Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis
Abstract
:1. Introduction
2. CFTR Modulator Therapy and the CF Microbiome
2.1. Common CF Pathogens and Their Response to CFTR Modulator Therapies
2.1.1. Pseudomonas aeruginosa (Pa)
2.1.2. Staphylococcus aureus (Sa)
2.1.3. Nontuberculous mycobacteria (NTM)
2.1.4. Burkholderia cepacia complex (Bc)
2.1.5. Aspergillus fumigatus (Af)
2.1.6. Other CF-Related Pathogens
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cutting, G.R. Cystic fibrosis genetics: From molecular understanding to clinical application. Nat. Rev. Genet. 2015, 16, 45–56. [Google Scholar] [CrossRef]
- Veit, G.; Avramescu, R.G.; Chiang, A.N.; Houck, S.A.; Cai, Z.; Peters, K.W.; Hong, J.S.; Pollard, H.B.; Guggino, W.B.; Balch, W.E.; et al. From CFTR biology toward combinatorial pharmacotherapy: Expanded classification of cystic fibrosis mutations. Mol. Biol. Cell 2016, 27, 424–433. [Google Scholar] [CrossRef]
- Castellani, C.; Assael, B.M. Cystic fibrosis: A clinical view. Cell Mol. Life Sci. 2017, 74, 129–140. [Google Scholar] [CrossRef]
- Zemanick, E.T.; Wagner, B.D.; Robertson, C.E.; Ahrens, R.C.; Chmiel, J.F.; Clancy, J.P.; Gibson, R.L.; Harris, W.T.; Kurland, G.; Laguna, T.A.; et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur. Respir. J. 2017, 50, 1700832. [Google Scholar] [CrossRef]
- Warris, A.; Bercusson, A.; Armstrong-James, D. Aspergillus colonization and antifungal immunity in cystic fibrosis patients. Med. Mycol. 2019, 57, S118–S126. [Google Scholar] [CrossRef]
- Jean-Pierre, F.; Vyas, A.; Hampton, T.H.; Henson, M.A.; O’Toole, G.A. One versus Many: Polymicrobial Communities and the Cystic Fibrosis Airway. mBio 2021, 12, e00006-21. [Google Scholar] [CrossRef]
- del Campo, R.; Morosini, M.I.; de la Pedrosa, E.G.; Fenoll, A.; Munoz-Almagro, C.; Maiz, L.; Baquero, F.; Canton, R.; the Spanish Pneumococcal Infection Study Network. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J. Clin. Microbiol. 2005, 43, 2207–2214. [Google Scholar] [CrossRef]
- Hoiby, N. Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis. Acta Pathol. Microbiol. Scand. B Microbiol. Immunol. 1974, 82, 541–550. [Google Scholar] [CrossRef]
- Hogardt, M.; Heesemann, J. Microevolution of Pseudomonas aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr. Top. Microbiol. Immunol. 2013, 358, 91–118. [Google Scholar]
- Gentzsch, M.; Mall, M.A. Ion Channel Modulators in Cystic Fibrosis. Chest 2018, 154, 383–393. [Google Scholar] [CrossRef]
- Hoy, S.M. Elexacaftor/Ivacaftor/Tezacaftor: First Approval. Drugs 2019, 79, 2001–2007. [Google Scholar] [CrossRef]
- Cheng, S.H.; Fang, S.L.; Zabner, J.; Marshall, J.; Piraino, S.; Schiavi, S.C.; Jefferson, D.M.; Welsh, M.J.; Smith, A.E. Functional activation of the cystic fibrosis trafficking mutant delta F508-CFTR by overexpression. Am. J. Physiol. 1995, 268, L615–L624. [Google Scholar] [CrossRef]
- Beck, M.R.; Hornick, D.B.; Pena, T.A.; Singh, S.B.; Wright, B.A. Impact of elexacaftor/tezacaftor/ivacaftor on bacterial cultures from people with cystic fibrosis. Pediatr. Pulmonol. 2023, 58, 1569–1573. [Google Scholar] [CrossRef]
- Hilliam, Y.; Armbruster, C.R.; Rapsinski, G.J.; Marshall, C.W.; Moore, J.; Koirala, J.; Krainz, L.; Gaston, J.R.; Cooper, V.S.; Lee, S.E.; et al. Cystic fibrosis pathogens persist in the upper respiratory tract following initiation of elexacaftor/tezacaftor/ivacaftor therapy. Microbiol. Spectr. 2024, 12, e0078724. [Google Scholar] [CrossRef]
- Pallenberg, S.T.; Pust, M.M.; Rosenboom, I.; Hansen, G.; Wiehlmann, L.; Dittrich, A.M.; Tummler, B. Impact of Elexacaftor/Tezacaftor/Ivacaftor Therapy on the Cystic Fibrosis Airway Microbial Metagenome. Microbiol. Spectr. 2022, 10, e0145422. [Google Scholar] [CrossRef]
- Nichols, D.P.; Morgan, S.J.; Skalland, M.; Vo, A.T.; Van Dalfsen, J.M.; Singh, S.B.; Ni, W.; Hoffman, L.R.; McGeer, K.; Heltshe, S.L.; et al. Pharmacologic improvement of CFTR function rapidly decreases sputum pathogen density, but lung infections generally persist. J. Clin. Investig. 2023, 133, e167957. [Google Scholar] [CrossRef]
- Taylor-Cousar, J.L.; Robinson, P.D.; Shteinberg, M.; Downey, D.G. CFTR modulator therapy: Transforming the landscape of clinical care in cystic fibrosis. Lancet 2023, 402, 1171–1184. [Google Scholar] [CrossRef]
- Natalini, J.G.; Singh, S.; Segal, L.N. The dynamic lung microbiome in health and disease. Nat. Rev. Microbiol. 2023, 21, 222–235. [Google Scholar] [CrossRef]
- Thornton, C.S.; Acosta, N.; Surette, M.G.; Parkins, M.D. Exploring the Cystic Fibrosis Lung Microbiome: Making the Most of a Sticky Situation. J. Pediatr. Infect. Dis. Soc. 2022, 11, S13–S22. [Google Scholar] [CrossRef]
- Chen, Q.; Shen, Y.; Zheng, J. A review of cystic fibrosis: Basic and clinical aspects. Anim. Model. Exp. Med. 2021, 4, 220–232. [Google Scholar] [CrossRef]
- Dennis, E.A.; Coats, M.T.; Griffin, S.E.; Hale, J.Y.; Novak, L.; Briles, D.E.; Crain, M.J. The Effects of CFTR and Mucoid Phenotype on Susceptibility and Innate Immune Responses in a Mouse Model of Pneumococcal Lung Disease. PLoS ONE 2015, 10, e0140335. [Google Scholar] [CrossRef]
- Lindgren, N.R.; Novak, L.; Hunt, B.C.; McDaniel, M.S.; Swords, W.E. Nontypeable Haemophilus influenzae Infection Impedes Pseudomonas aeruginosa Colonization and Persistence in Mouse Respiratory Tract. Infect. Immun. 2022, 90, e0056821. [Google Scholar] [CrossRef]
- McDaniel, M.S.; Lindgren, N.R.; Billiot, C.E.; Valladares, K.N.; Sumpter, N.A.; Swords, W.E. Pseudomonas aeruginosa Promotes Persistence of Stenotrophomonas maltophilia via Increased Adherence to Depolarized Respiratory Epithelium. Microbiol. Spectr. 2023, 11, e0384622. [Google Scholar] [CrossRef]
- Goerke, C.; Matias y Papenberg, S.; Dasbach, S.; Dietz, K.; Ziebach, R.; Kahl, B.C.; Wolz, C. Increased frequency of genomic alterations in Staphylococcus aureus during chronic infection is in part due to phage mobilization. J. Infect. Dis. 2004, 189, 724–734. [Google Scholar] [CrossRef]
- Taccetti, G.; Francalanci, M.; Pizzamiglio, G.; Messore, B.; Carnovale, V.; Cimino, G.; Cipolli, M. Cystic Fibrosis: Recent Insights into Inhaled Antibiotic Treatment and Future Perspectives. Antibiotics 2021, 10, 338. [Google Scholar] [CrossRef]
- Hisert, K.B.; Heltshe, S.L.; Pope, C.; Jorth, P.; Wu, X.; Edwards, R.M.; Radey, M.; Accurso, F.J.; Wolter, D.J.; Cooke, G.; et al. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections. Am. J. Respir. Crit. Care Med. 2017, 195, 1617–1628. [Google Scholar] [CrossRef]
- Jurado-Martin, I.; Sainz-Mejias, M.; McClean, S. Pseudomonas aeruginosa: An Audacious Pathogen with an Adaptable Arsenal of Virulence Factors. Int. J. Mol. Sci. 2021, 22, 3128. [Google Scholar] [CrossRef]
- Lund-Palau, H.; Turnbull, A.R.; Bush, A.; Bardin, E.; Cameron, L.; Soren, O.; Wierre-Gore, N.; Alton, E.W.; Bundy, J.G.; Connett, G.; et al. Pseudomonas aeruginosa infection in cystic fibrosis: Pathophysiological mechanisms and therapeutic approaches. Expert Rev. Respir. Med. 2016, 10, 685–697. [Google Scholar] [CrossRef]
- Martin, C.; Guzior, D.V.; Gonzalez, C.T.; Okros, M.; Mielke, J.; Padillo, L.; Querido, G.; Gil, M.; Thomas, R.; McClelland, M.; et al. Longitudinal microbial and molecular dynamics in the cystic fibrosis lung after Elexacaftor-Tezacaftor-Ivacaftor therapy. Respir. Res. 2023, 24, 317. [Google Scholar] [CrossRef]
- Malhotra, S.; Hayes, D.; Wozniak, D.J., Jr. Cystic Fibrosis and Pseudomonas aeruginosa: The Host-Microbe Interface. Clin. Microbiol. Rev. 2019, 32, e00138-18. [Google Scholar] [CrossRef]
- Wang, W.; Fu, L.; Liu, Z.; Wen, H.; Rab, A.; Hong, J.S.; Kirk, K.L.; Rowe, S.M. G551D mutation impairs PKA-dependent activation of CFTR channel that can be restored by novel GOF mutations. Am. J. Physiol. Lung Cell Mol. Physiol. 2020, 319, L770–L785. [Google Scholar] [CrossRef] [PubMed]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M.; GOAL (the G551D Observation-AL) Investigators of the Cystic Fibrosis Foundation Therapeutics Development Network. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Armbruster, C.R.; Hilliam, Y.K.; Zemke, A.C.; Atteih, S.; Marshall, C.W.; Moore, J.; Koirala, J.; Krainz, L.; Gaston, J.R.; Lee, S.E.; et al. Persistence and evolution of Pseudomonas aeruginosa following initiation of highly effective modulator therapy in cystic fibrosis. mBio 2024, 15, e0051924. [Google Scholar] [CrossRef]
- Burgel, P.R.; Ballmann, M.; Drevinek, P.; Heijerman, H.; Jung, A.; Mainz, J.G.; Peckham, D.; Plant, B.J.; Schwarz, C.; Taccetti, G.; et al. Considerations for the use of inhaled antibiotics for Pseudomonas aeruginosa in people with cystic fibrosis receiving CFTR modulator therapy. BMJ Open Respir. Res. 2024, 11, e002049. [Google Scholar] [CrossRef] [PubMed]
- Cigana, C.; Giannella, R.; Colavolpe, A.; Alcala-Franco, B.; Mancini, G.; Colombi, F.; Bigogno, C.; Bastrup, U.; Bertoni, G.; Bragonzi, A. Mutual Effects of Single and Combined CFTR Modulators and Bacterial Infection in Cystic Fibrosis. Microbiol. Spectr. 2023, 11, e0408322. [Google Scholar] [CrossRef] [PubMed]
- Dittrich, A.M.; Sieber, S.; Naehrlich, L.; Burkhart, M.; Hafkemeyer, S.; Tummler, B.; Registry Working Group of the German CF Registry. Use of elexacaftor/tezacaftor/ivacaftor leads to changes in detection frequencies of Staphylococcus aureus and Pseudomonas aeruginosa dependent on age and lung function in people with cystic fibrosis. Int. J. Infect. Dis. 2024, 139, 124–131. [Google Scholar] [CrossRef]
- Morgan, S.J.; Coulter, E.; Betts, H.L.; Solomon, G.M.; Clancy, J.P.; Rowe, S.M.; Nichols, D.P.; Singh, P.K. Elexacaftor/tezacaftor/ivacaftor’s effects on cystic fibrosis infections are maintained but not increased after 3.5-years of treatment. J. Clin. Investig. 2024, 134, e184171. [Google Scholar] [CrossRef]
- Elborn, J.S.; Blasi, F.; Burgel, P.R.; Peckham, D. Role of inhaled antibiotics in the era of highly effective CFTR modulators. Eur. Respir. Rev. 2023, 32, 220154. [Google Scholar] [CrossRef]
- Durfey, S.L.; Pipavath, S.; Li, A.; Vo, A.T.; Ratjen, A.; Carter, S.; Morgan, S.J.; Radey, M.C.; Grogan, B.; Salipante, S.J.; et al. Combining Ivacaftor and Intensive Antibiotics Achieves Limited Clearance of Cystic Fibrosis Infections. mBio 2021, 12, e0314821. [Google Scholar] [CrossRef]
- Rumpf, C.; Lange, J.; Schwartbeck, B.; Kahl, B.C. Staphylococcus aureus and Cystic Fibrosis-A Close Relationship. What Can. We Learn. from Sequencing Studies? Pathogens 2021, 10, 1177. [Google Scholar] [CrossRef]
- Skolnik, K.; Kirkpatrick, G.; Quon, B.S. Nontuberculous Mycobacteria in Cystic Fibrosis. Curr. Treat. Options Infect. Dis. 2016, 8, 259–274. [Google Scholar] [CrossRef] [PubMed]
- Wiesel, V.; Aviram, M.; Mei-Zahav, M.; Dotan, M.; Prais, D.; Cohen-Cymberknoh, M.; Gur, M.; Bar-Yoseph, R.; Livnat, G.; Goldbart, A.; et al. Eradication of Nontuberculous Mycobacteria in People with Cystic Fibrosis Treated with Elexacaftor/Tezacaftor/Ivacaftor: A Multicenter Cohort Study. J. Cyst. Fibros. 2024, 23, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.; Almond, L.M.; Chung, P.S.; Rao, A.P.; Beringer, P.M. Physiologically Based Pharmacokinetic Modeling To Guide Management of Drug Interactions between Elexacaftor-Tezacaftor-Ivacaftor and Antibiotics for the Treatment of Nontuberculous Mycobacteria. Antimicrob. Agents Chemother. 2022, 66, e0110422. [Google Scholar] [CrossRef] [PubMed]
- Gur, M.; Bar-Yoseph, R.; Toukan, Y.; Hanna, M.; Masarweh, K.; Bentur, L. Twelve years of progressive Mycobacterium abscessus lung disease in CF-Response to Trikafta. Pediatr. Pulmonol. 2021, 56, 4048–4050. [Google Scholar] [CrossRef] [PubMed]
- Scoffone, V.C.; Chiarelli, L.R.; Trespidi, G.; Mentasti, M.; Riccardi, G.; Buroni, S. Burkholderia cenocepacia Infections in Cystic Fibrosis Patients: Drug Resistance and Therapeutic Approaches. Front. Microbiol. 2017, 8, 1592. [Google Scholar] [CrossRef]
- Shrestha, C.L.; Zhang, S.; Wisniewski, B.; Hafner, S.; Elie, J.; Meijer, L.; Kopp, B.T. (R)-Roscovitine and CFTR modulators enhance killing of multi-drug resistant Burkholderia cenocepacia by cystic fibrosis macrophages. Sci. Rep. 2020, 10, 21700. [Google Scholar] [CrossRef]
- Burgel, P.R.; Paugam, A.; Hubert, D.; Martin, C. Aspergillus fumigatus in the cystic fibrosis lung: Pros and cons of azole therapy. Infect. Drug Resist. 2016, 9, 229–238. [Google Scholar] [CrossRef]
- Lv, Q.; Elders, B.; Warris, A.; Caudri, D.; Ciet, P.; Tiddens, H. Aspergillus-related lung disease in people with cystic fibrosis: Can. imaging help us to diagnose disease? Eur. Respir. Rev. 2021, 30, 210103. [Google Scholar] [CrossRef]
- Bercusson, A.; Jarvis, G.; Shah, A. CF Fungal Disease in the Age of CFTR Modulators. Mycopathologia 2021, 186, 655–664. [Google Scholar] [CrossRef]
- Currie, A.J.; Main, E.T.; Wilson, H.M.; Armstrong-James, D.; Warris, A. CFTR Modulators Dampen Aspergillus-Induced Reactive Oxygen Species Production by Cystic Fibrosis Phagocytes. Front. Cell Infect. Microbiol. 2020, 10, 372. [Google Scholar] [CrossRef]
- Jones, J.T.; Morelli, K.A.; Vesely, E.M.; Puerner, C.T.S.; Pavuluri, C.K.; Ross, B.S.; van Rhijn, N.; Bromley, M.J.; Cramer, R.A. The cystic fibrosis treatment Trikafta affects the growth, viability, and cell wall of Aspergillus fumigatus biofilms. mBio 2023, 14, e0151623. [Google Scholar] [CrossRef] [PubMed]
- Martina, M.G.; Sannio, F.; Crespan, E.; Pavone, M.; Simoncini, A.; Barbieri, F.; Perini, C.; Pesce, E.; Maga, G.; Pedemonte, N.; et al. Towards Innovative Antibacterial Correctors for Cystic Fibrosis Targeting the Lung Microbiome with a Multifunctional Effect. ChemMedChem 2022, 17, e202200277. [Google Scholar] [CrossRef] [PubMed]
Pathogen Species | Pathogen/Host Response after HEMT (Reference) |
---|---|
Pseudomonas aeruginosa | Decrease/Downregulation:Increase/Upregulation:
|
Staphylococcus aureus | Decrease/Downregulation:
|
Aspergillus fumigatus | Decrease/Downregulation:Increase/Upregulation: |
Nontuberculous mycobacteria | Decrease/Downregulation:
|
Burkholderia cepacia | Decrease/Downregulation:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valladares, K.N.; Jones, L.I.; Barnes, J.W.; Krick, S. Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis. Int. J. Mol. Sci. 2024, 25, 11865. https://doi.org/10.3390/ijms252211865
Valladares KN, Jones LI, Barnes JW, Krick S. Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis. International Journal of Molecular Sciences. 2024; 25(22):11865. https://doi.org/10.3390/ijms252211865
Chicago/Turabian StyleValladares, Kristina N., Luke I. Jones, Jarrod W. Barnes, and Stefanie Krick. 2024. "Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis" International Journal of Molecular Sciences 25, no. 22: 11865. https://doi.org/10.3390/ijms252211865
APA StyleValladares, K. N., Jones, L. I., Barnes, J. W., & Krick, S. (2024). Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis. International Journal of Molecular Sciences, 25(22), 11865. https://doi.org/10.3390/ijms252211865