Hybrid Lanthanide Metal–Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles
<p>(<b>A</b>) Molecular structure of <b>1</b>; aromatic hydrogen atoms as well as solvate methanol molecules are omitted for clarity; atom colors: lanthanum, yellow; nitrogen, blue; oxygen, red; hydrogen, green. (<b>B</b>) Coordination polyhedron (real positions of the coordinated atoms together with the normal polyhedron) of <b>1</b>; atom colors: lanthanum, yellow; nitrogen, blue; oxygen, red.</p> "> Figure 2
<p>(<b>A</b>) Molecular structure of <b>2</b>; Aromatic hydrogen atoms as well as solvate methanol molecules are omitted for clarity; atom colors: neodymium, yellow; nitrogen, blue; oxygen, red; hydrogen, green. (<b>B</b>) Coordination polyhedron (real positions of the coordinated atoms together with the normal polyhedron) of <b>2</b>; atom colors: neodymium, yellow; nitrogen, blue; oxygen, red. (<b>C</b>) Hydrogen bonding interactions (blue dotted lines) in <b>2</b>.</p> "> Figure 3
<p>(<b>A</b>) Molecular structure of <b>3</b>; aromatic hydrogen atoms are omitted for clarity; atom colors: europium, yellow; nitrogen, blue; oxygen, red; hydrogen, green. (<b>B</b>) Coordination polyhedron (real positions of the coordinated atoms together with the normal polyhedron) of <b>3</b>; atom colors: europium, yellow; nitrogen, blue; oxygen, red.</p> "> Figure 4
<p>(<b>A</b>) Crystal Explorer plot of <b>1</b>. (<b>B</b>) d<sub>norm</sub> mapping of <b>1</b> through Hirshfeld surface analysis. (<b>C</b>) Shape index mapping of <b>1</b> through Hirshfeld surface analysis. (<b>D</b>) Curvedness mapping of <b>1</b> through Hirshfeld surface analysis. The different colors shown in the figure are identified and explained in detail in the text.</p> "> Figure 5
<p>(<b>A</b>) Full fingerprint plot of <b>1</b> and d<sub>norm</sub> mapping. (<b>B</b>) Internal vs. external 2D fingerprint plot distances of H···H contacts of <b>1</b> with the relevant percentage contribution mapped over d<sub>norm</sub>. (<b>C</b>) 2D fingerprint plot of H···O/O···H contacts and their appropriate percentage contribution reflected onto the Hirshfeld surface area mapper over d<sub>norm</sub> of <b>1</b>. (<b>D</b>) 2D Fingerprint plot of H···C/C···H contacts, with the relevant percentage contribution reflected onto the Hirshfeld surface area mapper over d<sub>norm</sub> of <b>1</b>.</p> "> Figure 6
<p>(<b>A</b>) Comparative UV-visible spectra of <b>1</b> with phen and Chr in methanol at 10<sup>−5</sup> M. (<b>B</b>) Electronic spectrum (red line) and spectral fitting (scatter) of compound <b>1</b> in methanol (10<sup>−5</sup> M).</p> "> Figure 7
<p>ESI-MS spectra of <b>3</b> and the appropriate species in methanol solution through the positive mode of ionization.</p> "> Figure 8
<p>Comparative and normalized solid-state luminescence spectra between <b>2</b> and (<b>A</b>) Chr at λ<sub>ex</sub> 445 nm. (<b>B</b>) Phen at λ<sub>ex</sub> 373 nm.</p> "> Figure 9
<p>(<b>A</b>) Temperature dependence of the magnetic susceptibility of <b>1</b> measured at 10 kOe. (<b>B</b>) Magnetic properties of <b>2</b>: (<b>top</b>) temperature dependence of the magnetic susceptibility (<span class="html-italic">χ</span> and <span class="html-italic">χ</span><sup>−1</sup> data) measured at 10 kOe; (<b>bottom</b>) magnetization isotherms at 3, 10, and 50 K. (<b>C</b>) Magnetic properties of <b>3</b>: (<b>top</b>) temperature dependence of the magnetic susceptibility measured at 10 kOe. The calculated susceptibilities (red line) were obtained using the Van Vleck expression for the paramagnetic susceptibilities of free Eu(III) ions with λ = 734(1) K; (<b>bottom</b>) magnetization isotherms at 3, 10 and 50 K.</p> "> Figure 10
<p>Experimental (data points) and simulated (red line) <sup>151</sup>Eu Mössbauer spectrum of <b>3</b> measured at 78 K.</p> "> Figure 11
<p>UV-visible absorption spectra of solutions containing BSA (3 μΜ, PBS) and increasing molar ratios of <b>2</b> (DMSO).</p> "> Figure 12
<p>Fluorescence spectra of solutions containing BSA (1.5 μM, PBS) and molar ratios of <b>2</b> (DMSO). <b>Inset</b>: Stern–Volmer plot acquired from steady-state fluorescence at (<b>A</b>) 20 °C, (<b>B</b>) 30 °C, and (<b>C</b>) 37 °C.</p> "> Figure 13
<p>Van’t Hoff plot of <b>2</b> from measurements at 20 °C, 30 °C, and 37 °C.</p> "> Figure 14
<p>Circular dichroism spectra of solutions containing BSA (1 μM, PBS) and increasing molar ratios of (<b>A</b>) <b>1</b> (MeOH) and (<b>B</b>) <b>3</b> (MeOH).</p> "> Figure 15
<p>(<b>A</b>) Compound <b>1</b> was docked against the 3D structure of BSA. (<b>B</b>) 2D interaction diagrams illustrate the interactions between compound <b>1</b> and the BSA binding motif (hydrophobic contacts are indicated in red).</p> ">
Abstract
:1. Introduction
2. Results
2.1. Synthetic Reactivity
Reaction 1 |
Reaction 2 |
Reaction 3 |
2.2. Description of X-Ray Crystallographic Structures
2.3. Hirshfeld Surface Analysis
2.4. FT-IR Spectroscopy
2.5. UV-Visible Spectroscopy
2.6. ESI-MS Spectrometry
2.7. Luminescence Studies
2.8. Magnetic Properties
2.9. 151Eu Mössbauer Spectroscopy
2.10. Interaction with Bovine Serum Albumin
2.10.1. Electronic UV-Visible Configuration
2.10.2. Luminescence Interactions
2.10.3. Circular Dichroism
2.10.4. Molecular Docking
2.11. In Vitro Antimicrobial Activity
3. Discussion
3.1. Synthetic Challenges in Lanthanide-Flavonoid Chemistry
3.2. Structural Variations in Lanthanide-Flavonoid Assemblies
3.3. Luminescence and Magnetic Properties
3.4. Biomolecular Interactions with BSA
3.5. Docking Studies Against BSA
3.6. In Vitro Antibacterial Profile
4. Experimental
4.1. Materials and Methods
4.2. Physical Measurements
4.2.1. ESI-MS
4.2.2. Photoluminescence
4.2.3. Magnetic Susceptibility Studies
4.2.4. 151Eu Mössbauer Spectroscopy
4.3. Theoretical Calculations
4.4. Hirshfeld Surface Analysis
4.5. Synthesis
4.6. X-Ray Structural Determination
4.7. Interactions with Bovine Serum Albumin
4.8. Docking Studies
4.9. In Vitro Antibacterial Properties
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DMSO | Dimethyl sulfoxide |
Chrysin | Chr |
1,10-phenanthroline | phen |
Lanthanides | Ln |
BVS | Bond valence sum |
ESI-MS | Electron spray ionization mass spectrometry |
FT-IR | Fourier transform infrared |
UV-Visible | Ultraviolet spectroscopy |
VESTA | Visualization for Electronic and Structural Analysis |
Trp | Tryptophan |
Tyr | Tyrosine |
Phe | Phenylalanine |
ZOI | Zone of inhibition |
MIC | Minimum inhibitory concentration |
References
- Tesauro, D. Metal Complexes in Diagnosis and Therapy. Int. J. Mol. Sci. 2022, 23, 4377. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef]
- Maikoo, S.; Makayane, D.; Booysen, L.; Ngubane, P.; Khathi, A. Ruthenium compounds as potential therapeutic agents for type 2 diabetes mellitus. Eur. J. Med. Chem. 2021, 213, 113064. [Google Scholar] [CrossRef] [PubMed]
- Zehra, S.; Cirilli, I.; Silvestri, S.; Ruiz, S.; Tabassum, S.; Arjmand, F. Structure elucidation, in vitro binding studies and ROS-dependent anti-cancer activity of Cu(II) and Zn(II) phthaloylglycinate(phen) complexes against MDA-MB-231 cells. Metallomics 2021, 13, mfab064. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Nan, B.; Yang, F.; Xu, L.; Guan, G.; Xu, J.; Yue, R.; Wang, Y.; Huan, S.; Yin, X.; et al. Zinc−Carnosine Metallodrug Network as Dual Metabolism Inhibitor Overcoming Metabolic Reprogramming for Efficient Cancer Therapy. Nano Lett. 2023, 23, 2659–2668. [Google Scholar] [CrossRef]
- Ott, I.; Gust, R. Non platinum metal complexes as anti-cancer drugs. Arch. Pharm. Chem. Life Sci. 2007, 340, 117–126. [Google Scholar] [CrossRef]
- Morris, R.; Aird, R.; Murdoch, P.; Chen, H.; Cummings, J.; Hughes, N.; Parsons, S.; Parkin, A.; Boyd, G.; Jordell, D.; et al. Inhibition of Cancer Cell Growth by Ruthenium(II) Arene Complexes. J. Med. Chem. 2001, 44, 3616–3621. [Google Scholar] [CrossRef]
- Lee, Y.; Tuyet, P. Synthesis and biological evaluation of quercetin–zinc (II) complex for anti-cancer and anti-metastasis of human bladder cancer cells. In Vitro Cell. Dev. Biol. 2019, 55, 395–404. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Z.; Crewdson, P.; Wang, D. Synthesis, crystal structure and DNA-binding studies of the Ln(III) complex with 6-hydroxychromone-3-carbaldehyde benzoyl hydrazine. J. Inorg. Biochem. 2007, 101, 1492–1504. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, Z.; Qi, G.; Qin, D. Synthesis, crystal structure, antioxidant activities and DNA-binding studies of the Ln(III) complexes with 7-methoxychromone-3 carbaldehyde-(40-hydroxy)benzoyl hydrazine. Eur. J. Med. Chem. 2009, 44, 2425–2433. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, H.; Kimura, H.; Matsumoto, K. Highly Sensitive Time-Resolved Fluoroimmunoassay of Human Immunoglobulin E by Using a New Europium Fluorescent Chelate as a Label. Anal. Biochem. 1997, 254, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Yuan, J.; Matsumoto, K. Quantitative Measurement of p21 Protein in Human Serum by Time-Resolved Fluoroimmunoassay. Anal. Sci. 2001, 17, 881–883. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, S.; Vehniainen, M.; Jansen, T.; Meretoja, V.; Saviranta, P.; Petterson, K.; Lovgren, T. Dual-Label Time-resolved Immunofluorometric Assay of Free and Total Prostate-specific Antigen Based on Recombinant Fab Fragments. Clin. Chem. 2000, 46, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Rintamaki, S.; Saukkoriipi, A.; Salo, P.; Takala, A.; Leinonen, M. Detection of Streptococcus pneumoniae DNA by using polymerase chain reaction and microwell hybridization with Europium-labelled probes. J. Microbiol. Methods 2002, 50, 313–318. [Google Scholar] [CrossRef]
- Nurmi, J.; Wilkman, T.; Karp, M.; Lovgren, T. High-Performance Real-Time Quantitative RT-PCR Using Lanthanide Probes and a Dual-Temperature Hybridization Assay. Anal. Chem. 2002, 74, 3525–3532. [Google Scholar] [CrossRef]
- Handl, H.; Vagner, J.; Yamamura, H.; Hruby, V.; Gillies, R. Development of a lanthanide-based assay for detection of receptor–ligand interactions at the d-opioid receptor. Anal. Biochem. 2005, 343, 299–307. [Google Scholar] [CrossRef]
- Day, B.; Guo, F.; Layfield, R. Cyclopentadienyl Ligands in Lanthanide Single-Molecule Magnets. Acc. Chem. Res. 2018, 51, 1880–1889. [Google Scholar] [CrossRef]
- Pointillart, F.; Cador, O.; Guennic, B.; Ouahab, L. Uncommon lanthanide ions in purely 4f Single Molecule Magnets Coord. Chem. Rev. 2017, 346, 150–175. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, X.; Lao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Thiacalix [4]arene-Supported Planar Ln4 (Ln = TbIII, DyIII) Clusters: Toward Luminescent and Magnetic Bifunctional Materials. Inorg. Chem. 2009, 48, 11743–11747. [Google Scholar] [CrossRef]
- Bottrill, M.; Kwok, L.; Long, N. Lanthanides in magnetic resonance imaging. Chem. Soc. Rev. 2006, 35, 557–571. [Google Scholar] [CrossRef]
- Mcmahon, B.; Mauer, P.; McCoy, C.; Clive, T.; Gunnlaugsson, T. Selective Imaging of Damaged Bone Structure (Microcracks) Using a Targeting Supramolecular Eu(III) Complex As a Lanthanide Luminescent Contrast Agent. J. Am. Chem. Soc. 2009, 131, 17526–17720. [Google Scholar] [CrossRef] [PubMed]
- Uggeri, F.; Aime, S.; Anelli, P.L.; Botta, M.; Brocchetta, M.; Haeen, C.; Ermondi, G.; Grandi, M.; Paoli, P. Novel Contrast Agents for Magnetic Resonance Imaging. Synthesis and Characterization of the Ligand BOPTA and Its Ln(III) Complexes (Ln = Gd, La, Lu). X-ray Structure of Disodium (77,S-9-145337286-C-S)-[4-Carboxy-5,8,ll-tris(carboxymethyI)-l-phenyl-2-oxa-5,8,ll-triazatridecan-13-oato(5-)]gadolinate(2-) in a Mixture with Its Enantiomer. Inorg. Chem. 1995, 34, 633–643. [Google Scholar] [CrossRef]
- Kuipers, J.; Giepmans, B. Neodymium as an alternative contrast for uranium in electron microscopy. Histochem. Cell Biol. 2020, 153, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Meserole, L. Health foods in anti-aging therapy: Reducers of physiological decline and degenerative diseases. Adv. Phytomedicine 2002, 1, 173–180. [Google Scholar] [CrossRef]
- Slika, H.; Mansour, H.; Wehbe, N.; Nasser, S.; Iratni, R.; Nasrallah, G.; Shaito, A.; Ghaddar, T.; Kobeissy, F.; Eid, A. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharm. 2022, 146, 112442. [Google Scholar] [CrossRef] [PubMed]
- Dalta, K.; Christidou, M.; Widmer, W.; Roopai, H.; Dexter, D. Tissue distribution and neuroprotective effects of citrus flavonoid tangeretin in a rat model of Parkinson’s disease. Neuroreport 2001, 12, 3871–3875. [Google Scholar] [CrossRef]
- Bakhtiari, M.; Panahi, Y.; Ameli, J.; Darvishi, B. Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomed. Pharmacother. 2017, 93, 218–229. [Google Scholar] [CrossRef]
- Luna, S.; Garza, R.; Saldivar, S. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 6792069. [Google Scholar] [CrossRef]
- Matsia, S.; Lazopoulos, G.; Hatzidimitriou, A.; Reimann, M.K.; Pöttgen, R.; Salifoglou, A. Chemical reactivity profile of rare earth metal ions with flavonoids. From structural speciation to magneto-optical properties. Polyhedron 2023, 234, 116231. [Google Scholar] [CrossRef]
- SHAPE Software, version 2.0. Continuous Shape Measures Calculation. (c) Electronic Structure Group. Universitat de Barcelona: Barcelona, Spain, 2010.
- Halevas, E.; Mavroidi, B.; Pelecanou, M.; Hatzidimitriou, A. Structurally characterized zinc complexes of flavonoids chrysin and quercetin with antioxidant potential. Inorg. Chim. Acta 2021, 523, 14–25. [Google Scholar] [CrossRef]
- Grillone, M.D.; Nocilla, M.A. The interaction of potassium salts with 1,10-phenanthroline and 2,2′-bipyridine. Inorg. Nucl. Chem. Lett. 1978, 14, 49–53. [Google Scholar] [CrossRef]
- Schilt, A.A.; Taylor, R.C. Infra-red spectra of 1:10-phenanthroline metal complexes in the rock salt region below 2000 cm−1. J. Inorg. Nucl. Chem. 1958, 9, 211–221. [Google Scholar] [CrossRef]
- Pusz, J.; Woznicka, E.; Wolowiec, S.; Umbreit, M.H. New solid compounds of Tb(III), Ho(III), Er(III) and Yb(III) with chrysin. J. Therm. Anal. Calorim. 2009, 97, 987–992. [Google Scholar] [CrossRef]
- Beg, F.; Bhatia, A.M.; Baig, U.I. Biological Activity of Modified Chrysin. Int. J. Multidiscip. Curr. Res. 2014, 2, 126–130. [Google Scholar]
- Pusz, J.; Wolowiec, S. Solid compounds of Ce(III), Pr(III), Nd(III), and Sm(III) ions with chrysin. J. Therm. Anal. Calorim. 2012, 110, 813–821. [Google Scholar] [CrossRef]
- Ansari, A.A. DFT and 1H NMR molecular spectroscopic studies on biologically anti-oxidant active paramagnetic lanthanide(III)-chrysin complexes. Main Group Chem. 2008, 7, 43–56. [Google Scholar] [CrossRef]
- Tsaryuk, V.; Zhuravlev, K.; Gawryszewska, P. Processes of luminescence quenching in europium aromatic carboxylates with the participation of LMCT states: A brief review. Coord. Chem. Rev. 2023, 489, 215206. [Google Scholar] [CrossRef]
- Lueken, H. Magnetochemie; Teubner: Stuttgart, Germany, 1999. [Google Scholar]
- Van Vleck, J.H. The Theory of Electric and Magnetic Susceptibilities; Oxford University Press: Oxford, UK, 1952. [Google Scholar]
- Takikawa, Y.; Ebisu, S.; Nagata, S. Van Vleck paramagnetism of the trivalent Eu ions. J. Phys. Chem. Solids 2010, 71, 1592–1598. [Google Scholar] [CrossRef]
- Lhoste, J.; Perez-Campos, A.; Henry, N.; Loiseau, T.; Rabu, P.; Abraham, F. Chain-like and dinuclear coordination polymers in lanthanide (Nd, Eu) oxochloride complexes with 2,2′:6′,2′′-terpyridine: Synthesis, XRD structure and magnetic properties. Dalton Trans. 2011, 40, 9136–9144. [Google Scholar] [CrossRef]
- Anke, B.; Hund, S.; Lorent, C.; Janka, O.; Block, T.; Pöttgen, R.; Lerch, M.Z. Synthesis, Crystal Structure, and Magnetic Properties of Pyrochlore-Type Eu2Ta2(O,N)7+δ. Anorg. Allg. Chem. 2017, 643, 1824–1830. [Google Scholar] [CrossRef]
- Glentworth, P.; Nichols, A.L.; Newton, D.A.; Large, N.R.; Bullock, R.J. Europium-151 Mössbauer spectroscopic studies of europic oxide. J. Chem. Soc. Dalton Trans. 1973, 9, 546–550. [Google Scholar] [CrossRef]
- Lumpe, H.; Menke, A.; Haisch, C.; Mayer, P.; Kabelitz, A.; Yusenko, K.V.; Guilherme Buzanich, A.; Block, T.; Pöttgen, R.; Emmerling, F.; et al. The Earlier the Better: Structural Analysis and Separation of Lanthanides with Pyrroloquinoline Quinone. J. Chem. Eur. J. 2020, 26, 10133–10139. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. New Insights into the Behavior of Bovine Serum Albumin Adsorbed onto Carbon Nanotubes: Comprehensive Spectroscopic Studies. J. Phys. Chem. 2010, 114, 5625–5631. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, N.; Galvao, A.; Gomes, C.; Ramos, H.; Pinheiro, R.; Saraiva, L.; Ntungwe, E.; Isca, V.; Rijo, P.; Cavaco, I.; et al. Naphthoylhydrazones: Coordination to metal ions and biological screening. New J. Chem. 2019, 43, 17801–17818. [Google Scholar] [CrossRef]
- Polet, H.; Steinhardt, J. Binding-induced alterations in ultraviolet absorption of native serum albumin. Biochemistry 1968, 7, 1348–1356. [Google Scholar] [CrossRef]
- Zhang, G.; Ma, Y.; Wang, L.; Zhang, Y.; Zhou, J. Multispectroscopic studies on the interaction of Maltol, a food additive, with bovine serum albumin. Food Chem. 2012, 133, 264–270. [Google Scholar] [CrossRef]
- Moriyama, Y.; Ohta, D.; Hachiya, K.; Mitsui, Y.; Takeda, K. Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: A comparative study of the two and one tryptophan(s) of bovine and human albumins. J. Prot. Chem. 1996, 15, 265–272. [Google Scholar] [CrossRef]
- Campello, C.; Palma, M.P.; Correia, E.; Paulo, I.; Matos, P.M.R.; Rino, A.; Coimbra, J.; Pessoa, J.C.; Gambino, D.; Paulo, A.; et al. Lanthanide complexes with phenanthroline-based ligands: Insights into cell death mechanisms obtained by microscopy techniques. Dalton Trans. 2019, 48, 4611–4624. [Google Scholar] [CrossRef]
- Sarwar, A.; Shamsuddin, M.; Kassim, K.; Kakar, E.; Ullah, H.; Iqbal, S. New luminescent Eu(III) and Er(III) Schiff base complexes: Synthesis, characterization and luminescence properties. J. Iran Chem. Soc. 2024, 21, 2933–2942. [Google Scholar] [CrossRef]
- Melby, L.R.; Rose, N.J.; Abramson, E.; Caris, J.C. Synthesis and Fluorescence of Some Trivalent Lanthanide Complexes. J. Am. Chem. Soc. 1964, 86, 5117–5125. [Google Scholar] [CrossRef]
- Matsia, S.; Tsave, O.; Hatzidimitriou, A.; Salifoglou, A. Chromium Flavonoid Complexation in an Antioxidant Capacity Role. Int. J. Mol. Sci. 2022, 23, 7171. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.; Chang, B.; Ho, J.; Keeling, K.; Krishnasami, Z. Preliminary Crystallographic Studies of Four Crystal forms of Serum Albumin. Eur. J. Biochem. 1994, 223, 1049–1052. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.; Subramanian, S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 1981, 20, 3096–3102. [Google Scholar] [CrossRef] [PubMed]
- Odent, G.; Charetteur, E.; Duperray, M.H. Crystallization, radiocrystallographic characterization, and infrared absorption spectra of hexahydrates and pentahydrates of nitrates and lanthanides. Rev. Chim. Miner. 1975, 12, 17–23. [Google Scholar]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.R. Introduction to Spectroscopy; Cengage Learning: Stamford, CT, USA, 2015. [Google Scholar]
- Bain, G.A.; Berry, J.F. Diamagnetic Corrections and Pascal’s Constants. J. Chem. Educ. 2008, 85, 532–536. [Google Scholar] [CrossRef]
- OriginPro 2016G, version 9.3.2.303; OriginLab Corp.: Northampton, MA, USA, 2016.
- CorelDRAW Graphics Suite 2017, version 19.0.0.328; Corel Corporation: Ottowa, ON, Canada, 2017.
- Brand, R.A. WinNormos for Igor7, Version for Igor 7.010 or Above: 01/03/2020; Universität Duisburg: Duisburg, Germany, 2020.
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Trzesowska, A.; Kruszynski, R.; Bartezak, T.J. New bond-valence parameters for lanthanides. Addendum Acta Cryst. 2004, 60, 174–178. [Google Scholar] [CrossRef]
- Trzesowska, A.; Kruszynski, R.; Bartezak, T.J. New lanthanide–nitrogen bond-valence parameters. Acta Cryst. 2005, B61, 429–434. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. Crystal Explorer 17.5, The University of Western Australia: Perth, Australia, 2017.
- Spackman, M.A.; Jayatilaka, D. Hirshfeld surface analysis. CrystEngComm 2009, 11, 19–32. [Google Scholar] [CrossRef]
- Hirshfeld, F.L. Bonded-Atom Fragments for Describing Molecular Charge Densities. Theor. Chim. Acta 1977, 44, 129–138. [Google Scholar] [CrossRef]
- Clausen, H.F.; Chevallier, M.S.; Spackman, M.A.; Iversen, B.B. Three new co-crystals of hydroquinone: Crystal structures and Hirshfeld surface analysis of intermolecular interactions. New J. Chem. 2010, 34, 193–199. [Google Scholar] [CrossRef]
- Spackman, M.A.; McKinnon, J.J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4, 378–392. [Google Scholar] [CrossRef]
- Parkin, A.; Barr, G.; Dong, W.; Gilmore, C.J.; Jayatilaka, D.; McKinnon, J.J.; Spackman, M.A.; Wilson, C.C. Comparing entire crystal structures: Structural genetic fingerprinting. CrystEngComm 2007, 9, 648–652. [Google Scholar] [CrossRef]
- Rohl, A.L.; Moret, M.; Kaminsky, W.; Claborn, K.; McKinnon, J.J.; Kahr, B. Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: Pentamorphic 1,8-dihydroxyanthraquinone. Cryst. Growth Des. 2008, 8, 4517–4525. [Google Scholar] [CrossRef]
- Allen, F.H.; Kennard, O.; Watson, D.G.; Brammer, L.; Orpen, A.G.; Taylor, R.J. Tables of Bond Lengths determined by X-Ray and Neutron Diffraction. Part 1. Bond Lengths in Organic Compounds. J. Chem. Soc. Perkin Trans. 1987, 2, S1–S19. [Google Scholar] [CrossRef]
- Bruker Analytical X-ray Systems, Inc. Apex2, Version 2 User Manual, M86-E01078; Bruker Analytical X-ray Systems, Inc.: Madison, WI, USA, 2006.
- Siemens Industrial Automation, Inc. SADABS: Area-Detector Absorption Correction; Siemens Industrial Automation, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Betteridge, P.W.; Carruthers, J.R.; Cooper, R.I.; Prout, K.; Watkin, D.J. CRYSTALS Version 12: Software for Guided Crystal Structure Analysis. J. Appl. Cryst. 2003, 36, 1487. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G.J. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Appl. Cryst. 2007, 40, 786–790. [Google Scholar] [CrossRef]
- Lakowicz, J. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, NY, USA, 2006. [Google Scholar]
- Suryawanshi, V.; Walekar, L.; Gore, A.; Anbhule, P.; Kolekar, G. Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J. Pharm. Anal. 2016, 6, 56–63. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A visualization system for exploratory research and analysis. J. Comp. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Elmehrath, S.; Ahsan, K.; Munawar, N.; Alzamly, A.; Nguyen, H.L.; Greish, Y. Antibacterial efficacy of copper-based metal–organic frameworks against Escherichia coli and Lactobacillus. RSC Adv. 2024, 14, 15821–15831. [Google Scholar] [CrossRef] [PubMed]
- Munir, M.T.; Pailhories, H.; Eveillard, M.; Irle, M.; Aviat, F.; Dubreil, L.; Federighi, M.; Belloncle, C. Testing the Antimicrobial Characteristics of Wood Materials: A Review of Methods. Antibiotics 2020, 9, 225. [Google Scholar] [CrossRef]
Compound | 1 | 2 | 3 |
---|---|---|---|
Chemical formula | C39H25LaN6O10·1.5(CH4O) | C54H34N4NdO8·NO3·0.5(CH4O) | C42H26EuN3O11 |
Mr | 924.63 | 1089.15 | 900.64 |
Crystal system | Triclinic | Triclinic | Monoclinic |
Space group | Pī | Pī | P21/n |
Temperature (K) | 130 | 130 | 295 |
a (Å) | 11.143 (7) | 12.8739 (5) | 13.0314 (9) |
b (Å) | 13.166 (10) | 13.5942 (5) | 20.2573 (14) |
c (Å) | 15.147 (13) | 13.7884 (6) | 15.0399 (10) |
α (°) | 66.648 (17) | 81.598 (2) | 90 |
β (°) | 83.183 (17) | 75.113 (2) | 113.784 (3) |
γ (°) | 89.09 (2) | 84.528 (2) | 90 |
V (Å3) | 2025 (3) | 2302.87 (16) | 3633.1 (4) |
Z | 2 | 2 | 4 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 1.12 | 1.20 | 1.80 |
Crystal size (mm) | 0.15 × 0.14 × 0.04 | 0.12 × 0.05 × 0.04 | 0.16 × 0.09 × 0.05 |
Diffractometer | Bruker Kappa Apex2 | ||
Absorption correction | Numerical | ||
Tmin, Tmax | 0.85, 0.96 | 0.94, 0.95 | 0.85, 0.91 |
No. of reflections | |||
measured | 57,880 | 40,997 | 39,612 |
independent | 7685 | 8826 | 6946 |
observed [I > 2.0σ(I)] | 5730 | 6610 | 5373 |
Rint | 0.066 | 0.071 | 0.033 |
(sin θ/λ)max (Å−1) | 0.619 | 0.614 | 0.613 |
R[F2 > 2σ(F2)] | 0.044 | 0.041 | 0.032 |
wR(F2) | 0.062 | 0.074 | 0.053 |
S | 1.00 | 1.00 | 1.00 |
No. of reflections | 5730 | 6610 | 5373 |
No. of parameters | 559 | 656 | 514 |
H-atom treatment | H-atom parameters constrained | ||
No. of restraints | - | 3 | - |
Δρmax, Δρmin (e Å−3) | 1.51, −1.53 | 0.81, −0.50 | 0.84, −0.71 |
1 | 2 | 3 | ||||
---|---|---|---|---|---|---|
Bond Distances (Å) | La(1)—O(1) | 2.442(3) | Nd(1)—O(1) | 2.431(3) | Eu(1)—O(1) | 2.343(3) |
La(1)—O(2) | 2.376(3) | Nd(1)—O(2) | 2.304(3) | Eu(1)—O(2) | 2.315(2) | |
La(1)—O(5) | 2.613(4) | Nd(1)—O(5) | 2.423(3) | Eu(1)—O(5) | 2.316(2) | |
La(1)—O(6) | 2.636(3) | Nd(1)—O(6) | 2.291(3) | Eu(1)—O(6) | 2.295(2) | |
La(1)—N(1) | 2.711(4) | Nd(1)—N(1) | 2.674(4) | Eu(1)—O(9) | 2.492(3) | |
La(1)—N(2) | 2.718(4) | Nd(1)—N(2) | 2.692(4) | Eu(1)—O(10) | 2.529(3) | |
La(1)—N(3) | 2.760(4) | Nd(1)—N(3) | 2.687(4) | Eu(1)—N(1) | 2.596(3) | |
La(1)—N(4) | 2.744(4) | Nd(1)—N(4) | 2.687(4) | Eu(1)—N(2) | 2.604(3) | |
Bond angles (°) | O(1)—La(1)—O(2) | 68.73(11) | O(1)—Nd(1)—O(2) | 70.92(10) | O(1)—Eu(1)—O(2) | 72.24(9) |
O(1)—La(1)—O(5) | 77.45(12) | O(1)—Nd(1)—O(5) | 145.45(10) | O(1)—Eu(1)—O(5) | 142.04(9) | |
O(2)—La(1)—O(6) | 114.54(12) | O(2)—Nd(1)—O(5) | 86.33(11) | O(2)—Eu(1)—O(5) | 82.66(9) | |
O(5)—La(1)—O(6) | 48.55(10) | O(2)—Nd(1)—O(6) | 95.61(12) | O(2)—Eu(1)—O(6) | 106.05(9) | |
O(2)—La(1)—O(8) | 82.87(12) | O(5)—Nd(1)—O(6) | 70.88(10) | O(1)—Eu(1)—O(9) | 86.73(10) | |
O(5)—La(1)—O(8) | 154.41(9) | O(1)—Nd(1)—N(1) | 76.05(11) | O(2)—Eu(1)—O(9) | 94.78(10) | |
O(6)—La(1)—O(8) | 135.85(10) | O(5)—Nd(1)—N(1) | 121.65(11) | O(5)—Eu(1)—O(9) | 124.11(9) | |
O(1)—La(1)—O(9) | 119.36(11) | O(6)—Nd(1)—N(1) | 79.54(11) | O(6)—Eu(1)—O(9) | 154.64(9) | |
O(6)—La(1)—O(9) | 171.43(10) | O(1)—Nd(1)—N(2) | 135.69(11) | O(1)—Eu(1)—O(10) | 124.40(9) | |
O(1)—La(1)—N(1) | 76.21(13) | O(2)—Nd(1)—N(2) | 151.34(11) | O(6)—Eu(1)—O(10) | 147.92(9) | |
O(2)—La(1)—N(1) | 139.56(11) | O(5)—Nd(1)—N(2) | 73.75(11) | O(9)—Eu(1)—O(10) | 50.11(10) | |
O(5)—La(1)—N(1) | 116.54(11) | O(6)—Nd(1)—N(2) | 96.99(12) | O(5)—Eu(1)—N(1) | 73.47(10) | |
O(6)—La(1)—N(1) | 68.17(12) | N(1)—Nd(1)—N(2) | 61.17(11) | O(6)—Eu(1)—N(1) | 89.42(9) | |
O(6)—La(1)—N(2) | 107.33(12) | N(1)—Nd(1)—N(3) | 121.61(11) | O(9)—Eu(1)—N(1) | 80.43(10) | |
O(2)—La(1)—N(4) | 77.53(12) | N(1)—Nd(1)—N(4) | 75.13(11) | O(1)—Eu(1)—N(2) | 75.72(10) | |
N(1)—La(1)—N(2) | 61.16(13) | N(2)—Nd(1)—N(3) | 75.80(11) | O(6)—Eu(1)—N(2) | 80.26(9) | |
N(1)—La(1)—N(3) | 88.80(12) | N(2)—Nd(1)—N(4) | 82.58(12) | O(10)—Eu(1)—N(2) | 114.29(10) | |
N(1)—La(1)—N(4) | 141.88(12) | N(3)—Nd(1)—N(4) | 61.20(11) | N(1)—Eu(1)—N(2) | 63.76(11) |
Compound | T (K) | KSV/10−5 (M−1) | Kq/10−13 (M−1s−1) | Kb (M−1) | n |
---|---|---|---|---|---|
1 | 293.15 | 1.56 ± 0.21 | 1.56 ± 0.21 | 3.71 ± 0.23 × 102 | 0.51 ± 0.05 |
303.15 | 1.60 ± 0.17 | 1.60 ± 0.17 | 6.35 ± 0.10 × 102 | 0.56 ± 0.05 | |
310.15 | 1.46 ± 0.23 | 1.46 ± 0.23 | 3.80 ± 0.44 × 103 | 0.71 ± 0.08 | |
2 | 293.15 | 5.89 ± 0.10 | 5.89 ± 0.10 | 1.50 ± 0.32 × 106 | 1.06 ± 0.01 |
303.15 | 4.88 ± 0.11 | 4.88 ± 0.11 | 1.40 ± 0.40 × 106 | 1.06 ± 0.03 | |
310.15 | 4.54 ± 0.44 | 4.54 ± 0.44 | 1.33 ± 0.03 × 106 | 1.06 ± 0.08 | |
3 | 293.15 | 2.34 ± 0.14 | 2.34 ± 0.14 | 2.04 ± 0.10 × 104 | 0.81 ± 0.10 |
303.15 | 2.76 ± 0.26 | 2.76 ± 0.26 | 2.10 ± 0.37 × 105 | 0.98 ± 0.05 | |
310.15 | 2.06 ± 0.31 | 2.06 ± 0.31 | 4.80 ± 0.64 × 106 | 1.25 ± 0.09 |
Compound | T (K) | ΔH (kJ/mol) | ΔS (kJ/molK) | ΔG (kJ/mol) |
---|---|---|---|---|
1 | 293.15 | 99.26 ± 17.38 | 0.386 ± 0.16 | −13.90 ± 1.54 |
303.15 | −17.76 ± 2.30 | |||
310.15 | −20.46 ± 1.85 | |||
2 | 293.15 | −7.39 ± 1.96 | 0.093 ± 0.04 | −34.65 ± 0.96 |
303.15 | −35.58 ± 5.40 | |||
310.15 | −36.23 ± 0.58 | |||
3 | 293.15 | 237.31 ± 5.90 | 0.89 ± 0.01 | −23.59 ± 2.79 |
303.15 | −32.49 ± 1.25 | |||
310.15 | −38.72 ± 2.90 |
α-Helical Content (%) | ||
---|---|---|
BSA–Metal Compound Molar Ratio | 1 | 3 |
1:0 | 51.38 | 51.38 |
1:1 | 47.43 | 37.56 |
1:2 | 51.40 | 27.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsia, S.; Papadopoulos, A.; Hatzidimitriou, A.; Schumacher, L.; Koldemir, A.; Pöttgen, R.; Panagiotopoulou, A.; Chasapis, C.T.; Salifoglou, A. Hybrid Lanthanide Metal–Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles. Int. J. Mol. Sci. 2025, 26, 1198. https://doi.org/10.3390/ijms26031198
Matsia S, Papadopoulos A, Hatzidimitriou A, Schumacher L, Koldemir A, Pöttgen R, Panagiotopoulou A, Chasapis CT, Salifoglou A. Hybrid Lanthanide Metal–Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles. International Journal of Molecular Sciences. 2025; 26(3):1198. https://doi.org/10.3390/ijms26031198
Chicago/Turabian StyleMatsia, Sevasti, Anastasios Papadopoulos, Antonios Hatzidimitriou, Lars Schumacher, Aylin Koldemir, Rainer Pöttgen, Angeliki Panagiotopoulou, Christos T. Chasapis, and Athanasios Salifoglou. 2025. "Hybrid Lanthanide Metal–Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles" International Journal of Molecular Sciences 26, no. 3: 1198. https://doi.org/10.3390/ijms26031198
APA StyleMatsia, S., Papadopoulos, A., Hatzidimitriou, A., Schumacher, L., Koldemir, A., Pöttgen, R., Panagiotopoulou, A., Chasapis, C. T., & Salifoglou, A. (2025). Hybrid Lanthanide Metal–Organic Compounds with Flavonoids: Magneto-Optical Properties and Biological Activity Profiles. International Journal of Molecular Sciences, 26(3), 1198. https://doi.org/10.3390/ijms26031198