Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+)
<p>Structures of C<sub>60</sub>, X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, and NH<sub>4</sub><sup>+</sup>) and X@C<sub>60</sub> (X = H<sub>2</sub>O, NH<sub>3</sub>) at the B3LYP-D3(BJ)/6-31G(d, p) level of theory. C, H, O, and N atoms are indicated by orange, white, red, and blue spheres, respectively.</p> "> Figure 2
<p>Energy profile for H diffusion from the atom to the 5-6 bond and 6-6 bond. The atomic geometries of the initial (IS), transition (TS), and final (FS) states are also given. The blue boxes and red circles indicate the 5-6 bond and 6-6 bond of the intrinsic reaction coordinate (IRC), respectively. The diffusion barrier is denoted by an arrow.</p> "> Figure 3
<p>Electron density difference maps of X/X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, X = H<sub>2</sub>O, NH<sub>3</sub>) and C<sub>60</sub> cage at the B3LYP-D3(BJ)/6-31G(d, p) level of theory. The green and blue indicate the accumulation and the depletion of the electron density, respectively.</p> "> Figure 4
<p>Total density of states (TDOS) and the partial density of states (PDOS) for C<sub>60</sub>, X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>), and X@C<sub>60</sub> (X = H<sub>2</sub>O, NH<sub>3</sub>) at the B3LYP-D3(BJ)/6-31G(d, p) level of theory. Black represents the TDOS of X/X<sup>+</sup>@C<sub>60</sub>. Red and blue lines represent the contribution of two fragments of the C<sub>60</sub> cage and X/X<sup>+</sup> to the DOS, respectively. H and L represent the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO), respectively. The energy gap is marked in the figure (unit is kcal/mol).</p> "> Figure 5
<p>Frontier molecular orbitals (HOMO and LUMO) for C<sub>60</sub>, X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>), and X@C<sub>60</sub> (X = H<sub>2</sub>O, NH<sub>3</sub>) at the B3LYP-D3(BJ)/6-31G(d, p) level of theory. The molecular orbitals involved for the first time in confined species are also depicted. Molecular orbitals are denoted by blue and red.</p> "> Figure 6
<p>IR spectra for X = H<sub>2</sub>O, NH<sub>3</sub>, X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>, and X/X<sup>+</sup>@C<sub>60</sub> at the B3LYP-D3(BJ)/6-31G(d, p) level of theory.</p> "> Figure 7
<p>The electrostatic potential of C<sub>60</sub>, X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>), and X@C<sub>60</sub> (X = H<sub>2</sub>O, NH<sub>3</sub>) at the B3LYP-D3(BJ)/6-31G(d, p) level of theory. Blue and red colors represent negative potential and positive potential, respectively (unit is a.u.).</p> "> Figure 8
<p>Optimized water adsorption structures on C<sub>60</sub>, X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>), and X@C<sub>60</sub> (X = H<sub>2</sub>O, NH<sub>3</sub>). In these structures, red, white, cyan, and blue denote O, H, C, and N atoms, respectively.</p> "> Figure 9
<p>The solvation afree energy of C<sub>60</sub>, X<sup>+</sup>@C<sub>60</sub> (X<sup>+</sup> = H<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, NH<sub>4</sub><sup>+</sup>), and X@C<sub>60</sub> (X = H<sub>2</sub>O, NH<sub>3</sub>) (unit is kcal/mol).</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.M.J.; Maupin, C.M.; Chen, H.N.; Petersen, M.K.; Xu, J.C.; Wu, Y.J.; Voth, G.A. Proton solvation and transport in aqueous and biomolecular systems: Insights from computer simulations. J. Phys. Chem. B 2007, 111, 4300–4314. [Google Scholar] [CrossRef] [PubMed]
- Kreuer, K.D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 2004, 104, 4637–4678. [Google Scholar] [CrossRef] [PubMed]
- Stowell, M.H.B.; McPhillips, T.M.; Rees, D.C.; Soltis, S.M.; Abresch, E.; Feher, G. Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 1997, 276, 812–816. [Google Scholar] [CrossRef]
- Sham, Y.Y.; Muegge, I.; Warshel, A. Simulating proton translocations in proteins: Probing proton transfer pathways in the Rhodobacter sphaeroides reaction center. Proteins Struct. Funct. Bioinform. 1999, 36, 484–500. [Google Scholar] [CrossRef]
- Turro, N.J.; Chen, J.Y.C.; Sartori, E.; Ruzzi, M.; Marti, A.; Lawler, R.; Jockusch, S.; López-Gejo, J.; Komatsu, K.; Murata, Y. The spin chemistry and magnetic resonance of H2@C60. From the pauli principle to trapping a long lived nuclear excited spin state inside a buckyball. Acc. Chem. Res. 2010, 43, 335–345. [Google Scholar] [CrossRef]
- Ramachandran, C.N.; Sathyamurthy, N. Water clusters in a confined nonpolar environment. Chem. Phys. Lett. 2005, 410, 348–351. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Terentyev, A.O.; Sokolov, V.I. Activation energies and information entropies of helium penetration through fullerene walls. Insights into the formation of endofullerenes nX@C60/70 (n= 1 and 2) from the information entropy approach. RSC Adv. 2016, 6, 72230–72237. [Google Scholar] [CrossRef]
- Dolgonos, G.A.; Peslherbe, G.H. Encapsulation of diatomic molecules in fullerene C60: Implications for their main properties. Phys. Chem. Chem. Phys. 2014, 16, 26294–26305. [Google Scholar] [CrossRef]
- Equbal, A.; Srinivasan, S.; Ramachandran, C.N.; Sathyamurthy, N. Encapsulation of paramagnetic diatomic molecules B2, O2 and Ge2 inside C60. Chem. Phys. Lett. 2014, 610, 251–255. [Google Scholar] [CrossRef]
- Umeta, Y.; Suga, H.; Takeuchi, M.; Zheng, S.; Wakahara, T.; Wang, Y.C.; Naitoh, Y.; Lu, X.; Kumatani, A.; Tsukagoshi, K. Stable resistance switching in Lu3N@C80 nanowires promoted by the endohedral effect: Implications for eingle-fullerene motion resistance switching. ACS Appl. Nano Mater. 2021, 4, 7935–7942. [Google Scholar] [CrossRef]
- Kawashima, Y.; Ohkubo, K.; Fukuzumi, S. Enhanced photoinduced electron-transfer reduction of Li+@C60 in comparison with C60. J. Phys. Chem. A 2012, 116, 8942–8948. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, A.; Hedin, N. Local energy decomposition analysis and molecular properties of encapsulated methane in fullerene (CH4@C60). Phys. Chem. Chem. Phys. 2021, 23, 21554–21567. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Dai, X.; Zhou, H.; Yang, Z.; Zhou, R. Stabilization of open-shell single bonds within endohedral metallofullerene. Inorg. Chem. 2020, 59, 3606–3618. [Google Scholar] [CrossRef]
- Du, Y.; Meng, Y.; Xie, B.; Ni, Z.; Xia, S. Molecular structure, electronic properties and stability of carbon-coated M13@C60 (M= Cu, Ag, Pt) nanoclusters. Comput. Theor. Chem. 2021, 1205, 113434. [Google Scholar] [CrossRef]
- Mallick, S.; Mishra, B.K.; Kumar, P.; Sathyamurthy, N. Effect of confinement on ammonia inversion. Eue. Phys. J. D 2021, 75, 1–10. [Google Scholar] [CrossRef]
- Kurotobi, K.; Murata, Y. A single molecule of water encapsulated in fullerene C60. Science 2011, 333, 613–616. [Google Scholar] [CrossRef]
- Ramachandran, C.N.; Roy, D.; Sathyamurthy, N. Host–guest interaction in endohedral fullerenes. Chem. Phys. Lett. 2008, 46, 87–92. [Google Scholar] [CrossRef]
- Thilgen, C. A single water molecule trapped inside hydrophobic C60. Angew. Chem. Int. Ed. 2012, 51, 587–589. [Google Scholar] [CrossRef]
- Ensing, B.; Costanzo, F.; Silvestrelli, P.L. On the polarity of buckminsterfullerene with a water molecule inside. J. Phys. Chem. A 2012, 116, 12184–12188. [Google Scholar] [CrossRef]
- Sabirov, D.S. From endohedral complexes to endohedral fullerene covalent derivatives: A density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression. J. Phys. Chem. C 2013, 117, 1178–1182. [Google Scholar] [CrossRef]
- Farimani, A.B.; Wu, Y.; Aluru, N.R. Rotational motion of a single water molecule in a buckyball. Phys. Chem. Chem. Phys. 2013, 15, 17993–18000. [Google Scholar] [CrossRef]
- Aoyagi, S.; Hoshino, N.; Akutagawa, T.; Sado, Y.; Kitaura, R.; Shinohara, H.; Sugimoto, K.; Zhang, R.; Murata, Y. A cubic dipole lattice of water molecules trapped inside carbon cages. Chem. Commun. 2013, 50, 524–526. [Google Scholar] [CrossRef]
- Kaneko, S.; Hashikawa, Y.; Fujii, S.; Murata, Y.; Kiguchi, M. Single molecular junction study on H2O@C60: H2O is “electrostatically isolated”. Chem. Phys. Chem. 2017, 18, 1229–1233. [Google Scholar] [CrossRef]
- Rashed, E.; Dunn, J.L. Interactions between a water molecule and C60 in the endohedral fullerene H2O@C60. Phys. Chem. Chem. Phys. 2019, 21, 3347–3359. [Google Scholar] [CrossRef]
- Biskupek, J.; Skowron, S.T.; Stoppiello, C.T.; Rance, G.A.; Alom, S.; Fung, K.L.; Fung, Y.; Whitby, R.J.; Levitt, M.H.; Ramasse, Q.M.; et al. Bond dissociation and reactivity of HF and H2O in a nano test tube. ACS Nano 2020, 14, 11178–11189. [Google Scholar] [CrossRef]
- Fujii, S.; Cho, H.; Hashikawa, Y.; Nishino, T.; Murata, Y.; Kiguchi, M. Tuneable single-molecule electronic conductance of C60 by encapsulation. Phys. Chem. Chem. Phys. 2019, 21, 12606–12610. [Google Scholar] [CrossRef]
- Hashikawa, Y.; Murata, Y. H2O/Olefinic-π interaction inside a carbon nanocage. J. Am. Chem. Soc. 2019, 141, 12928–12938. [Google Scholar] [CrossRef]
- Jarvis, S.P.; Sang, H.; Junqueira, F.; Gordon, O.; Hodgkinson, J.E.; Saywell, A.; Rahe, P.; Mamone, S.; Taylor, S.; Sweetman, A.; et al. Chemical shielding of H2O and HF encapsulated inside a C60 cage. Commun. Chem. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Valdés, Á.; Carrillo-Bohórquez, O.; Prosmiti, R. Fully coupled quantum treatment of nanoconfined systems: A water molecule inside a fullerene C60. J. Chem. Theory Comput. 2018, 14, 6521–6531. [Google Scholar] [CrossRef]
- Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistre, M.; Meier, B.; Kouril, K.; Light, M.E.; Johnson, M.R.; Rols, S.; et al. The dipolar endofullerene HF@ C60. Nat. Chem. 2016, 8, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.; Izquierdo, M.; Alom, S.; Garcia-Borràs, M.; Filippone, S.; Osuna, S.; Sola, M.; Whitby, R.J.; Martín, N. Effect of incarcerated HF on the exohedral chemical reactivity of HF@C60. Chem. Commun. 2017, 53, 10993–10996. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Murata, M.; Murata, Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 2005, 307, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.B.; McKee, M.L. Endohedral hydrogen exchange reactions in C60 (nH2@C60, n=1−5): Comparison of recent methods in a high-pressure Cooker. J. Am. Chem. Soc. 2008, 130, 17610–17619. [Google Scholar] [CrossRef] [PubMed]
- Korona, T.; Hesselmann, A.; Dodziuk, H. Symmetry-adapted perturbation theory applied to endohedral fullerene complexes: A stability study of H2@C60 and 2H2@C60. J. Chem. Theory Comput. 2009, 5, 1585–1596. [Google Scholar] [CrossRef]
- Zeinalinezhad, A.; Sahnoun, R. Encapsulation of hydrogen molecules in C50 fullerene: An ab initio study of structural, energetic, and electronic properties of H2@C50 and 2H2@C50 complexes. ACS Omega 2020, 5, 12853–12864. [Google Scholar] [CrossRef]
- Kratschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–357. [Google Scholar] [CrossRef]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.O.; Jasty, M.; Harris, W.H. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties: Recipient of the 1999 HAP paul award. J. Arthroplast. 2001, 16, 149–160. [Google Scholar] [CrossRef]
- Murata, M.; Murata, Y.; Komatsu, K. Surgery of fullerenes. Chem. Commun. 2008, 46, 6083–6094. [Google Scholar] [CrossRef]
- Shameema, O.; Ramachandran, C.N.; Sathyamurthy, N. Blue shift in X−H stretching frequency of molecules due to confinement. J. Phys. Chem. A 2006, 110, 2–4. [Google Scholar] [CrossRef]
- Pizzagalli, L. First principles molecular dynamics calculations of the mechanical properties of endofullerenes containing noble gas atoms or small molecules. Phys. Chem. Chem. Phys. 2022, 24, 9449–9458. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, A.; Nomura, K.I.; Baradwaj, N.; Shimamur, K.; Ma, R.; Fukushima, S.; Shimojo, F.; Kalia, R.K.; Nakano, A.; Vashishta, P. Hydrogen bonding in liquid ammonia. J. Phys. Chem. Lett. 2022, 13, 7051–7057. [Google Scholar] [CrossRef] [PubMed]
- Brodskaya, E.; Lyubartsev, A.P.; Laaksonen, A. Investigation of water clusters containing OH− and H3O+ ions in atmospheric conditions. A molecular dynamics simulation study. J. Phys. Chem. B 2002, 106, 6479–6487. [Google Scholar] [CrossRef]
- Datka, J.; Góra-Marek, K. IR studies of the formation of ammonia dimers in zeolites TON. Catal. Today 2006, 114, 205–210. [Google Scholar] [CrossRef]
- Tuckerman, M.; Laasonen, K.; Sprik, M.; Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 1995, 103, 150–161. [Google Scholar] [CrossRef]
- Spanel, P.; Spesyvyi, A.; Smith, D. Electrostatic switching and selection of H3O+, NO+, and O2+• reagent ions for selected ion flow-drift tube mass spectrometric analyses of air and breath. Anal. Chem. 2019, 91, 5380–5388. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, J.; Dong, X.; Xi, Y.; Yan, L.; Wang, Z.; Wang, Y. An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Ma, F.; Li, Z.R.; Xu, H.L.; Li, Z.J.; Wu, D.; Li, Z.S.; Gu, F.L. Proton Transfer in the complex H3N…HCl catalyzed by encapsulation into a C60 Cage. Chem. Phys. Chem. 2009, 10, 1112–1116. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R. Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. Chem. Eur. J. 2012, 18, 15345–15360. [Google Scholar] [CrossRef]
- Wang, L.; Ye, J.T.; Wang, H.Q.; Xie, H.M.; Qiu, Y.Q. Third-order nonlinear optical properties of endohedral fullerene (H2)2@C70 and (H2O)2@C70 accompanied by the prospective of novel (HF)2@C70. J. Phys. Chem. C 2018, 122, 6835–6845. [Google Scholar] [CrossRef]
- Schwedhelm, R.; Kipp, L.; Dallmeyer, A.; Skibowski, M. Experimental band gap and core-hole electron interaction in epitaxial C60 films. Phys. Rev. B 1998, 58, 13176–13180. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Long, Z.; Chen, D. Structures, stabilities, and spectral properties of endohedral borospherenes M@B400/–(M=H2, HF, and H2O). ACS Omega 2019, 4, 5705–5713. [Google Scholar] [CrossRef] [PubMed]
- Cong, H.; Liu, A.; Hao, Y.; Feng, L.; Slanina, Z.; Uhlik, F. Ho2O@C84: Crystallographic evidence showing linear metallic oxide cluster encapsulated in IPR fullerene cage of D2d(51591)-C84. Inorg. Chem. 2019, 58, 10905–10911. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Lei, D.; Gan, L.H.; Zhang, Z.X.; Wang, C.R. Theoretical study on experimentally detected Sc2S@C84. Chem. Phys. Chem. 2014, 15, 2780–2784. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision and C. D.01; Gaussian: Wallingford, CT, USA, 2013. [Google Scholar]
- Te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; Van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
Bond Length | H2O | H2O@C60 |
r(O-H) | 0.965 | 0.964 |
r(O-H) | 0.965 | 0.964 |
NH3 | NH3@C60 | |
r(N-H) | 1.018 | 1.014 |
r(N-H) | 1.018 | 1.014 |
r(N-H) | 1.018 | 1.014 |
H+@C60 | ||
r(C-H) | 1.130 | |
H3O+ | H3O+@C60 | |
r(O-H) | 0.982 | 0.994 |
r(O-H) | 0.982 | 0.994 |
r(O-H) | 0.982 | 0.994 |
NH4+ | NH4+@C60 | |
r(N-H) | 1.027 | 1.027 |
r(N-H) | 1.027 | 1.027 |
r(N-H) | 1.027 | 1.027 |
r(N-H) | 1.027 | 1.027 |
∆Eint | ∆Eelstat | ∆EPauli | ∆Eorb | ∆Edisp | |
---|---|---|---|---|---|
H2O@C60 | −13.22 | −6.02 | 13.60 | −4.71 | −16.09 |
NH3@C60 | −14.18 | −10.60 | 24.64 | −5.95 | −22.27 |
H+@C60 | −174.08 | 82.43 | 0.00 | −253.88 | −2.63 |
H3O+@C60 | −26.50 | 32.43 | 19.52 | −58.23 | −20.22 |
NH4+@C60 | −22.97 | 33.45 | 17.07 | −47.03 | −26.46 |
ADCH | ADCH | ||||
---|---|---|---|---|---|
H2O | O | −0.714 | H2O@C60 | O | −0.538 |
H | 0.357 | H | 0.266 | ||
H | 0.357 | H | 0.266 | ||
NH3 | N | −0.968 | NH3@C60 | N | −0.680 |
H | 0.323 | H | 0.223 | ||
H | 0.323 | H | 0.223 | ||
H | 0.323 | H | 0.222 | ||
H+ | H | 1 | H+@C60 | H | 0.053 |
H3O+ | O | −0.480 | H3O+@C60 | O | −0.165 |
H | 0.493 | H | 0.268 | ||
H | 0.493 | H | 0.266 | ||
H | 0.493 | H | 0.265 | ||
NH4+ | N | −0.249 | NH4+@C60 | N | −0.134 |
H | 0.312 | H | 0.203 | ||
H | 0.312 | H | 0.204 | ||
H | 0.312 | H | 0.206 | ||
H | 0.312 | H | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wang, B. Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+). Int. J. Mol. Sci. 2024, 25, 12014. https://doi.org/10.3390/ijms252212014
Zhao L, Wang B. Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+). International Journal of Molecular Sciences. 2024; 25(22):12014. https://doi.org/10.3390/ijms252212014
Chicago/Turabian StyleZhao, Lei, and Bo Wang. 2024. "Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+)" International Journal of Molecular Sciences 25, no. 22: 12014. https://doi.org/10.3390/ijms252212014
APA StyleZhao, L., & Wang, B. (2024). Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+). International Journal of Molecular Sciences, 25(22), 12014. https://doi.org/10.3390/ijms252212014