoreceptors, including the
hypothalamus, and key brainstem regions, including the RTN, LC, medullary raphe, and caudal
NTS, are activated in response to CO2 (blue arrows). Signals from central chemoreceptors project
to the VRC, which sends information to the phrenic nucleus, which drives increased ventilation
in response (neuronal projections represented by purple arrows). Central chemoreceptors contain
neuropeptides: galanin, PACAP, orexin, somatostatin, NMB, and GRP, which are involved in the
mechanism of central chemoreception. In healthy individuals (green box), central chemoreceptors
respond to increased levels of PCO2 by enhancing respiratory drive, maintaining normocapnia.
However, in epilepsy (red boxes), the impaired activation of these chemoreceptors can lead to
reduced ventilatory responses, resulting in hypercapnia and an increased risk of central apnea,
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which is strongly associated with SUDEP (associations are indicated by black arrows). Abbreviations:
LC: locus coeruleus, NTS: nucleus tractus solitarius, PACAP: pituitary adenylate cyclase-activating
polypeptide, NMB: neuromedin B (NMB) and GRP: gastrin releasing peptide, PCO2: partial pressure
of carbon dioxide, RTN: retrotrapezoid nucleus, SUDEP: sudden unexpected death in epilepsy,
VRC: ventral respiratory column. Created with BioRender.

6.1. Retrotrapezoid Nucleus

The RTN is of particular interest, as it regulates breathing directly [144,145] in response
to changes in CO2/H+ levels and functions as a key locus of respiratory control by inte-
grating information from all the other chemoresponsive regions [142]. CCR properties of
RTN neurons have been comprehensively characterized. Their CO2 sensitivity via intrinsic
proton receptors and the underlying cellular and molecular mechanisms have been inves-
tigated very extensively. Located within the ventrolateral medulla (VLM), RTN neurons
are primarily glutamatergic, paired-like homeobox 2B-positive (Phox2b+), and tyrosine
hydroxylase-negative (TH−). The RTN contains proton-sensitive neurons [146], which are
vital for maintaining central respiratory control. Impairments in RTN chemosensitivity
are implicated in fatal conditions such as congenital central hypoventilation syndrome
(CCHS) [147–149] and sudden infant death syndrome (SIDS) [150]. Both syndromes in-
volve genetic mutations (Phox2b and Pacap, pituitary adenylate cyclase-activating peptide)
linked to severe hypoventilation and apneas, which are exacerbated during sleep. Some
CCHS patients even require mechanical ventilation during sleep. Since SUDEP is also
associated with apneas and increased risk during sleep, Pansani et al. (2016) highlighted
the importance of investigating changes in chemosensitive RTN neurons as a potential
mechanism underlying SUDEP [151].

A number of studies have addressed the role of the RTN in SUDEP pathophysiology.
For instance, naïve WARs, which exhibit a decreased ventilatory response to CO2, show
reduced numbers of Phox2b-expressing RTN neurons and reduced activation of these
neurons in response to hypercapnia (c-Fos immunohistochemistry) [99]. Although these
rats were not induced to have seizures, the same group repeated similar experiments in
ARK rats, a different model of epilepsy. These rats exhibited tonic–clonic seizures and
also showed a decreased ventilatory response to CO2, with reduced CO2-induced c-Fos
expression in the RTN [101]. Further studies using Ca2+ imaging in kainic acid-induced
chronic epileptic mice revealed that the firing profile of RTN neurons in response to CO2

was abolished in freely moving mice [60]. Moreover, brainstem slices from DS mice showed
altered RTN electrical activity in response to CO2/H+ [59]. Together, these studies suggest
that a reduced neuronal population, diminished CO2-induced activity, and altered firing
profile of the RTN contribute to impaired central chemoreception in epileptic models,
potentially leading to premature death.

Although Phox2b mutations are not considered major risk factors for SUDEP [152],
epilepsy-related gene mutations can affect the RTN. Immunohistochemistry in healthy
mice shows that the RTN expresses the Kv1.1 protein [153], suggesting that it is a substrate
for the epilepsy-related Kcna1 mutation, potentially affecting its excitability. In Kcna1 KO
mice, significant astrocytosis and microgliosis were observed in chemosensitive regions,
including the RTN, suggesting that seizure-related brain injury may contribute to observed
respiratory abnormalities [153]. Similarly, patch-clamp studies on RTN slices revealed that
the RTN expresses Kcnq transcripts, another epilepsy-related gene [154]. The administration
of KCNQ antagonists increased basal activity and CO2 responsiveness of RTN neurons,
while KCNQ agonists silenced them, indicating that KCNQ channels are key determinants
of spontaneous RTN neuron activity in vitro [154]. This suggests that KCNQ channels may
represent a common molecular basis for respiratory deficits in certain types of epilepsy.
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Furthermore, the effect of KCNQ channels on RTN spontaneous activity was absent in
awake animals, indicating that this association is state dependent [61]. More research is
needed to determine whether this contributes to increased SUDEP risk during sleep. Recent
in situ hybridization studies have shown that the RTN expresses the Kcnq2 isoform but
not Kcnq3 [61]. Impairments in the RTN may underlie the respiratory issues experienced
by patients with Kcnq2 gene mutations, such as those characterized by a GoF variant,
R201C [122]. Functional studies on mice further support this idea, showing that Kcnq2
deletion or expression of the GoF R201C variant in Phox2b-expressing neurons leads to
increased baseline breathing or decreased central chemoreflex, respectively, in mice during
their inactive (light) state [61]. These findings suggest RTN neurons could be key substrates
for genetic epilepsy-related breathing abnormalities.

6.2. Raphe

Raphe neurons are identified by their expression and release of serotonin (5-HT).
Caudal raphe nuclei are known to innervate neuronal groups closely implicated in the
regulation of breathing [155,156]. Serotonergic neurons can have chemosensory properties
and provide excitatory drive towards the respiratory rhythm generation through several
5-HT receptor subtypes [155,157,158].

Immunohistochemical studies on postmortem human SUDEP cases, showed that there
is decreased 5-HT synthesizing enzyme (Tryptophan hydroxylase 2, TPH2), 5-HT presy-
naptic transporter (SERT) in medullary raphe, indicating that there is loss of serotonergic
neuronal synthesizing capacity and reuptake mechanisms in SUDEP patients [80]. MRI
studies show that there is medullary atrophy, prominently in the raphe and VLM in SUDEP
cases [159–161]. These findings were in concert with animal models of epilepsy associated
with respiratory dysfunction. For instance, WAR, which are characterized with reduced
basal breathing rate, have a decreased number of medullary serotonergic neurons (raphe
pallidus and obscurus) [99]. Hence, SUDEP or epilepsy with respiratory impairments are
characterized with decreased serotonergic transmission.

Impairment of the 5-HT system is proposed to contribute to decreased HCVR in
epileptic situations. In WAR and ARK with altered HCVR, there is a decrease of interictal
CO2-activation in 5-HT neurons (c-Fos immunohistochemistry) [99,101]. Lmx1bf/f/p mice,
which lack more than 99% of 5-HT neurons [162], not only have impaired HCVR [163]
but also arousal response to hypercapnia during sleep [56,57]. Hence, 5-HT neurons are
suggested to be important to respond to hypercapnia, which becomes important during
fatal seizures at night.

Moreover, multiunit and single-cell recordings showed decreased population firing
of the medullary and midbrain raphe neurons during the ictal and postictal periods in
anesthetized rats induced with intrahippocampal electrical stimulation [164]. The markedly
suppressed firing of 5-HT neurons was in concert with decreased respiratory rate, tidal
volume, and minute ventilation during and after seizures and supports their possible role
in simultaneously impaired cardiorespiratory function in seizures [164]. Conversely, MRI
studies on DBA/1, straight after audiogenic seizure-induced respiratory arrest, indicate
increased activity at raphe nuclei [96]. The activation of 5-HT neurons could be dependent
on the type of seizures. In fatal seizures, activation of serotonergic mechanisms could be
favored as a compensatory mechanism for apnea. However, they were not sufficient to
prevent death, as there probably was not enough 5-HT neurons and innervations. These
studies clearly indicate that impairment of the 5-HT system is associated with an increased
risk of respiratory dysfunction in epileptic situations and may contribute to SUDEP.

Moreover, in epileptic conditions, the excitatory drive to respiratory regions by seroton-
ergic neurons has also been shown to be affected. In postmortem SUDEP brainstems, there
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was a significant reduction of SERT and TPH2 in the VLM [80]. In a chronic pilocarpine-
induced epileptic model, rats that experienced a sharper decrease in oxygen consumption
were characterized by decreased 5-HT levels in both the NTS and VLM [136]. These
findings suggest that 5-HT delivery to respiratory regions is impaired. Conversely, gene
expression studies showed that in WAR and acute DBA/2 mice, which exhibit fatal res-
piratory symptoms, there was an increase in transcript levels for TPH2 and SERT in the
brainstem [136]. This increase in mRNA may represent an adaptive mechanism to com-
pensate for the reduced protein levels. However, it is important to note that the increased
transcript levels were observed in whole brainstem samples using quantitative PCR, while
the decreased protein levels were found in specific regions through immunohistochemistry.
Further research is required to clarify which stage of 5-HT synthesis is impaired. Overall,
these findings again suggest that alterations in the 5-HT system may play a role in epilepsy
with severe respiratory phenotypes.

There are several fatal epilepsy models derived from mutations in the serotonergic
system. For example, Lmx1bf/f/p mice exhibit a decreased seizure threshold in response
to maximal electroshock (MES) and an increased rate of seizure-induced mortality due to
respiratory failure [50]. In these mice, seizure-induced respiratory arrest was mitigated by
the administration of a 5-HT2a agonist [50], suggesting that mortality can be reduced by
stimulating the serotonergic system. In another genetic mouse model, LoF mutations in the
5-HT2c receptor were associated with epileptic seizures and spontaneous deaths resulting
from seizures [47]. Therefore, normal functioning of both 5-HT2a and 5-HT2c receptors
appears to be critical for preventing seizure-induced death.

Pharmacological augmentation of serotonergic signaling through the administra-
tion of 5-HT reuptake inhibitors (SRIs) has been shown to have preventative effects on
seizure-induced respiratory arrest in different mice models, including DBA/1 [165–168],
DBA/2 [48], and MES-induced seizures [50]. In humans, SRIs decreases the incidence of
ictal central apnea in epileptic patients admitted to epilepsy monitoring unit [169] and
reduces SUDEP incidence in DS patients [170]. Also, there is a potential for SRI to augment
interictal HCVR in epileptic patients with a high risk of SUDEP [171] to reduce severity of
ictal hypoxemia in medically refractory partial epilepsy [172]. These findings are supported
by evidence that the loss of serotonergic signaling through the administration of a 5-HT
antagonist, cyproheptadine, has been shown to do the opposite and increase the likelihood
of seizure-induced respiratory arrest in a DBA/2 mice [48]. SRIs do not only improve the
respiratory mechanisms but also have anticonvulsive properties. In mice, SRIs were shown
to decrease susceptibility to seizures [173] and are currently under clinical trial to be used
in human epileptic subjects as an anticonvulsant [174].

These studies indicate that the serotonergic system is compromised during fatal
seizures and that the chemosensitive properties of raphe neurons may be impaired in
epileptic conditions, potentially contributing to central apnea and respiratory arrest in
SUDEP. However, evidence suggests that the chemosensitivity of raphe may be limited
to only a small subset of neurons [175–177]. For example, in a study on anesthetized
rats, the majority of tested 5-HT neurons (24 neurons) showed no electrical activity or
responsiveness to severe hypercapnia [145]. Additionally, neurotoxic lesioning of medullary
raphe neurons in piglets had no effect on the CO2 ventilatory response [178]. These
point to inconsistencies in the evidence surrounding the chemosensitive properties of
5-HT neurons. Nevertheless, some studies support an additive interaction between raphe
and RTN neurons in mediating central respiratory chemoreflexes. For instance, focal
CO2 dialysis in the raphe obscurus has been shown to enhance the response to focal
CO2 dialysis in the RTN, suggesting a facilitatory role of 5-HT neuron projections to the
RTN [179,180]. Furthermore, there is evidence of a synergistic interaction between RTN
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and 5-HT raphe neurons; pharmacological lesioning of the RTN or the raphe alone reduces
minute ventilation by 24% and 2.5%, respectively, while combined lesioning of both areas
leads to a 50.7% reduction [181]. These findings suggest that a network of nuclei may be
involved in the respiratory pathophysiology of SUDEP. For instance, the protective effect of
SRI on seizure-induced respiratory arrest depends on serotonergic projections to the RTN,
which are diminished in WARs with reduced HCVR [99]. While studies on specific neuron
populations provide valuable insights, a more comprehensive understanding of the central
chemoreceptor circuitry is crucial to better address respiratory symptoms in epilepsy.

6.3. Nucleus of the Solitary Tract

The caudal NTS is a critical neural structure that orchestrates respiratory and sympa-
thetic functions by integrating signals from baroreceptors and chemoreceptors to generate
homeostatic reflex responses [182–185]. While the NTS is well established as a mediator of
peripheral chemoreceptor effects on respiratory control [186], its role in central chemore-
ception remains controversial. Some studies suggest that NTS neurons exhibit increased
firing rates in response to physiological acidification [187,188], with NTS lesions or block-
ades leading to attenuated HCVR [188,189]. Conversely, other studies have not observed
increased c-Fos expression in NTS neurons following CO2 exposure [190,191], and NTS
lesions have sometimes been associated with heightened HCVR [192].

At the neuronal level, the NTS contains a heterogeneous population of neurons, in-
cluding Phox2b+, glutamatergic, GABAergic, and TH+ neurons. Among these, Phox2b+,
glutamatergic, and TH+ neurons are proposed to be chemosensitive, responding directly
to CO2 increases [187,193,194]. Studies using epileptic animal models, such as kainic acid-
injected rats, have observed a general decrease in neuronal populations within the NTS, a
loss that becomes more pronounced with time and could weaken the NTS’s chemosensi-
tive functions [195]. While the exact phenotype of these neurons remains undetermined,
postmortem analyses in SUDEP patients have not revealed significant reductions in TH+
neuron populations [78].

Additionally, the responsiveness of NTS neurons (c-Fos immunohistochemistry) to
CO2 is diminished in ARK rats with ablated HCVR [101], while other models, such as WARs,
show no significant differences in Phox2b+ neuron populations or their CO2 responsiveness
compared to the controls [99]. This discrepancy could be due to the different models used in
these studies. Taking into account the essential function of the NTS in initiating integrative
reflex responses, there is a need for thorough profiling of chemosensitive neurons and how
these behave in pathological conditions like epilepsy, potentially predisposing individuals
to SUDEP.

Similar to the RTN, the NTS expresses Kv1.1 proteins [153] and Kcnq2/Kcnq3 mRNA
in Phox2b+ neurons [61], suggesting that it may also serve as a substrate for genetic
epilepsies involving Kcna1 and Kcnq2 mutations. Such mutations and the associated
chemosensitive impairments may contribute to respiratory dysregulation in SUDEP. In
Kcna1 KO mice, extensive astrocytosis and microgliosis have been observed in the NTS [153],
suggesting that seizure-related injuries might exacerbate respiratory dysfunctions. Detailed
characterization of ion channels in the NTS could thus provide insights into its excitability
and functional role during epileptic events.

Also, the seizure-induced activation of the NTS has been implicated in impaired
arousal and gasping behavior, which could increase the risk of respiratory failure during
seizures [196]. Notably, increased excitability of inhibitory GABAergic neurons in the NTS
has been observed in epileptogenesis of pilocarpine mice [88], suggesting that alterations
within NTS circuitry may disrupt the normal balance of excitatory and inhibitory signaling.
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Such dysregulation may contribute to respiratory instability and predispose individuals to
SUDEP by compromising the NTS’s integrative and chemosensitive capabilities.

6.4. Locus Coeruleus

The LC is the primary cluster of noradrenergic neurons in the pons and plays a crucial
role in promoting arousal. Studies on unanesthetized rats indicate that localized acidosis
in the LC, induced by acetazolamide injection, increases ventilation [197,198], and the
targeted deletion of LC neurons decreases the HCVR, particularly during wakefulness and
non-rapid eye movement (NREM) sleep [197,199]. Experiments in anesthetized animals
and brain slices reveal that LC neurons are moderately activated by hypercapnia [200,201],
supporting the idea that the LC contributes to respiratory chemosensitivity. These studies
collectively demonstrate the chemosensitive potential of LC neurons across various experi-
mental models. Moreover, LC neurons receive synaptic input from other CCR populations
as well [202–206]. Thus, the LC’s response to CO2 may be partially mediated by these
chemosensory connections. However, it remains uncertain whether the selective activation
of LC neurons directly stimulates respiration in vivo.

In epilepsy, LC neurons exhibit enhanced responsiveness to CO2, whereas responsive-
ness in other chemosensitive areas, such as the RTN, serotonin neurons, and the NTS, is
diminished in the ARK and WAR rat models with attenuated HCVR [101]. Interestingly,
in disease models like Parkinson’s disease, LC neurons become more responsive to hy-
percapnia when RTN neurons are impaired [207], suggesting that the LC may act as a
compensatory mechanism when other chemosensitive areas lose CO2 sensitivity. Addi-
tionally, similar to the RTN and NTS, the LC expresses Kcnq2/Kcnq3 mRNA in Phox2b+
neurons, suggesting it may serve as a substrate for genetic epilepsies associated with Kcnq2
mutations [61]. These mutations, along with respiratory chemosensitivity changes in the
LC, could contribute to the respiratory dysregulation observed in SUDEP.

The LC is also the main site for noradrenaline synthesis in the brain, and noradrenergic
modulation of respiration is significant in epilepsy. Research involving a neurotoxin that
selectively targets the noradrenergic transporter and destroys LC-originating terminals has
demonstrated the importance of LC noradrenergic neurons in preventing seizure-induced
respiratory arrest [208]. Similarly, in DBA mice exposed to audiogenic stimulation and
pentylenetetrazol injections, post-seizure respiratory arrest was associated with reduced
TH enzyme activity, resulting in decreased noradrenaline synthesis in the brainstem [209].
Other studies involving the chemical ablation of LC neurons have shown that the protective
effects of SRIs on respiration during seizures depend on noradrenaline [210]. Hence,
noradrenalin is an important target to reduce seizure-induced respiratory arrest in SUDEP.

During seizures, there is a consistent release of noradrenaline [211]. Knowing the
role of the LC in the modulation of behavioral arousal [183,212], perhaps the LC is acti-
vated during seizures to induce arousal from apnea. Moreover, vagus nerve stimulation,
an effective therapy for refractory epilepsy, is thought to reduce seizures by increasing
noradrenaline synthesis in the LC [213]. Although the precise mechanisms by which LC ac-
tivation exerts antiseizure effects are not fully understood, its roles in regulating behavioral
arousal, chemosensitivity, and respiratory control [214] underscore the complexity of the
LC’s involvement during epileptic events.

6.5. Hypothalamus

Some studies suggest that wake promoting orexinergic neurons in the hypothalamus
are chemosensitive to elevated CO2 levels. These neurons are activated by acidification
in vitro [215], and a small fraction exhibit increased c-Fos expression following hypercapnia
in the perifornical region and the dorsomedial hypothalamus [206]. Furthermore, prepro-
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orexin KO mice, as well as healthy mice and rats treated with orexin receptor antagonists,
exhibit decreased HCVR [216–219]. These findings highlight the role of orexinergic neurons
in the hypothalamus as central mediators of CO2 responsiveness. Indeed, neurons in the
LHA have been shown to sense extracellular pH changes via proton-sensing channels
and regulate respiration by projecting to the NTS [220]. Orexinergic projections from the
LHA to the VRC have also been identified [221], although it remains unclear whether these
projections originate from chemosensitive neurons.

In epileptic conditions, hypothalamic seizures have been shown to disrupt brainstem
mechanisms, leading to severe autonomic responses, including respiratory failure and
acidosis [222]. This implies that seizure-induced hypothalamic dysregulation can disturb
blood CO2 homeostasis, pointing to abnormalities in central chemoreception. Orexiner-
gic signaling appears to increase in epileptic situations. In a pilocarpine-induced TLE
rat model, there is selective activation of orexin neurons during seizures [223]. Similarly,
high-risk Kcna KO mice exhibit an increased number of orexin neurons in the LHA [123].
Ex vivo extracellular recordings from the LHA of Kcna KO mice further demonstrate that
orexin neurons are more responsive to reduced pH compared to controls [139]. These
mice also display enhanced HCVR, as well as hypopnea/apnea and intermittent bradycar-
dia, which are normalized with pretreatment using orexin receptor antagonists [123,139].
Consequently, orexin antagonists are being considered as therapeutic interventions for
SUDEP-related cardiorespiratory symptoms [123]. However, because orexinergic neurons
respond to hypercapnia [206], blocking their activity could worsen HCVR and increase
SUDEP risk [216,218,219]. Also, while Kcna KO mice display increased HCVR, most of the
other epileptic animal models are characterized by decreased HCVR (Table 2), which is
thought to be a precursor to respiratory arrest in SUDEP. Thus, further investigation into
orexinergic signaling in various animal models with a high risk of SUDEP is essential to
clarify its role under different conditions in order to use it as a therapeutic target.

Additionally, it should be noted that orexinergic projections target various cardiorespiratory-
related regions, including other CCRs (RTN, NTS, medullary raphe) and non-CCRs (VRC,
periaqueductal gray, rostral VLM, hypoglossal nucleus, parabrachial/Kölliker–Fuse com-
plex, and phrenic nuclei) [224]. Focal antagonism of the orexin receptor 1 in CCR sites, such
as the RTN or the medullary raphe, reduces the CO2 response predominantly during wake-
fulness [218,219]. Collectively, these findings suggest the existence of a complex orexinergic
circuitry that interacts with brainstem populations to regulate chemorespiratory functions.
This suggests that its role extends beyond central chemoreception, and maintaining orexin
homeostasis may be critical in managing epilepsy-induced autonomic disturbances.
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Table 4. Mechanisms of disrupted central chemoreception in SUDEP.

CCR Species Model Finding References

RTN Rat Wild type KCNQ antagonists increased and KCNQ agonist silenced CO2 responsiveness of RTN neurons
in vitro

[154]

WAR Decreased number of RTN neurons and decreased activation of RTN neurons in response to
hypercapnia

[99]

ARK Decreased activation of RTN neurons in response to hypercapnia [101]
Mouse Dravet Syndrome (Scn1a missense mutation in

inhibitory neurons)
Altered electrical activity of the RTN in response to CO2/H+ in DS mice in brainstem slices [59]

Kainic acid (intrahippocampal) Abolished firing profile of excited adapted neurons in response to CO2 in the RTN but not in
the RVLM (Ca2+ imaging in freely moving)

[60]

Wild type Kv1.1 protein encoded by epilepsy related gene Kcna1 is expressed the RTN [153]
Kcna1 KO Kcna1 KO is associated with significant astrocytosis and microgliosis in the RTN [153]
Phox2bCre/+::Ai14 mice (TdTomato reporter expressed
in Phox2b neurons)

The RTN expresses Kcnq2 but not Kcnq3 transcripts [61]

Kcnq2 GOF variant R201C in Phox2b+ neurons Decreased HCVR during the light/inactive state with mutation of Kcnq2 in the RTN [61]

Raphe Human SUDEP cases Decreased TPH2 and SERT in medullary raphe and VLM [80]
SUDEP cases Atrophy in raphe [159–161]
Epileptic patients admitted to epilepsy monitoring unit SRIs decreases the incidence of ictal central apnea [169]
Dravet syndrome SRIs reduces SUDEP incidence [170]
Epileptic patients with high risk of SUDEP SRIs augment interictal HCVR [171]
Medically refractory partial epilepsy SRIs reduce severity of ictal hypoxemia [172]

Rat Intrahippocampal electrical stimulation Suppression of 5-HT neurons in the dorsal and medullary raphe during ictal and postictal
periods in concert with decreased respiratory rate, tidal volume, and minute ventilation

[164]

WAR Decreased number of 5-HT neurons and decreased activation of 5-HT neurons in response to
hypercapnia

[99]

ARK Decreased activation of 5-HT neurons in response to hypercapnia [101]
Pilocarpine A sharper decrease in oxygen consumption with decreased 5-HT levels in the NTS and VLM

Increased transcript levels for TPH2 and SERT in the brainstem
[136]

Mouse 5-HT2C mutant mice Spontaneous seizures with deaths [47]
Lmx1bf/f/p Impaired HCVR [163]
Lmx1bf/f/p Impaired arousal response to hypercapnia during sleep [56,57]
Lmx1bf/f/p Decreased seizure threshold in response to maximal electroshock

Increased rate of seizure-induced mortality due to respiratory failure mitigated by the
administration of a 5-HT2a agonist

[50]

DBA/1 Increased activity of raphe nuclei associated with audiogenic seizure-induced respiratory arrest [96]
DBA/1 SRI decreases seizure-induced respiratory arrest [165–168]
DBA/2 SRI decreases seizure-induced respiratory arrest [48]
DBA/2 5-HT antagonist, cyproheptadine, increase the likelihood of seizure-induced respiratory arrest [48]
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Table 4. Cont.

CCR Species Model Finding References

NTS Rat Kainic acid Decreased neuronal populations within the NTS more pronounced with time [195]
Kainic acid Seizure-induced activation of the NTS associated with impaired arousal and gasping behavior [196]
ARK Decreased activation of NTS neurons in response to hypercapnia [101]

Mouse Wild type Kv1.1 protein encoded by epilepsy related gene Kcna1 is expressed the NTS [153]
Kcna1 KO Kcna1 KO is associated with significant astrocytosis and microgliosis in the NTS
Phox2Cre/+::Ai14 mice (TdTomato reporter expressed
in Phox2b neurons)

The NTS expresses Kcnq2 and Kcnq3 transcripts [61]

Kcnq2 GOF variant R201C in Phox2b+ neurons Decreased HCVR during the light/inactive state with mutation of Kcnq2 in the NTS [61]

LC Rat ARK Increased activation of LC neurons in response to hypercapnia [101]
Mouse Phox2Cre/+::Ai14 mice (TdTomato reporter expressed

in Phox2b neurons)
The LC expresses Kcnq2 and Kcnq3 transcripts [61]

Kcnq2 GOF variant R201C in Phox2b+ neurons Decreased HCVR during the light/inactive state with mutation of Kcnq2 in the LC [61]
DBA/1 Neurotoxin ablation of LC-originating terminals prevents seizure-induced respiratory arrest [208]
DBA/1 (audiogenic stimulation and pentylenetetrazol) Respiratory arrest associated with reduced TH enzyme activity [209]
MES in C57Bl6, Lmx1bf/f/p, NE deficient The protective effects of SRIs on respiration during seizures depend on noradrenaline [210]

Hypothalamus Rat Penicillin-G at hypothalamic and mesencephalic level Hypothalamic seizures are characterized with acidosis [222]
Pilocarpine Selective activation of orexin neurons during seizures [223]

Mouse Kcna KO Overstimulation of orexin neurons in response to reduced pH and increase HCVR
HCVR normalized with orexin receptor antagonist

[139]

Kcna KO Orexin receptor antagonists decrease hypopnea/apnea and intermittent bradycardia [123]
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7. Neuropeptides Involved in Respiratory Dysregulation in Epilepsy
Research on the respiratory network has provided significant insights into the neuro-

modulators that regulate its function [225]. Neuropeptides are important to consider, as
they are suggested to play an important role in modulating seizures and epilepsy [226].
Unlike neurotransmitters, which operate on a millisecond timescale, neuropeptides have
longer half-lives; enabling them to modulate neuronal and network activity over extended
periods [227,228]. This property contributes to setting the seizure threshold and endows
them with anticonvulsive properties. Beyond their ability to reduce the likelihood of
seizures, neuropeptides are essential for breathing regulation, as they are expressed in
CCRs (Figure 3). Consequently, their malfunction may lead to respiratory depression and
impairment of central chemosensitive networks in SUDEP.

7.1. Galanin

For instance, postmortem studies of SUDEP patients have revealed a reduction in the
number of galanin terminals in the VLM [80]. Galanin, expressed in subpopulations of
chemosensitive neurons in the RTN, NTS, LC, and hypothalamus, is known to regulate
breathing by sustaining chemoresponsiveness and altering gene expression in response to
hypercapnia [229]. Experimental evidence suggests that galanin administration protects
against seizure-induced respiratory arrest in mice [230]. In contrast, galanin receptor antag-
onists in the LC have been shown to improve impulsive-like behaviors in epileptic rat mod-
els [231]. Galanin analogs are proposed as potential anti-seizure medication [232–235]. Gal-
non or Galmic are synthetic non-peptide galanin receptor agonists capable of crossing the
blood–brain barrier and reducing pentylenetetrazol-induced seizures in rodents [236–238].
However, these analogs have yet to be tested in human clinical trials [238]. Hence, galanin
can be a candidate in contributing to seizure-induced respiratory dysfunction.

7.2. PACAP

Similarly, PACAP is a neuropeptide found in the brainstem centers that are critical for
central cardiorespiratory regulation [239]. In kainic acid-induced rats, intrathecal PACAP
antagonists exacerbate seizure-induced sympathoexcitation, resulting in increased blood
pressure and heart rate [240]. This suggests that PACAP plays a protective role against
the adverse cardiovascular effects of seizures. PACAP mRNA is also expressed in several
central chemoreceptive regions, including the RTN, NTS, LC, and LHA rate [241,242].
Notably, its expression is upregulated in the hypothalamus following kainic acid-induced
seizures in rats [243]. PACAP knockout mice exhibit respiratory control defects, with
PAC1 receptor deficiencies impairing cardiorespiratory responses to hypercapnia and
hypoxia [244]. Neonatal PACAP-deficient mice are more susceptible to sudden death
and show reduced respiratory responses to hypoxia and hypercapnia [245]. Furthermore,
restoring PACAP expression in RTN neurons of PACAP-deficient mice improves breathing
responses to CO2 and reduces apneas [150]. Collectively, these findings indicate that
PACAP may protect against SUDEP-related central chemoreception impairment.

7.3. Orexin

Another neuropeptide of interest to mention in this context is orexin. As mentioned
in the previous section, orexinergic neurons in the hypothalamus are sensitive to CO2,
and their signaling increases in epilepsy [123,223,246]. Orexin also plays a vital role in
sleep-state-dependent breathing regulation and shows a pronounced diurnal variation.
Studies in rats demonstrate that orexin levels are highest at the end of the wake-active pe-
riod, with even stronger fluctuations observed in older animals [247,248]. Orexin-deficient
mice and those treated with orexin receptor antagonists exhibit attenuated HCVR during
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wakefulness but not during sleep, suggesting vigilance-state specificity [216–219]. The in-
tracerebroventricular administration of orexin agonists partially restores these defects [249].
Orexin-deficient mice show frequent sleep apneas [217], and decreased orexin levels have
been identified in patients with obstructive sleep apnea [250]. Orexin receptor antagonists
are shown to improve sleep [251,252]. These studies highlight the potential involvement of
orexin in the elevated risk of impaired chemosensory function during specific vigilance
states, contributing to the increased risk of SUDEP during sleep.

7.4. Somatostatin

Somatostatin is another neuropeptide that plays a crucial role in central chemorecep-
tion, acting as an inhibitory modulator of respiration. Single-cell RNA sequencing studies
have identified somatostatin-expressing interneurons within the parafacial region, where
the RTN is located [253]. These somatostatin-positive interneurons are CO2 sensitive but
paradoxically appear to be inhibited by CO2 [253]. In vitro experiments suggest that RTN
neurons receive inhibitory input from these nearby parafacial somatostatinergic neurons.
Notably, in vivo studies have demonstrated that the selective chemogenic inhibition of
somatostatin-containing parafacial neurons enhances baseline respiration [253]. This in-
dicates that CO2 not only directly stimulates RTN neurons but may also facilitate their
disinhibition by suppressing somatostatin signaling. Further supporting this role, studies
in rats have shown that somatostatin administration in the VLM blunts the ventilatory
response to both hypoxia and hypercapnia [253]. In contrast, human studies have found
that intravenous somatostatin infusion significantly reduces the ventilatory response to
hypoxia while leaving the response to hypercapnia unchanged [254,255]. Importantly,
a postmortem analysis of SUDEP brain samples has revealed a significant reduction in
somatostatin labeling in the VLM compared to the controls [80]. Collectively, these findings
suggest that alterations in somatostatin signaling may contribute to impaired chemosensory
function within the VLM, potentially playing a role in SUDEP pathophysiology.

7.5. Bombesin-Like Peptides

The RTN contains several other neuropeptides, including bombesin-like peptides
called neuromedin B (NMB) and gastrin-releasing peptide (GRP) [242,256]. RTN neu-
rons exhibit increased NMB and GRP mRNA expression in response to short-term CO2

exposure [229]. NMB neurons also show elevated Fos mRNA levels following acute hyper-
capnia [242]. These findings highlight the role of these neuropeptides in central chemore-
ception. Beyond chemoreception, NMB and GRP neurons in the RTN are involved in the
sighing mechanism [256]. Sighs—long, deep breaths—occur in response to emotional and
physiological stressors, such as hypoxia and hypercapnia [257], enhancing gas exchange
and maintaining lung integrity by reinflating collapsed alveoli [256]. Following clonic
seizures, patients commonly release a deep sigh before resuming normal breathing and
arousal, which may serve as a protective mechanism against SUDEP-associated respiratory
arrest. Although NMB and GRP have demonstrated anticonvulsant properties [258], their
precise role in central chemoreception and sighing, particularly in the context of SUDEP,
remains to be fully elucidated.

In summary, the neuropeptides galanin, PACAP, orexin, somatostatin, and bombesin-
like peptides play critical roles in central chemoreception, respiratory regulation, and
seizure modulation. These neuropeptides contribute to maintaining respiratory homeosta-
sis by influencing central chemosensory networks and cardiorespiratory control centers.
Their dysregulation may result in impaired respiratory responses, chemosensory dys-
function, and autonomic instability, which are associated with conditions like SUDEP.
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Understanding the complex roles of these neuropeptides provides valuable insights into
potential therapeutic targets for mitigating respiratory and seizure-related risks.

8. Research Perspectives and Diagnostic and Therapeutic Implications
This review underscores the pivotal role of central chemoreception in the patho-

physiology of SUDEP (Figure 3), highlighting potential future diagnostic and therapeutic
approaches, such as the identification of novel candidate biomarkers for SUDEP risk and
to the development of new preventive treatments. The targeting of specific CCRs, in-
cluding the RTN, raphe nuclei, NTS, LC, and hypothalamus, pharmacologically holds
promise for stabilizing respiratory function in epilepsy patients. There exist initial pilot
studies that explored the efficacy of a serotonin reuptake inhibitor, fluoxetine, to augment
HCVR in epilepsy patients [171]. Other therapeutic agents targeting CCR regulatory candi-
dates, including neuropeptides—particularly galanin, PACAP, orexin, somatostatin, and
bombesin-like peptides—could be tested to enhance ventilatory responses to hypercapnia
and potentially reduce SUDEP risk.

The therapeutic development of these agents should consider advanced techniques
such as gene therapy and CRIPSR/dCas9 technology. Currently, these innovative ap-
proaches are emerging in the field of epilepsy. Among genetic epilepsies (e.g., Kcna1, Kcnq,
Scn1a genes), the Scn1a mutation, responsible for DS, has been the primary target. An
adeno-associated virus (AAV) capsid called ETX101 is currently being tested [259] (Clinical-
Trials.gov Identifier: NCT05419492 in the USA, NCT06283212 in the UK and NCT06112275
in Australia). ETX101 is administered via intracerebroventricular infusion and delivers a
transgene encoding an engineered SCN1A-specific transcription factor within GABAergic
interneurons to upregulate the endogenous SCN1A gene expression and thereby increasing
NaV1.1 protein levels [260,261]. Additional engineered vectors in clinical trials include
a lentiviral vector that delivers a potassium channel (EKC) to excitatory neurons [262]
(ClinicalTrials.gov Identifier: NCT04601974) and another AAV vector, AMT-260, which
encodes microRNA that block the mRNA encoding glutamate receptor, GluK2, and thereby
downregulates its expression [261,263] (ClinicalTrials.gov Identifier: NCT06063850). Both
EKC and AMT-260 are administered through intracerebral infusion into the target area.
The CRIPSR/dCas9 (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR
associated protein) approach is a powerful tool for genome editing [264] but relatively new
in the field of epilepsy. Transcriptional activators fused to a dCas9 have been shown to alter
Scn1a gene expression [265,266]; however, no clinical trials exist yet. These advancements
could inspire new treatments targeting other SUDEP-related pathways.

Beyond therapeutic interventions, impaired CO2 handling could serve as a biomarker
to identify individuals at elevated risk for SUDEP, offering a valuable predictive tool for
clinicians. HCVR can be performed in epileptic patients in the EMU using a modified
hyperoxic rebreathing technique [58,81]. This technique has shown promise as a rapid and
safe diagnostic tool for epilepsy patients [81]. Early studies observed significant interindi-
vidual differences in HCVR or central respiratory CO2 chemosensitivity [58,81]. Notably
postictal HCVR measurements have revealed prolonged impairment in CO2 chemorecep-
tion after seizures [58]. Moreover, longitudinal HCVR assessments are also important to
determine whether CO2 chemosensitivity deteriorates over time, aiding in risk prediction
for SUDEP [267]. Hence, HCVR measurements (longitudinal, interictal and postictal) are
promising in predicting the risk of breathing abnormalities like hypoventilation and hence
identify patients who are at increased risk for SUDEP. However, to maximize its clinical util-
ity, standardized HCVR testing protocols must be established and integrated into routine
epilepsy care.
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Despite these favorable findings, the clinical integration of HCVR remains limited.
Although the recent SUDEP-CARE score [22] incorporates respiratory symptoms during or
after seizures as a critical risk factor, HCVR has yet not been directly included in SUDEP
risk assessment protocols. Standardizing HCVR testing and integrating it into routine
epilepsy care will require large-scale, multicenter, prospective, and longitudinal studies to
validate its efficacy as a biomarker.

Once validated in clinical settings, HCVR could serve as a proxy biomarker or an
outcome measure to assess the effectiveness of SUDEP prevention strategies. This approach
could address the challenge of the long-term monitoring of a large number of epilepsy
patients who are at risk of SUDEP, providing quicker insights into the impact of proposed
interventions. However, it is essential to recognize that SUDEP is influenced by multi-
factorial mechanisms. Beyond a dysfunction at the central respiratory chemoreception,
factors such as genetic predisposition, cardiac abnormalities, impaired arousal mechanisms,
non-compliance to medication, and environmental triggers also contribute to SUDEP risk.
Thus, a comprehensive framework encompassing multiple outcome measures—including
HCVR, seizure frequency and severity, cardiac parameters, and autonomic responses—is
essential for evaluating new therapeutic agents.

9. Conclusions
Respiratory dysfunction, particularly hypoventilation, is a significant contributing

factor to SUDEP. Emerging evidence indicates that CO2 imbalance during and after seizures
reflects impairments in central chemoreception mechanisms. HCVR as a method to as-
sess CO2 sensitivity holds potential for identifying patients at heightened risk for SUDEP.
Advancing our understanding of central respiratory chemoreception in epilepsy not only
offers insights into SUDEP pathophysiology but also paves the way for innovative pharma-
cological interventions. These efforts could significantly reduce the burden of SUDEP and
improve outcomes for epilepsy patients.
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