Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation
<p>The steroidal skeleton of the cholic acid anion makes this biosurfactant a rigid conformation compared to classical surfactants with an alkyl chain.</p> "> Figure 2
<p>Tested C7-alkyl derivatives of 5β-cholic acid, when determining the thermodynamic parameters of micellization, their Na salts are applied.</p> "> Figure 3
<p>An example of the dependence of the change in the standard molar enthalpy of demicellization (<b>A</b>) and the dependence of the logarithm of the cmc value on temperature for 7-OctC (<b>B</b>); <span class="html-italic">T<sub>H</sub></span> = 27 °C.</p> "> Figure 4
<p><span class="html-italic">T<sub>S</sub></span> temperature for 7-ButC: micelle formation has an enthalpic driving force.</p> "> Figure 5
<p>Temperature dependence of thermodynamic potentials of demicellization and entropy of demicellization: X = thermodynamic potentials <span class="html-italic">g</span> (dashed curve), <span class="html-italic">h</span> (solid line with black circles) and product of temperature and entropy (solid line with empty circles); example for 7-OctC.</p> "> Figure 6
<p>In the micellar state, a hydration layer (I) forms around the polar groups of monomers (micellar building units), which remains unchanged after the disintegration of the micelle. In the micellar state, the hydrophobic surface of the bile acid anion’s steroid skeleton forms the micelle’s hydrophobic core (II) and is protected from hydration. During demicellization, a new hydration layer (III) is formed above the hydrophobic surface of the steroid skeleton. In the hydration layer above the hydrophobic surface at low temperatures, it is true that the water molecules immediately above the atoms of the steroid skeleton are more ordered than the water molecules from the bulk solution (they have lower entropy than the bulk water) and have a coiled orientation for building H-bonds with water molecules from the inside (2D HL = two-dimensional representation of the hydration layer). With increasing temperature, the mobility of water molecules from the hydration layer above the hydrophobic surface of the steroid skeleton increases. The exchange frequency of these water molecules with water molecules from the bulk increases (the entropy of water molecules and the entropy of water molecules from the hydration layer become equal), and these water molecules lose their favorable orientation for building the H-bonds.</p> "> Figure 7
<p>Dependence of the change in the heat capacity of demicellization on the number of carbons of the C7 alkyl chain in the investigated bile salt derivatives.</p> "> Figure 8
<p>Syn-axial orientation of the methyl group from the C7 ethyl group of the derivative 7-EthC (NP = Newman projection formula and A, B = molecular subgraph).</p> "> Figure 9
<p>Partial conformation of the steroid skeleton of 7-EthC (NP = Newman projection formula) in which the methyl group from the C7 ethyl group is not in syn-axial orientation (A) with the corresponding axial hydrogens of the steroid skeleton but is oriented towards the interior of the solution (B).</p> "> Figure 10
<p>Conformation of the C7 propyl group in 7-PropC derivatives when the propyl hydrocarbon chain is in the gauche conformation: hydrophobic hydration decreases, but steric strain increases (NP = Newman projection formula and A, B = molecular subgraph).</p> "> Figure 11
<p>The conformation of the propyl group in which there is no steric strain (the methyl group and the C7 carbon from the steroid skeleton are in an antiperiplanar (<span class="html-italic">ap</span>) relationship NP6) but the hydrophobic hydration of the C7 propyl group is maximal (A).</p> "> Figure 12
<p>Partial conformations of 7-ButC, with this cholic acid anion derivative, a gauche conformation of the C7 side chain is possible without inducing a steric strain with the steroid skeleton (NP = Newman projection formula and A, B = molecular subgraph).</p> "> Figure 13
<p>In the case of C7 alkyl derivatives of the anion of cholic acid, if the alkyl chain contains four or more carbons, then the alkyl chain in partial gauche (synclinal, <span class="html-italic">sc</span>) and antiperiplanar (<span class="html-italic">ap</span>) conformations occupies the space above the convex surface of the steroid skeleton, which reduces the hydrophobic hydration.</p> "> Figure 14
<p><sup>1</sup>H NMR (400 MHz, DMSO-<span class="html-italic">d</span><sub>6</sub>) of 7-OctC.</p> "> Figure 15
<p>Reaction enthalpy (<span class="html-italic">Q</span>) vs. the total detergent concentration in the reaction cell (<span class="html-italic">C</span><sub>T</sub>); titration of 135 mM 7-OctC in water into 2 mL water at 10 °C (37 injections of 10 μL aliquots).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Theory
2.2. Results
2.3. Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madenci, D.; Egelhaaf, U.S. Self-assembly in aqueous bile salt solutions. Curr. Opin. Colloid Interface Sci. 2010, 15, 109–115. [Google Scholar] [CrossRef]
- Hofmann, A.F.; Roda, A. Physicochemical properities of bile acids and their relationship to biological properties: An overview of the problem. J. Lipid Res. 1984, 25, 1477–1489. [Google Scholar] [CrossRef] [PubMed]
- Mikov, M.; Fawcett, J.P. Bile Acids; Medishet Publisher: Geneva, Switzerland, 2007. [Google Scholar]
- Small, D.M. The physical chemistry of cholanic acids. In The Bile Acids: Chemistry, Physiology and Metabolism; Nair, P.P., Kritchevsky, D., Eds.; Plenum Press: New York, NY, USA, 1971; Volume 3, pp. 249–332. [Google Scholar]
- Poša, M.; Farkaš, Z. Cholesterol solubilization by oxo derivatives of selected bile acids and their osmotic resistance. Collect. Czechoslov. Chem. Commun. 2010, 75, 767–784. [Google Scholar] [CrossRef]
- Haustein, M.; Schiller, P.; Wahab, M.; Mogel, H.J. Computer simulations of the formation of bile salt micelles and bile salt/DPPC mixed micelles in aqueous solutions. J. Solut. Chem. 2014, 43, 1755–1770. [Google Scholar] [CrossRef]
- Roda, A.; Hofmann, A.F.; Mysels, K.J. The influence of bile salt structure on self-association in aqueous solutions. J. Biol. Chem. 1983, 258, 6362–6370. [Google Scholar] [CrossRef]
- di Gregorio, M.C.; Cautela, J.; Galantini, L. Physiology and physical chemistry of bile acids. Int. J. Mol. Sci. 2021, 22, 1780. [Google Scholar] [CrossRef]
- Poša, M. Heuman indices of hydrophobicity in bile acids and compared with new developed and conventional molecular descriptors. Biochimie 2014, 97, 28–38. [Google Scholar] [CrossRef]
- Poša, M. Self-association of the anion of 7-oxodeoxycholic acid (bile salt): How the secondary micelles are formed. Int. J. Mol. Sci. 2023, 24, 11853. [Google Scholar] [CrossRef] [PubMed]
- Poša, M.; Sebenji, A. Determination of the number average aggregation numbers of bile salt micelles with a special emphasis on their oxo derivatives—The effect of the steroid skeleton. BBA—Gen. Subj. 2014, 1840, 1072–1082. [Google Scholar] [CrossRef]
- Matsuoka, K.; Takagi, K.; Honda, C. Micelle formation of sodium hyodeoxycholate. Chem. Phys. Lipids 2013, 172–173, 6–13. [Google Scholar] [CrossRef]
- Matsuoka, K.; Moroi, Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate. Biochim. Biophys. Acta 2002, 1580, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Small, D.M.; Penkett, S.A.; Chapman, D. Studies on simple and mixed bile salt micelles by nuclear magnetic resonance spectroscopy. Biochem. Biophys. Acta 1969, 176, 178–189. [Google Scholar] [CrossRef] [PubMed]
- Gouin, S.; Zhu, X.X. Fluorescence and NMR studies of the effect of a bile acid dimer on the micellization of bile salts. Langmuir 1998, 14, 4025–4029. [Google Scholar] [CrossRef]
- Kawamura, H.; Murata, Y.; Yamaguchi, T.; Igimi, H.; Tanaka, M.; Sugihara, G.; Kratohvil, J.P. Spin-label studies of bile salt micelles. J. Phys. Chem. 1989, 93, 3321–3326. [Google Scholar] [CrossRef]
- Rovnyak, D.; He, J.; Kong, S.; Eckenroad, K.W.; Manley, G.A.; Geffert, R.M.; Krout, M.R.; Strein, T.G. Determining sequential micellization steps of bile salts with multi-CMC modeling. J. Colloid Interface Sci. 2023, 644, 496–508. [Google Scholar] [CrossRef]
- Meier, A.R.; Yehl, J.B.; Eckenroad, K.W.; Manley, G.A.; Strein, T.G.; Rovnyak, R. Stepwise aggregation of cholate and deoxycholate dictates the formation and loss of surface-available chirally selective binding sites. Langmuir 2018, 34, 6489–6501. [Google Scholar] [CrossRef]
- Poša, M.; Pilipović, A. Self-association of C3 and C6 epimers of hyodeoxycholate anions in aqueous medium: Hydrophobicity, critical micelle concentration and aggregation number. J. Mol. Liq. 2017, 238, 48–57. [Google Scholar] [CrossRef]
- Pártai, L.B.; Jedlovszky, P.; Sega, M. Molecular aggregates in aqueous solutions of bile acid salts. Molecular dynamics simulation study. J. Phys. Chem. B 2007, 111, 9886–9896. [Google Scholar] [CrossRef]
- Pártai, L.B.; Sega, M.; Jedlovszky, P. Morphology of bile salts micelles as studied by computer simulation methods. Langmuir 2007, 23, 12322–12328. [Google Scholar] [CrossRef]
- Pártai, L.B.; Sega, M.; Jedlovszky, P. Counterion binding in the aqueous solutions of bile acid salts, as studied by computer simulation methods. Langmuir 2008, 24, 10729–10736. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Mikov, M.; Tucker, I.G. Physicochemical and biological characterization of monoketocholic acid, a novel permeability enhancer. Mol. Pharm. 2009, 6, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Fawcett, J.P.; Østergaard, J.; Zhang, H.; Tucker, I.G. Mechanistic studies of the effect of bile salts on rhodamine 123 uptake into RBE4 cells. Mol. Pharm. 2012, 9, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Al-Salami, H.; Butt, G.; Tucker, I.G.; Mikov, M. Influence of the semisynthetic bile acid MKC on the ileal permeation of gliclazide in vitro in healthy and diabetic rats treated with probiotics. Methods Find. Exp. Clin. Pharmacol. 2008, 30, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Rub, M.A.; Azum, N.; Khan, F.; Asiri, A.M. Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: A tensiometry and fluorometry study. J. Chem. Thermodyn. 2018, 121, 199–210. [Google Scholar] [CrossRef]
- Azum, N.; Rub, M.A.; Asiri, A.M. Bile salt–bile salt interaction in mixed monolayer and mixed micelle formation. J. Chem. Thermodyn. 2019, 128, 406–414. [Google Scholar] [CrossRef]
- Wiedmann, T.S.; Kamel, L. Examination of the solubilization of drugs by bile salt micelles. J. Pharm. Sci. 2002, 91, 1743–1764. [Google Scholar] [CrossRef]
- Dongowski, G.; Fritzsch, B.; Giessler, J.; Hartl, A.; Kuhlmann, O.; Neubert, R.H.H. The influence of bile salts and mixed micelles on the pharmacokinetics of quinine in rabbits. Eur. J. Pharm. Biopharm. 2005, 60, 147–151. [Google Scholar] [CrossRef]
- Garidel, P.; Hildebrand, A.; Knauf, K.; Blume, A. Membranolytic activity of bile salts: Influence of biological membrane properities and composition. Molecules 2007, 12, 2292–2326. [Google Scholar] [CrossRef]
- Poša, M.; Bjedov, S.; Tepavčević, V.; Mikulić, M.; Sakač, M. Physicochemical characterization of novel 3-carboxymethyl-bile salts, as permeability and solubility enhancers. J. Mol. Liq. 2020, 303, 112634. [Google Scholar] [CrossRef]
- Poša, M.; Kuhajda, K. Hydrophobiciti and haemolytic potential of oxo derivatives of cholic, deoxycholic and chenodeoxycholic acids. Steroids 2010, 75, 424–431. [Google Scholar] [CrossRef]
- Kumar, D.; Farakaš Agatić, Z.; Popović, K.; Poša, M. Binary mixed micelles of hexadecyltrimethylammonium bromide–sodium deoxycholate and dodecyltrimethylammonium bromide–sodium deoxycholate: Thermodynamic stabilization and mixed micelle’s solubilization capacity of daidzein (isoflavonoid). Ind. Eng. Chem. Res. 2024, 63, 3336–3348. [Google Scholar] [CrossRef]
- Thomas, C.; Pellicciari, R.; Pruzanski, M.; Auwerx, J.; Schoonjans, K. Targeting bile-acid signalling or metabolic diseases. Nat. Rev. Drug Discov. 2008, 7, 678–693. [Google Scholar] [CrossRef] [PubMed]
- Sato, H.; Macchiarulo, A.; Thomas, C.; Gioiello, A.; Une, M.; Hofmann, A.F.; Saladin, R.; Schoonjans, K.; Pellicciari, R.; Auwerx, J. Novel potent and selective bile acid derivatives as TGR5 agonists: Biological screening, structure-activity relationships, and molecular modeling studies. J. Med. Chem. 2008, 51, 1831–1841. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Gioiello, A.; Noriega, L.; Strehle, A.; Oury, J.; Rizzo, G.; Macchiarulo, A.; Yamamoto, H.; Mataki, C.; Pruzanski, M.; et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009, 10, 167–177. [Google Scholar] [CrossRef]
- Bjedov, S.; Bekić, S.; Marinović, M.; Škorić, D.; Pavlović, K.; Ćelić, A.; Petri, E.; Sakač, M. Screening the binding affinity of bile acid derivatives for the glucocorticoid receptor ligand-binding domain. J. Serbian Chem. Soc. 2023, 88, 123–139. [Google Scholar] [CrossRef]
- Bjedov, S.; Stegnjaić, G.; Stanisavljević, S.; Lazarević, M.; Pilipović, I.; Sakač, M.; Miljković, Đ. Anti-neuroinflammatory effects of a novel bile acid derivative. Int. J. Mol. Sci. 2024, 25, 7136. [Google Scholar] [CrossRef]
- Stojanović, N.M.; Randjelović, P.J.; Maslovarić, A.; Kostić, M.; Raičević, V.; Sakač, M.; Bjedov, S. How do different bile acid derivatives affect rat macrophage function—Friends or foes? Chem. Biol. Interact. 2023, 383, 110688. [Google Scholar] [CrossRef]
- Bjedov, S.; Jakimov, D.; Poša, M.; Klisurić, O.; Sakač, M. Synthesis and antitumor activity of alkylated bile acids and oxazolines. Tetrahedron 2017, 73, 6932–6941. [Google Scholar] [CrossRef]
- Poša, M.; Bjedov, S.; Sebenji, A.; Sakač, M. Wittig reaction (with ethylidene triphenylphosphorane) of oxo-hydroxy derivatives of 5β–cholanic acid: Hydrophobicity and haemolytic potential of derived ethylidene derivatives. Steroids 2014, 86, 16–25. [Google Scholar] [CrossRef]
- Poša, M.; Pilipović, A.; Bjedov, S.; Obradović, S.; Tepavčević, V.; Sakač, M. Parameters of micellization and hydrophobicity of sodium salts of 7-buthyl (butylidene) and 7-octyl (octylidene) derivatives of the cholic and the deoxycholic acid in a water solution: Pattern recognition—Linear hydrophobic congeneric groups. J. Mol. Liq. 2016, 224, 9–18. [Google Scholar] [CrossRef]
- Paula, S.; Süs, W.; Tuchtenhagen, J.; Blume, A. Thermodynamics of micelle formation as a function of temperature: A high sensitivity titration calorimetry study. J. Phys. Chem. 1995, 99, 11742–11751. [Google Scholar] [CrossRef]
- Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A. Thermodynamic characterization of bile salt aggregation as a function of temperature and ionic strength using isotermal titration calorimetry. Langmuir 2000, 16, 5267–5275. [Google Scholar] [CrossRef]
- Garidel, P.; Hildebrand, A. Thermodynamic properties of association of colloids. J. Therm. Anal. Calorim. 2005, 82, 483–489. [Google Scholar] [CrossRef]
- Anderson, S.L.; Rovnyak, D.; Strein, T.G. Direct measurement of the thermodynamics of chiral recognition in bile salt micelles. Chirality 2016, 28, 290–298. [Google Scholar] [CrossRef]
- Singh, S.T.; Mitra, S. Fluorescence properties of trans-ethyl-p-(dimethylamino) cinnamate in presence of bile acid host. J. Photochem. Photobiol. B Biol. 2009, 96, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Bhat, I.A.; Yaseen, Z.; Kabir-ud-Din. Physicochemical investigation of novel biodegradable dicationic ester bonded m-E2-m gemini surfactants with bile salts: Insights from surface tension, dynamic light scattering and fluorescence. Colloids Surf. A 2014, 444, 209–216. [Google Scholar] [CrossRef]
- Astray, G.; Iglesias-Otero, M.A.; Moldes, O.A.; Mejuto, J.C. Predicting Critical Micelle Concentration Values of Non-ionic Surfactants by Using Artificial Neural Networks. Tenside Surfactants Deterg. 2013, 50, 118–124. [Google Scholar] [CrossRef]
- Soria-Lopez, A.; García-Martí, M.; Barreiro, E.; Mejuto, J. Ionic surfactants critical micelle concentration prediction in water/organic solvent mixtures by artificial neural network. Tenside Surfactants Deterg. 2024, 61, 519–529. [Google Scholar] [CrossRef]
- Kumar, D.; Khan, J.M.; Posa, M.; Pulikkal, A.K.; Saha, B.; Bhattarai, A. Effect of quaternary ammonium gemini surfactant solution on rate constant of ninhydrin−lysine reaction. Ind. Eng. Chem. Res. 2023, 62, 15897–15906. [Google Scholar] [CrossRef]
- Lozar, J. Thermodynamique des Solutions et des Mélanges; Elipses: Paris, France, 2013; pp. 100–116. [Google Scholar]
- Kroflic, A.; Sarac, B.; Bester-Rogac, M. Thermodynamic characterization of 3-[(3-cholamidopropyl)-dimethylammonium]-1-propanesulfonate (CHAPS) micellization using isothermal titration calorimetry: Temperature, salt, and pH dependence. Langmuir 2012, 28, 10363–10371. [Google Scholar] [CrossRef]
- Vázquez-Gómez, S.; Pilar Vázquez-Tato, M.; Seijas, J.A.; Meijide, F.; de Frutos, S.; Vázquez Tato, J. Thermodynamics of the aggregation of the bile anions of obeticholic and chenodeoxycholic acids in aqueous solution. J. Mol. Liq. 2019, 296, 112092. [Google Scholar] [CrossRef]
- Vázquez-Tato, M.P.; Seijas, J.A.; Meijide, F.; Fraga, F.; de Frutos, S.; Miragaya, J.; Trillo, J.V.; Jover, A.; Soto, V.H.; Vázquez Tato, J. Highly Hydrophilic and Lipophilic Derivatives of Bile Salts. Int. J. Mol. Sci. 2021, 22, 6684. [Google Scholar] [CrossRef] [PubMed]
- Rusanov, A.I. The mass action law theory of micellar solutions. Adv. Colloid Interface Sci. 1993, 45, 1–78. [Google Scholar] [CrossRef]
- Rusanov, A.I. The wonderful world of micelles. Colloid J. 2014, 76, 121–126. [Google Scholar] [CrossRef]
- Zana, R. Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir 1996, 12, 1208–1211. [Google Scholar] [CrossRef]
- Kumar, H.; Kaur, G. Scrutinizing Self-Assembly, Surface Activity and Aggregation Behavior of Mixtures of Imidazolium Based Ionic Liquids and Surfactants. A Comprehensive Review, Front. Chem. 2021, 9, 667941. [Google Scholar] [CrossRef]
- Natalini, B.; Sardella, R.; Camaioni, E.; Gioiello, A.; Pellicciari, R. Correlation between CMC and chromatographic index: Simple and effective evaluation of the hydrophobic/hydrophilic balance of bile acids. Anal. Bioanal. Chem. 2007, 388, 1681–1688. [Google Scholar] [CrossRef]
- Natalini, B.; Sardella, R.; Camaioni, E.; Macchiarulo, A.; Gioiello, A.; Carbone, G.; Pellicciari, R. Derived chromatographic indices as effective tools to study the self-aggregation process of bile acids. J. Pharm. Biomed. Anal. 2009, 50, 613–621. [Google Scholar] [CrossRef]
- Natalini, B.; Sardella, R.; Gioiello, A.; Ianni, F.; Di Michele, A.; Marinozzia, M. Determination of bile salt critical micellization concentration on the road to drug discovery. J. Pharm. Biomed. Anal. 2014, 87, 62–81. [Google Scholar] [CrossRef]
- Kumar, D.; Poša, M. Linear hydrophobic congeneric groups of bile acid anion derivatives based on the self-association (micellization) process and the phenomenon of enthalpy-entropy compensation. J. Mol. Liq. 2023, 382, 121925. [Google Scholar] [CrossRef]
- Poša, M. The Gibbs-Helmholtz equation and the enthalpy-entropy compensation (EEC) phenomenon in the formation of micelles in an aqueous solution of surfactants and the cloud point effect. J. Mol. Liq. 2024, 396, 124109. [Google Scholar] [CrossRef]
- Straikov, B.E.; Norden, B. Enthalpy-entropy compensation: A phantom or something useful? J. Phys. Chem. B 2007, 111, 14431–14435. [Google Scholar] [CrossRef] [PubMed]
- Sugioka, H.; Moroi, Y. Micelle formation of sodiumcholate and solubilization into the micelle. Biochim. Biophys. Acta 1998, 1394, 99–110. [Google Scholar] [CrossRef]
- Privalov, P.L.; Gill, S.J. The hydrophobic effect: A reappraisal. Pure Appl. Chem. 1989, 61, 1097–1104. [Google Scholar] [CrossRef]
- Southall, N.T.; Dill, K.A.; Haymet, A.D.J. A view of the hydrophobic effect. J. Phys. Chem. B 2002, 106, 521–533. [Google Scholar] [CrossRef]
- Silverstein, T.P. The hydrophobic effect: Is water afraid, or just not that interested? ChemTexts 2020, 6, 26. [Google Scholar] [CrossRef]
- Chen, J.; Zheng, L.; Ji, X.; Wen, J.; Wang, C.-L.; Zhu, L.; Sun, B.; Wang, X.; Zhu, M. Aqueous Self-Assembly of Hydrophobic Molecules Influenced by the Molecular Geometry. J. Phys. Chem. B 2022, 126, 1334–1340. [Google Scholar] [CrossRef]
- Kagan, H. Le Stéréochimie Organique; Presses Univ. De France: Paris, France, 1975. [Google Scholar]
- Dragojlovic, V. Conformational analysis of cycloalkanes. ChemTexts 2015, 1, 14. [Google Scholar] [CrossRef]
- Newman, M.S. A notation for the study of certain stereochemical problems. J. Chem. Educ. 1955, 32, 344–347. [Google Scholar] [CrossRef]
- Gomez-Mendoza, M.; Marin, M.L.; Miranda, M.A. Dansyl derivatives of cholic acid as tools to build speciation diagrams for sodium cholate aggregation. J. Phys. Chem. Lett. 2011, 2, 782–785. [Google Scholar] [CrossRef]
- Gomez-Mendoza, M.; Marin, M.L.; Miranda, M.A. Dansyl-labeled cholic acid as a tool to build speciation diagrams for the aggregation of bile acids. J. Phys. Chem. B 2012, 116, 14776–14780. [Google Scholar] [CrossRef] [PubMed]
- Tullar, B.F. Hemi-Diethylene Glycol Adduct of 3,12-Dihydroxy-7-ketocjholanoicacid and Preparation Thereof. U.S. Patent 2,549,947, 1951. [Google Scholar]
Temperature/°C | /kJ mol−1 | cmc/mM | cmc *104/mol Fraction | /kJ mol−1 | /kJ mol−1 | /JK−1 mol−1 |
---|---|---|---|---|---|---|
C | ||||||
10 | −4.53 | 13.50 | 2.47 | 19.59 | −24.12 | 253 |
15 | −3.81 | 12.80 | 2.30 | 20.07 | −23.88 | |
20 | −2.29 | 12.10 | 2.17 | 20.56 | −22.85 | |
25 | −0.90 | 9.60 | 1.73 | 21.47 | −22.37 | |
30 | 0.15 | n.d. | ||||
35 | 1.57 | 15.40 | 2.77 | 20.98 | −19.42 | |
40 | 2.89 | 16.20 | 2.92 | 21.18 | −18.30 | |
7-EthC | ||||||
10 | −4.71 | 11.50 | 2.07 | 19.96 | −24.67 | 285 |
15 | −3.37 | 11.00 | 1.98 | 20.43 | −23.79 | |
20 | −1.35 | 10.50 | 1.89 | 20.90 | −22.25 | |
25 | −0.68 | 9.50 | 1.71 | 21.50 | −22.18 | |
30 | 0.55 | 10.80 | 1.94 | 21.54 | −20.99 | |
35 | 2.09 | 11.30 | 2.03 | 21.78 | −19.69 | |
40 | 4.32 | 12.80 | 2.30 | 21.81 | −17.49 | |
7-ProC | ||||||
10 | −4.08 | 10.00 | 1.80 | 20.30 | −24.38 | 311 |
15 | −3.15 | 9.80 | 1.76 | 20.71 | −23.86 | |
20 | −1.59 | 9.20 | 1.65 | 21.33 | −22.82 | |
25 | −0.11 | n.d. | ||||
30 | 1.32 | 9.50 | 1.71 | 21.86 | −20.54 | |
35 | 3.75 | 10.80 | 1.94 | 21.90 | −18.15 | |
40 | 4.86 | 11.50 | 2.07 | 22.09 | −17.23 | |
7-ButC | ||||||
10 | −5.53 | 9.60 | 1.73 | 20.39 | −25.92 | 321 |
15 | −3.93 | 9.20 | 1.65 | 20.86 | −24.80 | |
20 | −2.75 | 8.90 | 1.60 | 21.30 | −24.05 | |
25 | −1.59 | 8.60 | 1.55 | 21.74 | −23.33 | |
30 | 0.99 | 9.10 | 1.64 | 21.97 | −20.98 | |
35 | 2.17 | 9.80 | 1.76 | 22.15 | −19.98 | |
40 | 4.14 | 10.50 | 1.89 | 22.32 | −18.18 | |
7-OctC | ||||||
10 | −5.97 | 8.80 | 1.58 | 20.61 | −26.57 | 345 |
15 | −4.24 | 8.50 | 1.53 | 21.05 | −25.28 | |
20 | −2.22 | 8.30 | 1.49 | 21.48 | −23.70 | |
25 | −1.05 | 7.90 | 1.42 | 21.96 | −23.01 | |
30 | 1.25 | 8.40 | 1.51 | 22.17 | −20.92 | |
35 | 2.98 | 8.90 | 1.60 | 22.40 | −19.42 | |
40 | 4.15 | 9.40 | 1.69 | 22.61 | −18.46 |
7-EthC | 7-ProC | 7-ButC | 7-OctC |
---|---|---|---|
0.89 | 0.93 | 0.95 | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, D.; Poša, M. Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation. Int. J. Mol. Sci. 2024, 25, 13055. https://doi.org/10.3390/ijms252313055
Kumar D, Poša M. Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation. International Journal of Molecular Sciences. 2024; 25(23):13055. https://doi.org/10.3390/ijms252313055
Chicago/Turabian StyleKumar, Dileep, and Mihalj Poša. 2024. "Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation" International Journal of Molecular Sciences 25, no. 23: 13055. https://doi.org/10.3390/ijms252313055
APA StyleKumar, D., & Poša, M. (2024). Thermodynamics of Micelle Formation of Selected Homologous 7-Alkyl Derivatives of Na-Cholate in Aqueous Solution: Steroid Skeleton and the Alkyl Chain Conformation. International Journal of Molecular Sciences, 25(23), 13055. https://doi.org/10.3390/ijms252313055