Integration of ATAC-Seq and RNA-Seq Reveals VDR–SELENBP1 Axis Promotes Adipogenesis of Porcine Intramuscular Preadipocytes
<p>Induction of adipogenic differentiation of porcine intramuscular preadipocytes. (<b>A</b>) BODIPY and (<b>B</b>) Oil Red O staining of the preadipocytes at 0, 2, 4, 6, and 8 days of differentiation. (<b>C</b>) <span class="html-italic">PPARγ</span>, <span class="html-italic">C</span>/<span class="html-italic">EBPα</span>, <span class="html-italic">ADIPOQ</span>, and <span class="html-italic">PLIN1</span> mRNA levels in the preadipocytes during differentiation. ** <span class="html-italic">p</span> < 0.01, ns = non-significant.</p> "> Figure 2
<p>Overview of the ATAC-seq results. (<b>A</b>) The results of Pearson correlation analysis. (<b>B</b>) Fragment length distribution map. (<b>C</b>) A heatmap of the peak signals across the gene body of the library; ±3.0 represents upstream and downstream of the TSS. (<b>D</b>) Genomic distribution of the peaks in each sample.</p> "> Figure 3
<p>Identification and analysis of differentially accessible chromatin regions (DARs). (<b>A</b>) Diagram illustrates the overlap of peaks between the preadipocyte (Pread) and adipocyte (Ad) groups. (<b>B</b>) A volcano plot of differential peaks. (<b>C</b>) GO terms and (<b>D</b>) KEGG pathway enrichment analysis of DAR-associated genes. (<b>E</b>) Enriched transcription-factor-binding motifs identified through ATAC-seq for increased peaks between the Pread and Ad groups, and (<b>F</b>) motifs associated with the decreased peaks. * <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Analyses of RNA-seq. (<b>A</b>) The results of Pearson correlation analysis. (<b>B</b>) A volcano plot of DEGs. (<b>C</b>) GO terms and (<b>D</b>) KEGG enrichment analyses of DEGs.</p> "> Figure 5
<p>Integrative analyses of ATAC-seq and RNA-seq data. (<b>A</b>) Overlap between DARs and DEGs. (<b>B</b>) ATAC-seq and RNA-seq signals for <span class="html-italic">PLIN1</span>, (<b>C</b>) <span class="html-italic">ADIPOQ</span>, and (<b>D</b>) <span class="html-italic">SELENBP1</span> genes were determined through IGV. (<b>E</b>) The <span class="html-italic">SELENBP1</span> mRNA level in porcine intramuscular preadipocytes at 0, 2, 4, 6, and 8 days of adipogenic differentiation. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 6
<p><span class="html-italic">SELENBP1</span> promotes adipogenesis of porcine intramuscular preadipocytes. (<b>A</b>) The mRNA expression levels of <span class="html-italic">SELENBP1</span>, (<b>B</b>) <span class="html-italic">PPARγ</span>, (<b>C</b>) <span class="html-italic">ADIPOQ</span>, and (<b>D</b>) <span class="html-italic">PLIN1</span> at 2, 4, 6, and 8 days of adipogenic differentiation following siRNA-SELENBP1 transfection into porcine intramuscular preadipocytes. (<b>E</b>) <span class="html-italic">SELENBP1</span>, <span class="html-italic">PPARγ</span>, <span class="html-italic">ADIPOQ</span>, and <span class="html-italic">PLIN1</span> protein levels following siRNA-SELENBP1 transfection into preadipocytes at 4 days. (<b>F</b>) BODIPY and (<b>G</b>) Oil Red O staining after siRNA-SELENBP1 transfection into preadipocytes at 4 days. * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 7
<p>Identification of binding of VDR to <span class="html-italic">SELENBP1</span> promoter regions. (<b>A</b>) Luciferase assays were performed to detect the activities of a series of deletion constructs in porcine intramuscular preadipocytes. Luciferase activity was analyzed at 4 days after adipogenic differentiation. (<b>B</b>) JASPAR software (v2024) predicted the transcription-factor-binding sites located −302 bp to −59 bp upstream of the <span class="html-italic">SELENBP1</span> transcription start site. (<b>C</b>) Point mutations in the PAX6, VDR, NR4A1, and E2F1 binding sites of the <span class="html-italic">SELENBP1</span> promoter were analyzed through luciferase assays. (<b>D</b>) ChIP-qPCR results demonstrated that VDR could bind to the <span class="html-italic">SELENBP1</span> promoter region in porcine intramuscular preadipocytes at 4 days of differentiation. IgG was used as negative controls. ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 8
<p>VDR promotes adipogenesis of porcine intramuscular preadipocytes by regulating <span class="html-italic">SELENBP1</span>. (<b>A</b>) <span class="html-italic">VDR</span>, <span class="html-italic">SELENBP1</span>, <span class="html-italic">PPARγ</span>, <span class="html-italic">ADIPOQ</span>, and <span class="html-italic">PLIN1</span> mRNA levels following siRNA-VDR transfection into porcine intramuscular preadipocytes at 4 days. (<b>B</b>) VDR, SELENBP1, PPARγ, and PLIN1 protein levels following siRNA-VDR transfection into preadipocytes at 4 days. (<b>C</b>) BODIPY and (<b>D</b>) Oil Red O staining of preadipocytes after siRNA-VDR transfection of porcine intramuscular preadipocytes at 4 days. ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of Porcine Intramuscular Preadipocytes During Adipogenic Differentiation
2.2. Dynamics of Chromatin Accessibility During Adipogenic Differentiation
2.3. Transcriptional Profiling of Porcine Intramuscular Preadipocytes During Adipogenic Differentiation
2.4. Integration Analysis of ATAC-Seq and RNA-Seq
2.5. SELENBP1 Regulates Adipogenesis of Porcine Intramuscular Preadipocytes
2.6. Transcription Factor Vitamin D Receptor Can Promote SELENBP1 Expression
2.7. VDR Regulates Adipogenesis of Porcine Intramuscular Preadipocytes via SELENBP1
3. Discussion
4. Materials and Methods
4.1. Cell Isolation, Culture, and Adipogenic Differentiation
4.2. Cell Transfection, Plasmids, and Luciferase Assay
4.3. RNA Interference
4.4. Oil Red O and BODIPY Staining
4.5. Quantitative Real-Time PCR
4.6. Western Blotting
4.7. ChIP
4.8. RNA-Seq
4.9. ATAC-Seq
4.10. Gene Annotation and Functional Enrichment Analyses
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hocquette, J.F.; Gondret, F.; Baéza, E.; Médale, F.; Jurie, C.; Pethick, D.W. Intramuscular fat content in meat-producing animals: Development, genetic and nutritional control, and identification of putative markers. Anim. Int. J. Anim. Biosci. 2010, 4, 303–319. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.; Yacoub, M.H.; Ayares, D.; Yamada, K.; Eisenson, D.; Griffith, B.P.; Mohiuddin, M.M.; Eyestone, W.; Venter, J.C.; Smolenski, R.T.; et al. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol. Rev. 2024, 104, 1409–1459. [Google Scholar] [CrossRef] [PubMed]
- Almurdhi, M.M.; Reeves, N.D.; Bowling, F.L.; Boulton, A.J.; Jeziorska, M.; Malik, R.A. Reduced Lower-Limb Muscle Strength and Volume in Patients with Type 2 Diabetes in Relation to Neuropathy, Intramuscular Fat, and Vitamin D Levels. Diabetes Care 2016, 39, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Verpoorten, S.; Sfyri, P.; Scully, D.; Mitchell, R.; Tzimou, A.; Mougios, V.; Patel, K.; Matsakas, A. Loss of CD36 protects against diet-induced obesity but results in impaired muscle stem cell function, delayed muscle regeneration and hepatic steatosis. Acta Physiol. 2020, 228, e13395. [Google Scholar] [CrossRef] [PubMed]
- Mendham, A.E.; Goedecke, J.H.; Zeng, Y.; Larsen, S.; George, C.; Hauksson, J.; Fortuin-de Smidt, M.C.; Chibalin, A.V.; Olsson, T.; Chorell, E. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 2021, 64, 1642–1659. [Google Scholar] [CrossRef]
- Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature 2014, 510, 76–83. [Google Scholar] [CrossRef]
- Ghaben, A.L.; Scherer, P.E. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 2019, 20, 242–258. [Google Scholar] [CrossRef]
- Wang, B.; Yang, Q.; Harris, C.L.; Nelson, M.L.; Busboom, J.R.; Zhu, M.J.; Du, M. Nutrigenomic regulation of adipose tissue development—Role of retinoic acid: A review. Meat Sci. 2016, 120, 100–106. [Google Scholar] [CrossRef]
- Hammarstedt, A.; Gogg, S.; Hedjazifar, S.; Nerstedt, A.; Smith, U. Impaired Adipogenesis and Dysfunctional Adipose Tissue in Human Hypertrophic Obesity. Physiol. Rev. 2018, 98, 1911–1941. [Google Scholar] [CrossRef]
- Patel, S.; Ganbold, K.; Cho, C.H.; Siddiqui, J.; Yildiz, R.; Sparman, N.; Sadeh, S.; Nguyen, C.M.; Wang, J.; Whitelegge, J.P.; et al. Transcription factor PATZ1 promotes adipogenesis by controlling promoter regulatory loci of adipogenic factors. Nat. Commun. 2024, 15, 8533. [Google Scholar] [CrossRef]
- Klemm, S.L.; Shipony, Z.; Greenleaf, W.J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 2019, 20, 207–220. [Google Scholar] [CrossRef] [PubMed]
- Siersbæk, R.; Nielsen, R.; Mandrup, S. Transcriptional networks and chromatin remodeling controlling adipogenesis. Trends Endocrinol. Metab. TEM 2012, 23, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Camp, H.S.; Ren, D.; Leff, T. Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol. Med. 2002, 8, 442–447. [Google Scholar] [CrossRef]
- Grandi, F.C.; Modi, H.; Kampman, L.; Corces, M.R. Chromatin accessibility profiling by ATAC-seq. Nat. Protoc. 2022, 17, 1518–1552. [Google Scholar] [CrossRef] [PubMed]
- Buenrostro, J.D.; Giresi, P.G.; Zaba, L.C.; Chang, H.Y.; Greenleaf, W.J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 2013, 10, 1213–1218. [Google Scholar] [CrossRef] [PubMed]
- Quan, J.; Yang, M.; Wang, X.; Cai, G.; Ding, R.; Zhuang, Z.; Zhou, S.; Tan, S.; Ruan, D.; Wu, J.; et al. Multi-omic characterization of allele-specific regulatory variation in hybrid pigs. Nat. Commun. 2024, 15, 5587. [Google Scholar] [CrossRef]
- Cai, S.; Hu, B.; Wang, X.; Liu, T.; Lin, Z.; Tong, X.; Xu, R.; Chen, M.; Duo, T.; Zhu, Q.; et al. Integrative single-cell RNA-seq and ATAC-seq analysis of myogenic differentiation in pig. BMC Biol. 2023, 21, 19. [Google Scholar] [CrossRef]
- Miao, W.; Ma, Z.; Tang, Z.; Yu, L.; Liu, S.; Huang, T.; Wang, P.; Wu, T.; Song, Z.; Zhang, H.; et al. Integrative ATAC-seq and RNA-seq Analysis of the Longissimus Muscle of Luchuan and Duroc Pigs. Front. Nutr. 2021, 8, 742672. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, J.; Zhou, J.; Zhang, Y.; Qiao, M.; Sun, H.; Li, Z.; Li, L.; Chen, N.; Oyelami, F.O.; et al. Integration of ATAC-seq and RNA-seq analysis identifies key genes affecting intramuscular fat content in pigs. Front. Nutr. 2022, 9, 1016956. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Wu, J.; Qiao, M.; Xu, Z.; Peng, X.; Mei, S. Proteomic and lipidomic analyses reveal saturated fatty acids, phosphatidylinositol, phosphatidylserine, and associated proteins contributing to intramuscular fat deposition. J. Proteom. 2021, 241, 104235. [Google Scholar] [CrossRef]
- Piché, M.E.; Tchernof, A.; Després, J.P. Obesity Phenotypes, Diabetes, and Cardiovascular Diseases. Circ. Res. 2020, 126, 1477–1500. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; You, W.; Valencak, T.G.; Shan, T. Bidirectional roles of skeletal muscle fibro-adipogenic progenitors in homeostasis and disease. Ageing Res. Rev. 2022, 80, 101682. [Google Scholar] [CrossRef] [PubMed]
- Cristancho, A.G.; Lazar, M.A. Forming functional fat: A growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 2011, 12, 722–734. [Google Scholar] [CrossRef] [PubMed]
- Hallenborg, P.; Petersen, R.K.; Kouskoumvekaki, I.; Newman, J.W.; Madsen, L.; Kristiansen, K. The elusive endogenous adipogenic PPARγ agonists: Lining up the suspects. Prog. Lipid Res. 2016, 61, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Gao, L.; Han, Y.; Xing, M.; Zhao, C.; Peng, J.; Chang, J. Silicon-Enhanced Adipogenesis and Angiogenesis for Vascularized Adipose Tissue Engineering. Adv. Sci. 2018, 5, 1800776. [Google Scholar] [CrossRef]
- Wang, Q.A.; Tao, C.; Jiang, L.; Shao, M.; Ye, R.; Zhu, Y.; Gordillo, R.; Ali, A.; Lian, Y.; Holland, W.L.; et al. Distinct regulatory mechanisms governing embryonic versus adult adipocyte maturation. Nat. Cell Biol. 2015, 17, 1099–1111. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y.; Bao, Q.; Gu, Y.; Liang, C.; Chu, M.; Guo, X.; Bao, P.; Yan, P. The Landscape of Accessible Chromatin during Yak Adipocyte Differentiation. Int. J. Mol. Sci. 2022, 23, 9960. [Google Scholar] [CrossRef]
- Li, J.; Chen, Z.; Bai, Y.; Wei, Y.; Guo, D.; Liu, Z.; Niu, Y.; Shi, B.; Zhang, X.; Cai, Y.; et al. Integration of ATAC-Seq and RNA-Seq Analysis to Identify Key Genes in the Longissimus Dorsi Muscle Development of the Tianzhu White Yak. Int. J. Mol. Sci. 2023, 25, 158. [Google Scholar] [CrossRef]
- Ming, H.; Sun, J.; Pasquariello, R.; Gatenby, L.; Herrick, J.R.; Yuan, Y.; Pinto, C.R.; Bondioli, K.R.; Krisher, R.L.; Jiang, Z. The landscape of accessible chromatin in bovine oocytes and early embryos. Epigenetics 2021, 16, 300–312. [Google Scholar] [CrossRef]
- Tang, Q.Q.; Lane, M.D. Adipogenesis: From stem cell to adipocyte. Annu. Rev. Biochem. 2012, 81, 715–736. [Google Scholar] [CrossRef]
- Alonso-Vale, M.I.; Peres, S.B.; Vernochet, C.; Farmer, S.R.; Lima, F.B. Adipocyte differentiation is inhibited by melatonin through the regulation of C/EBPbeta transcriptional activity. J. Pineal Res. 2009, 47, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, R.; Han, Z.; Wu, Y.; Wang, Q.; Zhu, X.; Huang, Z.; Ye, J.; Tang, Y.; Huang, H.; et al. Cooperation of ATF4 and CTCF promotes adipogenesis through transcriptional regulation. Cell Biol. Toxicol. 2022, 38, 741–763. [Google Scholar] [CrossRef] [PubMed]
- Luther, J.; Ubieta, K.; Hannemann, N.; Jimenez, M.; Garcia, M.; Zech, C.; Schett, G.; Wagner, E.F.; Bozec, A. Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARγ and hypoxia. Cell Death Differ. 2014, 21, 655–664. [Google Scholar] [CrossRef] [PubMed]
- Mathes, S.; Fahrner, A.; Ghoshdastider, U.; Rüdiger, H.A.; Leunig, M.; Wolfrum, C.; Krützfeldt, J. FGF-2-dependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc. Natl. Acad. Sci. USA 2021, 118, e2021013118. [Google Scholar] [CrossRef] [PubMed]
- Ku, H.C.; Chan, T.Y.; Chung, J.F.; Kao, Y.H.; Cheng, C.F. The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed. Pharmacother. 2022, 145, 112440. [Google Scholar] [CrossRef]
- Willemsen, N.; Arigoni, I.; Studencka-Turski, M.; Krüger, E.; Bartelt, A. Proteasome dysfunction disrupts adipogenesis and induces inflammation via ATF3. Mol. Metab. 2022, 62, 101518. [Google Scholar] [CrossRef]
- Ye, J.; Gao, C.; Liang, Y.; Hou, Z.; Shi, Y.; Wang, Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. Cell Regen. 2023, 12, 13. [Google Scholar] [CrossRef]
- Maniyadath, B.; Zhang, Q.; Gupta, R.K.; Mandrup, S. Adipose tissue at single-cell resolution. Cell Metab. 2023, 35, 386–413. [Google Scholar] [CrossRef]
- Schuermans, N.; El Chehadeh, S.; Hemelsoet, D.; Gautheron, J.; Vantyghem, M.C.; Nouioua, S.; Tazir, M.; Vigouroux, C.; Auclair, M.; Bogaert, E.; et al. Loss of phospholipase PLAAT3 causes a mixed lipodystrophic and neurological syndrome due to impaired PPARγ signaling. Nat. Genet. 2023, 55, 1929–1940. [Google Scholar] [CrossRef]
- Pollard, A.E. New concepts in the roles of AMPK in adipocyte stem cell biology. Essays Biochem. 2024, 68, 349–361. [Google Scholar]
- Majchrzak, M.; Stojanović, O.; Ajjaji, D.; Ben M’barek, K.; Omrane, M.; Thiam, A.R.; Klemm, R.W. Perilipin membrane integration determines lipid droplet heterogeneity in differentiating adipocytes. Cell Rep. 2024, 43, 114093. [Google Scholar] [CrossRef] [PubMed]
- Chung, J.Y.; Hong, J.; Kim, H.J.; Song, Y.; Yong, S.B.; Lee, J.; Kim, Y.H. White adipocyte-targeted dual gene silencing of FABP4/5 for anti-obesity, anti-inflammation and reversal of insulin resistance: Efficacy and comparison of administration routes. Biomaterials 2021, 279, 121209. [Google Scholar] [CrossRef] [PubMed]
- Worthmann, A.; Ridder, J.; Piel, S.Y.L.; Evangelakos, I.; Musfeldt, M.; Voß, H.; O’Farrell, M.; Fischer, A.W.; Adak, S.; Sundd, M.; et al. Fatty acid synthesis suppresses dietary polyunsaturated fatty acid use. Nat. Commun. 2024, 15, 45. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yao, L.; Ruan, J.; Kang, J.; Cao, Y.; Nie, X.; Lan, W.; Zhu, Z.; Han, W.; Liu, Y.; et al. Single-cell atlas of human infrapatellar fat pad and synovium implicates APOE signaling in osteoarthritis pathology. Sci. Transl. Med. 2024, 16, eadf4590. [Google Scholar] [CrossRef] [PubMed]
- Zusi, C.; Csermely, A.; Rinaldi, E.; Bertoldo, K.; Bonetti, S.; Boselli, M.L.; Travia, D.; Bonora, E.; Bonadonna, R.C.; Trombetta, M. Crosstalk between genetic variability of adiponectin and leptin, glucose-insulin system and subclinical atherosclerosis in patients with newly diagnosed type 2 diabetes. The Verona Newly Diagnosed Type 2 Diabetes Study 14. Diabetes Obes. Metab. 2023, 25, 2650–2658. [Google Scholar] [CrossRef]
- Steinbrenner, H.; Micoogullari, M.; Hoang, N.A.; Bergheim, I.; Klotz, L.O.; Sies, H. Selenium-binding protein 1 (SELENBP1) is a marker of mature adipocytes. Redox Biol. 2019, 20, 489–495. [Google Scholar] [CrossRef]
- Song, Y.; Kurose, A.; Li, R.; Takeda, T.; Onomura, Y.; Koga, T.; Mutoh, J.; Ishida, T.; Tanaka, Y.; Ishii, Y. Ablation of Selenbp1 Alters Lipid Metabolism via the Pparα Pathway in Mouse Kidney. Int. J. Mol. Sci. 2021, 22, 5334. [Google Scholar] [CrossRef]
- Pol, A.; Renkema, G.H.; Tangerman, A.; Winkel, E.G.; Engelke, U.F.; de Brouwer, A.P.M.; Lloyd, K.C.; Araiza, R.S.; van den Heuvel, L.; Omran, H.; et al. Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis. Nat. Genet. 2018, 50, 120–129. [Google Scholar] [CrossRef]
- Yang, G.; Ju, Y.; Fu, M.; Zhang, Y.; Pei, Y.; Racine, M.; Baath, S.; Merritt, T.J.S.; Wang, R.; Wu, L. Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochim. Biophys. Acta. Mol. Cell Biol. Lipids 2018, 1863, 165–176. [Google Scholar] [CrossRef]
- Lee, H.; Lee, Y.J.; Choi, H.; Ko, E.H.; Kim, J.W. Reactive oxygen species facilitate adipocyte differentiation by accelerating mitotic clonal expansion. J. Biol. Chem. 2009, 284, 10601–10609. [Google Scholar] [CrossRef]
- Randi, E.B.; Casili, G.; Jacquemai, S.; Szabo, C. Selenium-Binding Protein 1 (SELENBP1) Supports Hydrogen Sulfide Biosynthesis and Adipogenesis. Antioxidants 2021, 10, 361. [Google Scholar] [CrossRef] [PubMed]
- Weber, K.; Erben, R.G. Differences in triglyceride and cholesterol metabolism and resistance to obesity in male and female vitamin D receptor knockout mice. J. Anim. Physiol. Anim. Nutr. 2013, 97, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Schutkowski, A.; Max, D.; Bönn, M.; Brandsch, C.; Grundmann, S.M.; Hirche, F.; Staege, M.S.; Stangl, G.I. Vitamin D Does Not Play a Functional Role in Adipose Tissue Development in Rodent Models. Mol. Nutr. Food Res. 2018, 62, 1700726. [Google Scholar] [CrossRef] [PubMed]
- Narvaez, C.J.; Simmons, K.M.; Brunton, J.; Salinero, A.; Chittur, S.V.; Welsh, J.E. Induction of STEAP4 correlates with 1,25-dihydroxyvitamin D3 stimulation of adipogenesis in mesenchymal progenitor cells derived from human adipose tissue. J. Cell. Physiol. 2013, 228, 2024–2036. [Google Scholar] [CrossRef] [PubMed]
- Matthews, D.G.; D’Angelo, J.; Drelich, J.; Welsh, J. Adipose-specific Vdr deletion alters body fat and enhances mammary epithelial density. J. Steroid Biochem. Mol. Biol. 2016, 164, 299–308. [Google Scholar] [CrossRef]
- Jiang, Q.; Sun, B.; Liu, Q.; Cai, M.; Wu, R.; Wang, F.; Yao, Y.; Wang, Y.; Wang, X. MTCH2 promotes adipogenesis in intramuscular preadipocytes via an m(6)A-YTHDF1-dependent mechanism. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2019, 33, 2971–2981. [Google Scholar] [CrossRef]
- Gong, H.; Gong, T.; Liu, Y.; Wang, Y.; Wang, X. Profiling of N6-methyladenosine methylation in porcine longissimus dorsi muscle and unravelling the hub gene ADIPOQ promotes adipogenesis in an m(6)A-YTHDF1-dependent manner. J. Anim. Sci. Biotechnol. 2023, 14, 50. [Google Scholar] [CrossRef]
Sample | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Clean Ratio | Q20 | Q30 |
---|---|---|---|---|---|---|---|
Pread_1 | 43,273,445 | 12.98 | 42,091,064 | 10.17 | 78.35% | 96.23% | 90.67% |
Pread_2 | 41,588,977 | 12.48 | 40,947,178 | 9.85 | 78.93% | 95.66% | 88.92% |
Pread_3 | 46,146,628 | 13.84 | 44,687,427 | 11 | 79.48% | 96.04% | 90.27% |
Ad_1 | 45,324,817 | 13.6 | 44,699,441 | 10.4 | 76.47% | 97.40% | 93.00% |
Ad_2 | 43,628,308 | 13.09 | 43,057,977 | 9.75 | 74.48% | 97.62% | 93.52% |
Ad_3 | 49,397,933 | 14.82 | 48,753,889 | 10.98 | 74.09% | 97.60% | 93.49% |
Sample | Raw Reads | Raw Bases | Clean Reads | Clean Bases | Q20 | Q30 |
---|---|---|---|---|---|---|
Pread_1 | 82,917,056 | 12.44 G | 77,760,288 | 11.66 G | 96.72% | 92.10% |
Pread_2 | 83,103,868 | 12.47 G | 78,304,090 | 11.75 G | 96.73% | 92.14% |
Pread_3 | 91,072,606 | 13.66 G | 85,485,102 | 12.82 G | 96.69% | 92.00% |
Ad_1 | 81,312,684 | 12.2 G | 75,767,820 | 11.37 G | 96.21% | 91.03% |
Ad_2 | 84,770,750 | 12.72 G | 80,038,420 | 12.01 G | 96.57% | 91.77% |
Ad_3 | 80,076,524 | 12.01 G | 72,053,888 | 10.81 G | 96.21% | 91.00% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Wu, J.; Yang, T.; Zhang, X.; Qiao, M.; Xu, Z.; Zhang, Y.; Feng, Y.; Chen, T.; Li, Z.; et al. Integration of ATAC-Seq and RNA-Seq Reveals VDR–SELENBP1 Axis Promotes Adipogenesis of Porcine Intramuscular Preadipocytes. Int. J. Mol. Sci. 2024, 25, 12528. https://doi.org/10.3390/ijms252312528
Zhou J, Wu J, Yang T, Zhang X, Qiao M, Xu Z, Zhang Y, Feng Y, Chen T, Li Z, et al. Integration of ATAC-Seq and RNA-Seq Reveals VDR–SELENBP1 Axis Promotes Adipogenesis of Porcine Intramuscular Preadipocytes. International Journal of Molecular Sciences. 2024; 25(23):12528. https://doi.org/10.3390/ijms252312528
Chicago/Turabian StyleZhou, Jiawei, Junjing Wu, Tao Yang, Xinyu Zhang, Mu Qiao, Zhong Xu, Yu Zhang, Yue Feng, Tong Chen, Zipeng Li, and et al. 2024. "Integration of ATAC-Seq and RNA-Seq Reveals VDR–SELENBP1 Axis Promotes Adipogenesis of Porcine Intramuscular Preadipocytes" International Journal of Molecular Sciences 25, no. 23: 12528. https://doi.org/10.3390/ijms252312528
APA StyleZhou, J., Wu, J., Yang, T., Zhang, X., Qiao, M., Xu, Z., Zhang, Y., Feng, Y., Chen, T., Li, Z., Peng, X., & Mei, S. (2024). Integration of ATAC-Seq and RNA-Seq Reveals VDR–SELENBP1 Axis Promotes Adipogenesis of Porcine Intramuscular Preadipocytes. International Journal of Molecular Sciences, 25(23), 12528. https://doi.org/10.3390/ijms252312528