Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury
<p>Raloxifene decreased OGD-induced cell death. (<b>A</b>) T98G cells were treated with different concentrations of raloxifene during 6 h of OGD and 3 h of reoxygenation, and cell viability was assessed by MTT assay. Data are represented as the mean ± SEM of four independent experiments. Control (101.99 ± 1.85); OGD/R (52.59 ± 2.02); OGD/R + 100 nM raloxifene (65.34 ± 2.03); OGD/R + 10 nM raloxifene (70.56 ± 2.36). Data were examined by analysis of variance, followed by the post hoc Dunnet’s test for between-group comparisons and Tukey’s test for multiple comparisons, * <span class="html-italic">p</span> < 0.005. (<b>B</b>) Cell surface quantification with different concentrations of raloxifene during 6 h of OGD and 3 h of reoxygenation. Data are represented as the mean ± SEM of four independent experiments. Control (225.3 ± 13.01); OGD/R (278.7 ± 18.51); OGD/R + 100 nM raloxifene (318.2 ± 21.86); OGD/R + 10 nM raloxifene (277.1 ± 18.16). Data were examined by analysis of variance, followed by the post hoc Dunnet’s test for between-group comparisons and Tukey’s test for multiple comparisons, * <span class="html-italic">p</span> < 0.005. (<b>C</b>–<b>F</b>) Raloxifene reduced morphological alterations induced by oxygen–glucose deprivation/reoxygenation. Representative microphotographs showing the morphology of cells exposed to (<b>C</b>) DMEM, (<b>D</b>) OGD/R, (<b>E</b>) OGD/R + Ral 100 nM, and (<b>F</b>) OGD/R + Ral 10 nM. Scale bar 50 µm.</p> "> Figure 2
<p>Raloxifene reduced superoxide production at 6 h of OGD and 3 h of reoxygenation. (<b>A</b>) Mean fluorescence values of dihydroethidium (DHE) intensity. (<b>B</b>–<b>E</b>) Representative fluorescence micrographs of dihydroethidium (DHE) staining in T98G cells exposed to (<b>B</b>) DMEM, (<b>C</b>) OGD/R, (<b>D</b>) OGD/R + Ral 100 nM with 6 h of OGD and 3 h of reoxygenation, and (<b>E</b>) OGD/R + Ral 10 nM with 6 h of OGD and 3 h of reoxygenation. *** <span class="html-italic">p</span> < 0.0001. Scale bar 50 µm.</p> "> Figure 3
<p>Raloxifene reduced peroxide production at 6 h of OGD and 6 h of reoxygenation. The figure shows the representative fluorescence microphotographs of 2′,7′-Dichlorofluorescin Diacetate (DCFDA) staining of T98G cells exposed to (<b>A</b>) Control, (<b>B</b>) OGD/R, (<b>C</b>) OGD/R, OGD/R + Ral 100 nM with 6 h of OGD and 6 h of reoxygenation, (<b>D</b>) OGD/R, OGD/R + Ral 10 nM with 6 h of OGD and 6 h of reoxygenation, and (<b>E</b>) the mean fluorescence values of DCFDA intensity measured by flow cytometry. Data are represented as the mean ± SEM of five independent experiments. Control (55.51 ± 1.03); OGD/R (131.00 ± 4.01); OGD/R + 100 nM raloxifene (75.15 ± 6.60); OGD/R + 10 nM raloxifene (72.38 ± 7.82). Data were examined by analysis of variance, followed by the post hoc Dunnet’s test for between-group comparisons and Tukey’s test for multiple comparisons **** <span class="html-italic">p</span> < 0.0001. Scale bar 50 µm.</p> "> Figure 4
<p>Raloxifene attenuated mitochondrial membrane potential loss at 6 h of OGD and 3 h of reoxygenation. (<b>A</b>) The figure shows the mean fluorescence values. (<b>B</b>–<b>E</b>) Representative fluores-cence micrographs of tetra-methyl rhodamine methyl ester (TMRM) staining in T98G cells exposed to (<b>B</b>) OGD/R, (<b>C</b>) DMEM, (<b>D</b>) OGD/R + Ral 100 nM with 6 h of OGD and 3 h of reoxygenation, and (<b>E</b>) OGD/R + Ral 10 nM with 6 h of OGD and 3 h of reoxygenation. *** <span class="html-italic">p</span> < 0.0001. Scale bar 50 µm.</p> "> Figure 5
<p>Raloxifene preserved mitochondrial mass in T98G cells exposed to 6 h of OGD and 3 h of reoxygenation. The figure shows the mitochondrial mass in T98G cells exposed to 6 h of oxygen–glucose deprivation (OGD) to 3 h (<b>A</b>–<b>D</b>), 6 h (<b>E</b>–<b>H</b>), and 9 h (<b>I</b>–<b>L</b>) of reoxygenation. The representative microphotographs of acridine orange (NAO) fluorescence in T98G astrocytic cells exposed to (<b>A</b>) DMEM, (<b>B</b>) OGD/R, (<b>C</b>) OGD/R + Ral 100 nM with 3 h of reoxygenation, and (<b>D</b>) OGD/R + Ral 10 nM with 3 h of reoxygenation. (<b>M</b>) Mean fluorescence values of NAO intensity in this period of insult. Data are represented as the mean ± SEM of five independent experiments. Control (6671.00 ± 86.18); OGD/R (1903.00 ± 155.30); OGD/R + 100 nM raloxifene (2940.00 ± 142.90); OGD/R + 10 nM raloxifene (3163.00 ± 119.80). (<b>E</b>) DMEM, (<b>F</b>) OGD/R, (<b>G</b>) OGD/R + Ral 100 nM with 6 h of reoxygenation, and (<b>H</b>) OGD/R + Ral 10 nM with 6 h of reoxygenation. (<b>N</b>) Mean fluorescence values of NAO intensity in this period of insult. Data are represented as the mean ± SEM of five independent experiments. Control (416.7.00 ± 39.47); OGD/R (183.1 ± 17.70); OGD + 100 nM raloxifene (238.4 ± 26.43); OGD + 10 nM raloxifene (314.6 ± 27.45) (<b>I</b>) DMEM, (<b>J</b>) OGD/R, (<b>K</b>) OGD/R + Ral 100 nM with 9 h of reoxygenation, and (<b>L</b>) OGD/R + Ral 10 nM with 9 h of reoxygenation. (<b>O</b>) Mean fluorescence values of NAO intensity in this period of insult. Data are represented as the mean ± SEM of five independent experiments. Control (452.20 ± 22.28); OGD/R (330.42 ± 23.45); OGD/R + 100 nM raloxifene (404.71 ± 12.34); OGD/R + 10 nM raloxifene (374.64 ± 19.78). Data were examined by analysis of variance, followed by the post hoc Dunnet’s test for between-group comparisons and Tukey’s test for multiple comparisons, * <span class="html-italic">p</span> < 0.005, ** <span class="html-italic">p</span> < 0.01, **** <span class="html-italic">p</span> < 0.0001. Scale bar 50 µm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Cell Viability
2.2. Raloxifene-Reduced Superoxide Production in OGD-Exposed T98G Cells
2.3. Raloxifene Effect on Mitochondrial Membrane Potential Loss in Reperfused OGD-Exposed T98G Cells
2.4. Raloxifene-Attenuated Mitochondrial Mass Reduction in OGD/R-Exposed T98G Cells
3. Discussion
4. Materials and Methods
4.1. T98G Cell Cultures
4.2. Drug Treatments
4.3. Oxygen and Glucose Deprivation
4.4. Cell Viability Assessment
4.5. Reactive Oxygen Species (ROS) Production Determination
4.6. Mitochondrial Membrane Potential Determination
4.7. Mitochondrial Mass Determination
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herrera-Marschitz, M.; Morales, P.; Leyton, L.; Bustamante, D.; Klawitter, V.; Espina-Marchant, P.; Allende, C.; Lisboa, F.; Cunich, G.; Jara-Cavieres, A.; et al. Perinatal asphyxia: Current status and approaches towards neuroprotective strategies, with focus on sentinel proteins. Neurotox Res. 2011, 19, 603–627. [Google Scholar] [CrossRef] [PubMed]
- Galeano, P.; Romero, J.I.; Luque-Rojas, M.J.; Suárez, J.; Holubiec, M.I.; Bisagno, V.; Santín, L.J.; De Fonseca, F.R.; Capani, F.; Blanco, E. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats. Synapse 2013, 67, 553–567. [Google Scholar] [CrossRef]
- Herrera, M.I.; Udovin, L.D.; Toro-Urrego, N.; Kusnier, C.F.; Luaces, J.P.; Capani, F. Palmitoylethanolamide ameliorates hippocampal damage and behavioral dysfunction after perinatal asphyxia in the immature rat brain. Front. Neurosci. 2018, 12, 145. [Google Scholar] [CrossRef] [PubMed]
- Udovin, L.D.; Kobiec, T.; Herrera, M.I.; Toro-Urrego, N.; Kusnier, C.F.; Kölliker-Frers, R.A.; Ramos-Hryb, A.B.; Luaces, J.P.; Otero-Losada, M.; Capani, F. Partial Reversal of Striatal Damage by Palmitoylethanolamide Administration Following Perinatal Asphyxia. Front. Neurosci. 2020, 13, 1345. [Google Scholar] [CrossRef]
- Saraceno, G.E.; Caceres, L.G.; Guelman, L.R.; Castilla, R.; Udovin, L.D.; Ellisman, M.H.; Brocco, M.A.; Capani, F. Consequences of excessive plasticity in the hippocampus induced by perinatal asphyxia. Exp. Neurol. 2016, 286, 116–123. [Google Scholar] [CrossRef] [PubMed]
- Saraceno, G.E.; Bellini, M.J.; Garcia-Segura, L.M.; Capani, F. Estradiol Activates PI3K/Akt/GSK3 Pathway Under Chronic Neurodegenerative Conditions Triggered by Perinatal Asphyxia. Front. Pharmacol. 2018, 9, 335. [Google Scholar] [CrossRef]
- Perez-Lobos, R.; Lespay-Rebolledo, C.; Tapia-Bustos, A.; Palacios, E.; Vío, V.; Bustamante, D.; Morales, P.; Herrera-Marschitz, M. Vulnerability to a Metabolic Challenge Following Perinatal Asphyxia Evaluated by Organotypic Cultures: Neonatal Nicotinamide Treatment. Neurotox. Res. 2017, 32, 426–443. [Google Scholar] [CrossRef]
- Barkhuizen, M.; van den Hove, D.; Vles, J.; Steinbusch, H.; Kramer, B.; Gavilanes, A. 25 years of research on global asphyxia in the immature rat brain. Neurosci. Biobehav. Rev. 2017, 75, 166–182. [Google Scholar] [CrossRef]
- Lespay-Rebolledo, C.; Perez-Lobos, R.; Tapia-Bustos, A.; Vio, V.; Morales, P.; Herrera-Marschitz, M. Regionally Impaired Redox Homeostasis in the Brain of Rats Subjected to Global Perinatal Asphyxia: Sustained Effect up to 14 Postnatal Days. Neurotox. Res. 2018, 34, 660–676. [Google Scholar] [CrossRef]
- Lespay-Rebolledo, C.; Tapia-Bustos, A.; Bustamante, D.; Morales, P.; Herrera- Marschitz, M. The Long-Term Impairment in Redox Homeostasis Observed in the Hippocampus of Rats Subjected to Global Perinatal Asphyxia (PA) Implies Changes in Glutathione-Dependent Antioxidant Enzymes and TIGAR-Dependent Shift Towards the Pentose Phosphate Pathways: Effect of Nicotinamide. Neurotox. Res. 2019, 36, 472–490. [Google Scholar] [CrossRef]
- Holubiec, M.I.; Romero, J.I.; Suárez, J.; Portavella, M.; Fernández-Espejo, E.; Blanco, E.; Galeano, P.; de Fonseca, F.R. Palmitoylethanolamide prevents neuroinflammation, reduces astrogliosis and preserves recognition and spatial memory following induction of neonatal anoxia-ischemia. Psychopharmacology 2018, 235, 2929–2945. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Marschitz, M.; Neira-Pena, T.; Rojas-Mancilla, E.; Espina-Marchant, P.; Esmar, D.; Perez, R.; Muñoz, V.; Gutierrez-Hernandez, M.; Rivera, B.; Simola, N.; et al. Perinatal asphyxia: CNS development and deficits with delayed onset. Front. Cell. Neurosci. 2014, 8, 47. [Google Scholar] [CrossRef] [PubMed]
- Ahearne, C.E.; Boylan, G.B.; Murray, D.M. Short- and long-term prognosis in perinatal asphyxia: An update. World J. Clin. Pediatr. 2016, 5, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Galeano, P.; Blanco, E.; Logica Tornatore, T.M.A.; Romero, J.I.; Holubiec, M.I.; Rodríguez de Fonseca, F.; Capani, F. Life-long environmental enrichment counteracts spatial learning, reference and working memory deficits in middle-aged rats subjected to perinatal asphyxia. Front. Behav. Neurosci. 2015, 8, 406. [Google Scholar] [CrossRef]
- Johne, M.; Käufer, C.; Römermann, K.; Gailus, B.; Gericke, B.; Löscher, W. A combination of phenobarbital and the bumetanide derivative bumepamine prevents neonatal seizures and subsequent hippocampal neurodegeneration in a rat model of birth asphyxia. Epilepsia 2021, 62, 1460–1471. [Google Scholar] [CrossRef]
- Pugliese, V.; Bruni, A.; Carbone, E.A.; Calabrò, G.; Cerminara, G.; Sampogna, G.; Luciano, M.; Steardo, L., Jr.; Fiorillo, A.; Garcia, C.S.; et al. Maternal stress, prenatal medical illnesses and obstetric complications: Risk factors for schizophrenia spectrum disorder, bipolar disorder and major depressive disorder. Psychiatry Res. 2019, 271, 23–30. [Google Scholar] [CrossRef]
- Modabbernia, A.; Mollon, J.; Boffetta, P.; Reichenberg, A. Impaired Gas Exchange at Birth and Risk of Intellectual Disability and Autism: A Meta-analysis. J. Autism Dev. Disord. 2016, 46, 1847–1859. [Google Scholar] [CrossRef]
- Perna, R.; Cooper, D. Perinatal cyanosis: Long-term cognitive sequelae and behavioral consequences. Appl. Neuropsychol. Child. 2012, 1, 48–52. [Google Scholar] [CrossRef]
- Toro-Urrego, N.; Avila-Rodriguez, M.; Herrera, M.I.; Aguilar, A.; Udovin, L.; Luaces, J.P. Neuroactive Steroids in Hypoxic–Ischemic Brain Injury: Overview and Future Directions. In Neuroprotection-New Approaches Prospects; Otero-Losada, M., Capani, F., Perez Lloret, S., Eds.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Detka, J.; Kurek, A.; Kucharczyk, M.; Głombik, K.; Basta-Kaim, A.; Kubera, M.; Lasoń, W.; Budziszewska, B. Brain glucose metabolism in an animal model of depression. Neuroscience. 2015, 295, 198–208. [Google Scholar] [CrossRef]
- Mergenthaler, P.; Lindauer, U.; Dienel, G.A.; Meisel, A. Sugar for the brain: The role of glucose in physiological and pathological brain function. Trends Neurosci. 2013, 36, 587–597. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Liu, Z.; Wang, Y.; Xiong, K. Molecular mechanisms of neuronal death in brain injury after subarachnoid hemorrhage. Front. Cell. Neurosci. 2022, 16, 1025708. [Google Scholar] [CrossRef] [PubMed]
- Guillamón-Vivancos, T.; Gómez-Pinedo, U.; Matías-Guiu, J. Astrocytes in neurodegenerative diseases (I): Function and molecular description. Neurologia 2015, 30, 119–129. [Google Scholar] [CrossRef]
- Fuller, S.; Steele, M.; Münch, G. Activated astroglia during chronic inflammation in Alzheimer’s disease—Do they neglect their neurosupportive roles? Mutat. Res. 2010, 690, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int. J. Mol. Sci. 2022, 23, 8512. [Google Scholar] [CrossRef]
- Nematipour, S.; Vahidinia, Z.; Nejati, M.; Naderian, H.; Beyer, C.; Tameh, A.A. Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke. Iran. J. Basic Med. Sci. 2020, 23, 1346–1352. [Google Scholar] [CrossRef]
- Bove, R.; Chitnis, T. The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Mult. Scler. 2014, 20, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Graham, E.M.; Ruis, K.A.; Hartman, A.L.; Northington, F.J.; Fox, H.E. A systematic review of the role of intrapartum hypoxia-ischemia in the causation of neonatal encephalopathy. Am. J. Obstet. Gynecol. 2008, 199, 587–595. [Google Scholar] [CrossRef]
- Ávila Rodriguez, M.; Garcia-Segura, L.M.; Cabezas, R.; Torrente, D.; Capani, F.; Gonzalez, J.; Barreto, G.E. Tibolone protects T98G cells from glucose deprivation. J. Steroid Biochem. Mol. Biol. 2014, 144, 294–303. [Google Scholar] [CrossRef]
- Barreto, G.; White, R.E.; Ouyang, Y.; Xu, L.; Giffard, R.G. Astrocytes: Targets for neuroprotection in stroke. Cent. Nerv. Syst. Agents. Med. Chem. 2011, 11, 164–173. [Google Scholar] [CrossRef]
- Ettinger, B.; Black, D.M.; Mitlak, B.H.; Knickerbocker, R.K.; Nickelsen, T.; Genant, H.K.; Christiansen, C.; Delmas, P.D.; Zanchetta, J.R.; Stakkestad, J.; et al. Reduction of Vertebral Fracture Risk in Postmenopausal Women with Osteoporosis Treated with Raloxifene: Results From a 3-Year Randomized Clinical Trial. JAMA 1999, 282, 637–645. [Google Scholar] [CrossRef]
- Veenman, L. Raloxifene as Treatment for Various Types of Brain Injuries and Neurodegenerative Diseases: A Good Start. Int. J. Mol. Sci. 2020, 21, 7586. [Google Scholar] [CrossRef] [PubMed]
- Baez-Jurado, E.; Vega, G.G.; Aliev, G.; Tarasov, V.V.; Esquinas, P.; Echeverria, V.; Barreto, G.E. Blockade of Neuroglobin Reduces Protection of Conditioned Medium from Human Mesenchymal Stem Cells in Human Astrocyte Model (T98G) Under a Scratch Assay. Mol. Neurobiol. 2018, 55, 2285–2300. [Google Scholar] [CrossRef] [PubMed]
- Rzemieniec, J.; Litwa, E.; Wnuk, A.; Lason, W.; Gołas, A.; Krzeptowski, W.; Kajta, M. Neuroprotective action of raloxifene against hypoxia-induced damage in mouse hippocampal cells depends on ERα but not ERβ or GPR30 signalling. J. Steroid Biochem. Mol. Biol. 2015, 146, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Legault, C.; Maki, P.M.; Resnick, S.M.; Coker, L.; Hogan, P.; Bevers, T.B.; Shumaker, S.A. Effects of Tamoxifen and Raloxifene on Memory and Other Cognitive Abilities: Cognition in the Study of Tamoxifen and Raloxifene. J. Clin. Oncol. 2009, 27, 5144. [Google Scholar] [CrossRef]
- Khan, M.M.; Wakade, C.; De Sevilla, L.; Brann, D.W. Selective estrogen receptor modulators (SERMs) enhance neurogenesis and spine density following focal cerebral ischemia. J. Steroid Biochem. Mol. Biol. 2015, 146, 38–47. [Google Scholar] [CrossRef]
- Ivanov, S.; Bakalov, D.; Bocheva, G. Pathophysiology and Management Possibilities of Thyroid-Associated Depression. Acta Medica Bulg. 2022, 49, 68–72. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, J.; Liu, Y. Roles and Mechanisms of Obstructive Sleep Apnea-Hypopnea Syndrome and Chronic Intermittent Hypoxia in Atherosclerosis: Evidence and Prospective. Oxidative Med. Cell. Longev. 2016, 2016, 8215082. [Google Scholar] [CrossRef]
- Leaw, B.; Nair, S.; Lim, R.; Thornton, C.; Mallard, C.; Hagberg, H. Mitochondria, Bioenergetics and Excitotoxicity: New Therapeutic Targets in Perinatal Brain Injury. Front. Cell. Neurosci. 2017, 11, 199. [Google Scholar] [CrossRef]
- Bender, O.; Celik, I.; Dogan, R.; Atalay, A.; Shoman, M.E.; Ali, T.F.S.; Beshr, E.A.M.; Mohamed, M.; Alaaeldin, E.; Shawky, A.M.; et al. Vanillin-Based Indolin-2-one Derivative Bearing a Pyridyl Moiety as a Promising Anti-Breast Cancer Agent via Anti-Estrogenic Activity. ACS Omega 2023, 8, 6968–6981. [Google Scholar] [CrossRef]
- Kryszczuk, M.; Kowalczuk, O. Significance of NRF2 in physiological and pathological conditions a comprehensive review. Arch. Biochem. Biophys. 2022, 730, 109417. [Google Scholar] [CrossRef]
- Tarpey, M.M.; Wink, D.A.; Grisham, M.B. Methods for detection of reactive metabolites of oxygen and nitrogen: In vitro and in vivo considerations. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2004, 286, R431–R444. [Google Scholar] [CrossRef] [PubMed]
- Cristóvão, A.C.; Choi, D.H.; Baltazar, G.; Beal, M.F.; Kim, Y.S. The Role of NADPH Oxidase 1–Derived Reactive Oxygen Species in Paraquat-Mediated Dopaminergic Cell Death. Antioxid. Redox Signal. 2009, 11, 2105. [Google Scholar] [CrossRef] [PubMed]
- Scaduto, R.C.; Grotyohann, L.W. Measurement of mitochondrial membrane potential using fluorescent rhodamine derivatives. Biophys. J. 1999, 76 Pt 1, 469. [Google Scholar] [CrossRef]
- Oliva, C.R.; Moellering, D.R.; Gillespie, G.Y.; Griguer, C.E. Acquisition of chemoresistance in gliomas is associated with increased mitochondrial coupling and decreased ROS production. PLoS ONE 2011, 6, e24665. [Google Scholar] [CrossRef] [PubMed]
- Toro-Urrego, N.; Vesga-Jiménez, D.J.; Herrera, M.I.; Luaces, J.P.; Capani, F. Neuroprotective Role of Hypothermia in Hypoxic-ischemic Brain Injury: Combined Therapies using Estrogen. Curr. Neuropharmacol. 2019, 17, 874. [Google Scholar] [CrossRef] [PubMed]
- Dhandapani, K.M.; Brann, D.W. Role of astrocytes in estrogen-mediated neuroprotection. Exp. Gerontol. 2007, 42, 70–75. [Google Scholar] [CrossRef]
- Spence, R.D.; Hamby, M.E.; Umeda, E.; Itoh, N.; Du, S.; Wisdom, A.J.; Cao, Y.; Bondar, G.; Lama, J.; Ao, Y.; et al. Neuroprotection mediated through estrogen receptor-alpha in astrocytes. Proc. Natl. Acad. Sci. USA 2011, 108, 8867–8872. [Google Scholar] [CrossRef]
- Wang, C.; Jie, C.; Dai, X. Possible roles of astrocytes in estrogen neuroprotection during cerebral ischemia. Rev. Neurosci. 2014, 25, 255–268. [Google Scholar] [CrossRef]
- Karki, P.; Webb, A.; Zerguine, A.; Choi, J.; Son, D.S.; Lee, E. Mechanism of raloxifene-induced upregulation of glutamate transporters in rat primary astrocytes. Glia 2014, 62, 1270–1283. [Google Scholar] [CrossRef]
- Vesga-Jiménez, D.J.; Hidalgo-Lanussa, O.; Baez-Jurado, E.; Echeverria, V.; Ashraf, G.M.; Sahebkar, A.; Barreto, G.E. Raloxifene attenuates oxidative stress and preserves mitochondrial function in astrocytic cells upon glucose deprivation. J. Cell. Physiol. 2019, 234, 2051–2057. [Google Scholar] [CrossRef]
- Felgel-Farnholz, V.; Hlusicka, E.B.; Edemann-Callesen, H.; Garthe, A.; Winter, C.; Hadar, R. Adolescent raloxifene treatment in females prevents cognitive deficits in a neurodevelopmental rodent model of schizophrenia. Behav. Brain Res. 2023, 441, 114276. [Google Scholar] [CrossRef] [PubMed]
- Thornton, C.; Hagberg, H. Role of mitochondria in apoptotic and necroptotic cell death in the developing brain. Clin. Chim. Acta; Int. J. Clin. Chem. 2015, 451 Pt A, 35–38. [Google Scholar] [CrossRef]
- Wang, H.F.; Wang, Z.Q.; Ding, Y.; Piao, M.H.; Feng, C.S.; Chi, G.F.; Luo, Y.N.; Ge, P.F. Endoplasmic reticulum stress regulates oxygen-glucose deprivation-induced parthanatos in human SH-SY5Y cells via improvement of intracellular ROS. CNS Neurosci. Ther. 2018, 24, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Wassink, G.; Gunn, E.R.; Drury, P.P.; Bennet, L.; Gunn, A.J. The mechanisms and treatment of asphyxial encephalopathy. Front. Neurosci. 2014, 8, 40. [Google Scholar] [CrossRef]
- Yao, M.; Nguyen, T.V.V.; Pike, C.J. Estrogen Regulates Bcl-w and Bim Expression: Role in Protection against β-Amyloid Peptide-Induced Neuronal Death. J. Neurosci. 2007, 27, 1422–1433. [Google Scholar] [CrossRef]
- Bourque, M.; Morissette, M.; Di Paolo, T. Raloxifene activates G protein-coupled estrogen receptor 1/Akt signaling to protect dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice. Neurobiol. Aging 2014, 35, 2347–2356. [Google Scholar] [CrossRef]
- Acaz-Fonseca, E.; Avila-Rodriguez, M.; Garcia-Segura, L.M.; Barreto, G.E. Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog. Neurobiol. 2016, 144, 5–26. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Dai, W.; Chen, L.; Liu, G.; Liu, M.; Zhang, Z.; Xiao, H. New method for studying the relationship between morphological parameters and cell viability. In 2nd International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test and Measurement Technology and Equipment; SPIE: Bellingham, WA, USA, 2006; Volume 6150, pp. 828–832. [Google Scholar] [CrossRef]
- Ziegler, U.; Groscurth, P. Morphological features of cell death. News Physiol. Sci. 2004, 19, 124–128. [Google Scholar] [CrossRef]
- Bertero, E.; Maack, C. Calcium signaling and reactive oxygen species in Mitochondria. Circ. Res. 2018, 122, 1460–1478. [Google Scholar] [CrossRef]
- De Nicolo, B.; Cataldi-Stagetti, E.; Diquigiovanni, C.; Bonora, E. Calcium and Reactive Oxygen Species Signaling Interplays in Cardiac Physiology and Pathologies. Antioxidants 2023, 12, 353. [Google Scholar] [CrossRef]
- Görlach, A.; Bertram, K.; Hudecova, S.; Krizanova, O. Calcium and ROS: A mutual interplay. Redox Biol. 2015, 6, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Ryan, A.K.; Rich, W.; Reilly, M.A. Oxidative stress in the brain and retina after traumatic injury. Front. Neurosci. 2023, 17, 1021152. [Google Scholar] [CrossRef] [PubMed]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol. Rev. 2014, 94, 909–950. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Xia, F.; Chen, Y.; Shen, Y.; Ma, L.; You, C.; Tao, C.; Hu, X. Role of Eryptosis in Hemorrhagic Stroke. Front. Mol. Neurosci. 2022, 15, 932931. [Google Scholar] [CrossRef]
- Kadenbach, B.; Arnold, S.; Lee, I.; Hüttemann, M. The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochim. Biophys. Acta (BBA)-Bioenerg. 2004, 1655, 400–408. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Q.; Zhao, D.; Lian, F.; Li, X.; Qi, W. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications. Front. Endocrinol. 2023, 14, 1112363. [Google Scholar] [CrossRef]
- Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; et al. Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell 2017, 171, 273–285. [Google Scholar] [CrossRef]
- Hidalgo-Lanussa, O.; Ávila-Rodriguez, M.; Baez-Jurado, E.; Zamudio, J.; Echeverria, V.; Garcia-Segura, L.M.; Barreto, G.E. Tibolone Reduces Oxidative Damage and Inflammation in Microglia Stimulated with Palmitic Acid through Mechanisms Involving Estrogen Receptor Beta. Mol. Neurobiol. 2018, 55, 5462–5477. [Google Scholar] [CrossRef]
- Stark, J.; Varbiro, S.; Sipos, M.; Tulassay, Z.; Sara, L.; Adler, I.; Dinya, E.; Magyar, Z.; Szekacs, B.; Marczell, I.; et al. Antioxidant effect of the active metabolites of tibolone. Gynecol. Endocrinol. 2015, 31, 31–35. [Google Scholar] [CrossRef]
- Capani, F.; Loidl, C.F.; Aguirre, F.; Piehl, L.; Facorro, G.; Hager, A.; De Paoli, T.; Farach, H.; Pecci-Saavedra, J. Changes in reactive oxygen species (ROS) production in rat brain during global perinatal asphyxia: An ESR study. Brain Res. 2001, 914, 204–207. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Dietrich, A.K.; Ziegler, Y.S.; Nardulli, A.M. 17β-Estradiol alters oxidative damage and oxidative stress response protein expression in the mouse mammary gland. Mol. Cell. Endocrinol. 2016, 426, 11–21. [Google Scholar] [CrossRef]
- Korenic, A.; Boltze, J.; Deten, A.; Peters, M.; Andjus, P.; Radenovic, L. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation. PLoS ONE 2014, 9, e90697. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J.; Duchen, M.R. Mitochondrial oxidative stress and cell death in astrocytes--requirement for stored Ca2+ and sustained opening of the permeability transition pore. J. Cell Sci. 2002, 115 Pt 6, 1175–1188. [Google Scholar] [CrossRef]
- Anthonymuthu, T.S.; Kenny, E.M.; Bayır, H. Therapies targeting lipid peroxidation in traumatic brain injury. Brain Res. 2016, 1640 Pt A, 57–76. [Google Scholar] [CrossRef]
- Vähäheikkilä, M.; Peltomaa, T.; Róg, T.; Vazdar, M.; Pöyry, S.; Vattulainen, I. How cardiolipin peroxidation alters the properties of the inner mitochondrial membrane? Chem. Phys. Lipids 2018, 214, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Shi, Y. In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells 2022, 11, 1906. [Google Scholar] [CrossRef] [PubMed]
- Avila-Rodriguez, M.; Garcia-Segura, L.M.; Hidalgo-lanussa, O.; Baez, E.; Gonzalez, J.; Barreto, G.E. Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol. Cell. Endocrinol. 2016, 433, 35–46. [Google Scholar] [CrossRef]
- De Joannon, A.C.; Mancini, F.; Landolfi, C.; Soldo, L.; Leta, A.; Ruggieri, A.; Mangano, G.; Polenzani, L.; Pinza, M.; Milanese, C. Adenosine triphosphate affects interleukin -1β release by T98G glioblastoma cells through a purinoceptor-independent mechanism. Neurosci. Lett. 2000, 285, 218–222. [Google Scholar] [CrossRef]
- Stein, G.H. T98G: An anchorage-independent human tumor cell line that exhibits stationary phase G1 arrest in vitro. J. Cell. Physiol. 1979, 99, 43–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toro-Urrego, N.; Luaces, J.P.; Kobiec, T.; Udovin, L.; Bordet, S.; Otero-Losada, M.; Capani, F. Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury. Int. J. Mol. Sci. 2024, 25, 12121. https://doi.org/10.3390/ijms252212121
Toro-Urrego N, Luaces JP, Kobiec T, Udovin L, Bordet S, Otero-Losada M, Capani F. Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences. 2024; 25(22):12121. https://doi.org/10.3390/ijms252212121
Chicago/Turabian StyleToro-Urrego, Nicolás, Juan P. Luaces, Tamara Kobiec, Lucas Udovin, Sofía Bordet, Matilde Otero-Losada, and Francisco Capani. 2024. "Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury" International Journal of Molecular Sciences 25, no. 22: 12121. https://doi.org/10.3390/ijms252212121
APA StyleToro-Urrego, N., Luaces, J. P., Kobiec, T., Udovin, L., Bordet, S., Otero-Losada, M., & Capani, F. (2024). Raloxifene Protects Oxygen-Glucose-Deprived Astrocyte Cells Used to Mimic Hypoxic-Ischemic Brain Injury. International Journal of Molecular Sciences, 25(22), 12121. https://doi.org/10.3390/ijms252212121