Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing–Remitting and Progressive Multiple Sclerosis
<p>Molecular parameters in patients with RRMS and PMS: (<b>a</b>) Malondialdehyde (MDA); (<b>b</b>) 4-Hydroxynonenal (4-HNE); (<b>c</b>) Hexanoyl-lys adduct (HEL); (<b>d</b>) Glutathione peroxidase 4 (GPX4); (<b>e</b>) Total glutathione, GSH + GSSG; (<b>f</b>) Reduced glutathione (GSH); (<b>g</b>) Oxidized glutathione (GSSG); (<b>h</b>) Iron; (<b>i</b>) Transferrin; (<b>j</b>) Ferritin. RRMS—relapsing–remitting multiple sclerosis; PMS—progressive multiple sclerosis; values of parameters are presented with median and range (minimum–maximum); <span class="html-italic">p</span>-values (Mann–Whitney U test) < 0.05 are considered statistically significant: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> "> Figure 1 Cont.
<p>Molecular parameters in patients with RRMS and PMS: (<b>a</b>) Malondialdehyde (MDA); (<b>b</b>) 4-Hydroxynonenal (4-HNE); (<b>c</b>) Hexanoyl-lys adduct (HEL); (<b>d</b>) Glutathione peroxidase 4 (GPX4); (<b>e</b>) Total glutathione, GSH + GSSG; (<b>f</b>) Reduced glutathione (GSH); (<b>g</b>) Oxidized glutathione (GSSG); (<b>h</b>) Iron; (<b>i</b>) Transferrin; (<b>j</b>) Ferritin. RRMS—relapsing–remitting multiple sclerosis; PMS—progressive multiple sclerosis; values of parameters are presented with median and range (minimum–maximum); <span class="html-italic">p</span>-values (Mann–Whitney U test) < 0.05 are considered statistically significant: * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Anthropometric, Clinical, and Molecular Parameters in MS Patients with Regard to Disease Course
2.2. Relationship of Anthropometric, Clinical, and Molecular Parameters in RRMS and PMS Patients
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Quantification of MDA, 4-HNE, GPX4 and Glutathione in Plasma
4.3. Quantification of HEL, Iron, Transferrin, and Ferritin in Serum
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- David, S.; Ryan, F.; Jhelum, P.; Kroner, A. Ferroptosis in Neurological Disease. Neurosci. 2022, 29, 591–615. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Li, J.; Kang, R.; Klionsky, D.J.; Tang, D. Ferroptosis: Machinery and regulation. Autophagy 2020, 17, 2054–2081. [Google Scholar] [CrossRef] [PubMed]
- Luoqian, J.; Yang, W.; Ding, X.; Tuo, Q.-Z.; Xiang, Z.; Zheng, Z.; Guo, Y.-J.; Li, L.; Guan, P.; Ayton, S.; et al. Ferroptosis promotes T-cell activation-induced neurodegeneration in multiple sclerosis. Cell. Mol. Immunol. 2022, 19, 913–924. [Google Scholar] [CrossRef]
- Rayatpour, A.; Foolad, F.; Heibatollahi, M.; Khajeh, K.; Javan, M. Ferroptosis inhibition by deferiprone, attenuates myelin damage and promotes neuroprotection in demyelinated optic nerve. Sci. Rep. 2022, 12, 19630. [Google Scholar] [CrossRef]
- Khan, R.S.; Baumann, B.; Dine, K.; Song, Y.; Dunaief, J.L.; Kim, S.F.; Shindler, K.S. Dexras1 Deletion and Iron Chelation Promote Neuroprotection in Experimental Optic Neuritis. Sci. Rep. 2019, 9, 11664. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; He, C.; Yan, F.; Li, J.-R.; Xu, H.-Z.; Zhuang, J.-F.; Zhou, H.; Peng, Y.-C.; Fu, X.-J.; et al. Selective Ferroptosis Inhibitor Liproxstatin-1 Attenuates Neurological Deficits and Neuroinflammation After Subarachnoid Hemorrhage. Neurosci. Bull. 2021, 37, 535–549. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, X.; Wang, X.; Shi, X.; Ma, L.; Zhang, Y.; Zhou, T.; Zhao, C.; Zhang, X.; Fan, B.; et al. Edaravone Modulates Neuronal GPX4/ACSL4/5-LOX to Promote Recovery After Spinal Cord Injury. Front. Cell Dev. Biol. 2022, 10, 849854. [Google Scholar] [CrossRef]
- Bazinet, R.P.; Layé, S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat. Rev. Neurosci. 2014, 15, 771–785. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 360438. [Google Scholar] [CrossRef]
- Zhang, S.-Y.; Gui, L.-N.; Liu, Y.-Y.; Shi, S.; Cheng, Y. Oxidative Stress Marker Aberrations in Multiple Sclerosis: A Meta-Analysis Study. Front. Neurosci. 2020, 14, 823. [Google Scholar] [CrossRef] [PubMed]
- Ghonimi, N.A.; Elsharkawi, K.A.; Khyal, D.S.; Abdelghani, A.A. Serum malondialdehyde as a lipid peroxidation marker in multiple sclerosis patients and its relation to disease characteristics. Mult. Scler. Relat. Disord. 2021, 51, 102941. [Google Scholar] [CrossRef] [PubMed]
- Obradovic, D.; Andjelic, T.; Ninkovic, M.; Dejanovic, B.; Kotur-Stevuljevic, J. Superoxide dismutase (SOD), advanced oxidation protein products (AOPP), and disease-modifying treatment are related to better relapse recovery after corticosteroid treatment in multiple sclerosis. Neurol. Sci. 2020, 42, 3241–3247. [Google Scholar] [CrossRef] [PubMed]
- Burgetova, A.; Dusek, P.; Uher, T.; Vaneckova, M.; Vejrazka, M.; Burgetova, R.; Horakova, D.; Srpova, B.; Krasensky, J.; Lambert, L. Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics 2022, 12, 1365. [Google Scholar] [CrossRef]
- Islam, S.T.; Won, J.; Kim, J.; Qiao, F.; Singh, A.K.; Khan, M.; Singh, I. Detoxification of Reactive Aldehydes by Alda-1 Treatment Ameliorates Experimental Autoimmune Encephalomyelitis in Mice. Neuroscience 2021, 458, 31–42. [Google Scholar] [CrossRef]
- Peres, D.S.; Theisen, M.C.; Fialho, M.F.P.; Dalenogare, D.P.; Rodrigues, P.; Kudsi, S.Q.; Bernardes, L.d.B.; da Silva, N.A.R.; Lückemeyer, D.D.; Sampaio, T.B.; et al. TRPA1 involvement in depression- and anxiety-like behaviors in a progressive multiple sclerosis model in mice. Brain Res. Bull. 2021, 175, 1–15. [Google Scholar] [CrossRef]
- Kato, Y.; Yoshida, A.; Naito, M.; Kawai, Y.; Tsuji, K.; Kitamura, M.; Kitamoto, N.; Osawa, T. Identification and quantification of Nɛ-(Hexanoyl)lysine in human urine by liquid chromatography/tandem mass spectrometry. Free. Radic. Biol. Med. 2004, 37, 1864–1874. [Google Scholar] [CrossRef]
- Wakamatsu, T.H.; Dogru, M.; Ayako, I.; Takano, Y.; Matsumoto, Y.; Ibrahim, O.M.; Okada, N.; Satake, Y.; Fukagawa, K.; Shimazaki, J.; et al. Evaluation of lipid oxidative stress status and inflammation in atopic ocular surface disease. Mol. Vis. 2010, 16, 2465–2475. [Google Scholar]
- Wakamatsu, T.H.; Dogru, M.; Matsumoto, Y.; Kojima, T.; Kaido, M.; Ibrahim, O.M.A.; Sato, E.A.; Igarashi, A.; Ichihashi, Y.; Satake, Y.; et al. Evaluation of Lipid Oxidative Stress Status in Sjögren Syndrome Patients. Investig. Ophthalmol. Vis. Sci. 2013, 54, 201–210. [Google Scholar] [CrossRef]
- Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q.; Wang, J. Ferroptosis and Its Role in Diverse Brain Diseases. Mol. Neurobiol. 2018, 56, 4880–4893. [Google Scholar] [CrossRef]
- Xu, X.; Lin, D.; Tu, S.; Gao, S.; Shao, A.; Sheng, J. Is Ferroptosis a Future Direction in Exploring Cryptococcal Meningitis? Front. Immunol. 2021, 12, 598601. [Google Scholar] [CrossRef] [PubMed]
- Medina-Fernandez, F.J.; Escribano, B.M.; Luque, E.; Caballero-Villarraso, J.; Gomez-Chaparro, J.L.; Feijoo, M.; Garcia-Maceira, F.I.; Pascual-Leone, A.; Drucker-Colin, R.; Tunez, I.; et al. Comparative of transcranial magnetic stimulation and other treatments in experimental autoimmune encephalomyelitis. Brain Res. Bull. 2018, 137, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Zong, W.; Xin, C.; Ren, F.; Li, N.; Li, H.; Li, X.; Wu, L.; Dai, Z.; Chen, W.; et al. Unlocking the link: How hippocampal glutathione–glutamate coupling predicts cognitive impairment in multiple sclerosis patients. Cereb. Cortex 2023, 34, bhad400. [Google Scholar] [CrossRef] [PubMed]
- Arm, J.; Al-Iedani, O.; Ribbons, K.; Lea, R.; Lechner-Scott, J.; Ramadan, S. Biochemical Correlations with Fatigue in Multiple Sclerosis Detected by MR 2D Localized Correlated Spectroscopy. J. Neuroimaging 2021, 31, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Castelnau, P.A.; Garrett, R.S.; Palinski, W.; Witztum, J.L.; Campbell, I.L.; Powell, H.C. Abnormal Iron Deposition Associated With Lipid Peroxidation in Transgenic Mice Expressing Interleukin-6 in the Brain. J. Neuropathol. Exp. Neurol. 1998, 57, 268–282. [Google Scholar] [CrossRef]
- Haider, L.; Simeonidou, C.; Steinberger, G.; Hametner, S.; Grigoriadis, N.; Deretzi, G.; Kovacs, G.G.; Kutzelnigg, A.; Lassmann, H.; Frischer, J.M. Multiple sclerosis deep grey matter: The relation between demyelination, neurodegeneration, inflammation and iron. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1386–1395. [Google Scholar] [CrossRef]
- Jhelum, P.; Santos-Nogueira, E.; Teo, W.; Haumont, A.; Lenoël, I.; Stys, P.K.; David, S. Ferroptosis Mediates Cuprizone-Induced Loss of Oligodendrocytes and Demyelination. J. Neurosci. 2020, 40, 9327–9341. [Google Scholar] [CrossRef]
- Li, X.; Chu, Y.; Ma, R.; Dou, M.; Li, S.; Song, Y.; Lv, Y.; Zhu, L. Ferroptosis as a mechanism of oligodendrocyte loss and demyelination in experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2022, 373, 577995. [Google Scholar] [CrossRef]
- Dal-Bianco, A.; Schranzer, R.; Grabner, G.; Lanzinger, M.; Kolbrink, S.; Pusswald, G.; Altmann, P.; Ponleitner, M.; Weber, M.; Kornek, B.; et al. Iron Rims in Patients With Multiple Sclerosis as Neurodegenerative Marker? A 7-Tesla Magnetic Resonance Study. Front. Neurol. 2021, 12, 632749. [Google Scholar] [CrossRef]
- Wittayer, M.; E Weber, C.; Kittel, M.; Platten, M.; Schirmer, L.; Tumani, H.; Gass, A.; Eisele, P. Cerebrospinal fluid-related tissue damage in multiple sclerosis patients with iron rim lesions. Mult. Scler. J. 2023, 29, 549–558. [Google Scholar] [CrossRef]
- Bergsland, N.; Agostini, S.; Laganà, M.M.; Mancuso, R.; Mendozzi, L.; Tavazzi, E.; Cecconi, P.; Clerici, M.; Baglio, F. Serum iron concentration is associated with subcortical deep gray matter iron levels in multiple sclerosis patients. NeuroReport 2017, 28, 645–648. [Google Scholar] [CrossRef] [PubMed]
- David, S.; Jhelum, P.; Ryan, F.; Jeong, S.Y.; Kroner, A. Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxidants Redox Signal. 2022, 37, 150–170. [Google Scholar] [CrossRef] [PubMed]
- Gomme, P.T.; McCann, K.B.; Bertolini, J. Transferrin: Structure, function and potential therapeutic actions. Drug Discov. Today 2005, 10, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Arosio, P.; Levi, S. Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochim. Biophys. Acta (BBA)—Gen. Subj. 2010, 1800, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Jhelum, P.; Zandee, S.; Ryan, F.; Zarruk, J.G.; Michalke, B.; Venkataramani, V.; Curran, L.; Klement, W.; Prat, A.; David, S. Ferroptosis induces detrimental effects in chronic EAE and its implications for progressive MS. Acta Neuropathol. Commun. 2023, 11, 121. [Google Scholar] [CrossRef]
- Khalil, M.; Riedlbauer, B.; Langkammer, C.; Enzinger, C.; Ropele, S.; Stojakovic, T.; Scharnagl, H.; Culea, V.; Petzold, A.; Teunissen, C.; et al. Cerebrospinal fluid transferrin levels are reduced in patients with early multiple sclerosis. Mult. Scler. J. 2014, 20, 1569–1577. [Google Scholar] [CrossRef]
- Zeman, D.; Adam, P.; Kalistová, H.; Sobek, O.; Kelbich, P.; Andl, J.; Andl, M. Transferrin in patients with multiple sclerosis: A comparison among various subgroups of multiple sclerosis patients. Acta Neurol. Scand. 2000, 101, 89–94. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Kallaur, A.P.; Reiche, E.M.V.; Kaimen-Maciel, D.R.; Panis, C.; Lozovoy, M.A.B.; Morimoto, H.K.; Maes, M.; Dichi, I.; Simão, A.N.C. Albumin and Protein Oxidation are Predictors that Differentiate Relapsing-Remitting from Progressive Clinical Forms of Multiple Sclerosis. Mol. Neurobiol. 2016, 54, 2961–2968. [Google Scholar] [CrossRef]
- Doğan, H.O.; Yildiz, K. Serum NADPH oxidase concentrations and the associations with iron metabolism in relapsing remitting multiple sclerosis. J. Trace Elements Med. Biol. 2019, 55, 39–43. [Google Scholar] [CrossRef]
- Dwyer, M.G.; Zivadinov, R.; Markovic-Plese, S.; Bergsland, N.; Heininen-Brown, M.; Carl, E.; Kennedy, C.; Weinstock-Guttman, B.; Hayward, B.; Dangond, F. Associations between changes in ferritin levels and susceptibility-weighted imaging filtered phase in patients with relapsing–remitting multiple sclerosis over 24 weeks of therapy with subcutaneous interferon beta-1a three times weekly. J. Neuroimmunol. 2015, 281, 44–50. [Google Scholar] [CrossRef]
- Ferreira, K.P.Z.; Oliveira, S.R.; Kallaur, A.P.; Kaimen-Maciel, D.R.; Lozovoy, M.A.B.; de Almeida, E.R.D.; Morimoto, H.K.; Mezzaroba, L.; Dichi, I.; Reiche, E.M.V.; et al. Disease progression and oxidative stress are associated with higher serum ferritin levels in patients with multiple sclerosis. J. Neurol. Sci. 2017, 373, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Sena, A.; Pedrosa, R.; Ferret-Sena, V.; Cascais, M.; Roque, R.; Araújo, C.; Couderc, R. Interferon β therapy increases serum ferritin levels in patients with relapsing-remitting multiple sclerosis. Mult. Scler. J. 2008, 14, 857–859. [Google Scholar] [CrossRef] [PubMed]
- Sfagos, C.; Makis, A.C.; Chaidos, A.; Hatzimichael, E.C.; Dalamaga, A.; Kosma, K.; Bourantas, K.L. Serum ferritin, transferrin and soluble transferrin receptor levels in multiple sclerosis patients. Mult. Scler. J. 2005, 11, 272–275. [Google Scholar] [CrossRef] [PubMed]
- Dutta, R.; Trapp, B.D. Relapsing and progressive forms of multiple sclerosis: Insights from pathology. Curr. Opin. Neurol. 2014, 27, 271–278. [Google Scholar] [CrossRef]
- Wang, C.; Zhu, Y.; Zhu, X.; Chen, R.; Zhang, X.; Lian, N. USP7 regulates HMOX-1 via deubiquitination to suppress ferroptosis and ameliorate spinal cord injury in rats. Neurochem. Int. 2023, 168, 105554. [Google Scholar] [CrossRef]
- Chu, J.; Li, H.; Yuan, Z.; Zhou, W.; Yu, Y.; Yu, Y. Acetaminophen impairs ferroptosis in the hippocampus of septic mice by regulating glutathione peroxidase 4 and ferroptosis suppressor protein 1 pathways. Brain Behav. 2023, 13, e3145. [Google Scholar] [CrossRef]
- Moldogazieva, N.T.; Zavadskiy, S.P.; Astakhov, D.V.; Terentiev, A.A. Lipid peroxidation: Reactive carbonyl species, protein/DNA adducts, and signaling switches in oxidative stress and cancer. Biochem. Biophys. Res. Commun. 2023, 687, 149167. [Google Scholar] [CrossRef]
- Bartova, R.; Petrlenicova, D.; Oresanska, K.; Prochazkova, L.; Liska, B.; Turecky, L.; Durfinova, M. Changes in levels of oxidative stress markers and some neuronal enzyme activities in cerebrospinal fluid of multiple sclerosis patients. Neuroendocrinol. Lett. 2016, 37, 102–106. [Google Scholar]
- Naseri, A.; Forghani, N.; Sadigh-Eteghad, S.; Shanehbandi, D.; Asadi, M.; Nasiri, E.; Talebi, M. Circulatory antioxidant and oxidative stress markers are in correlation with demographics but not cognitive functions in multiple sclerosis patients. Mult. Scler. Relat. Disord. 2021, 57, 103432. [Google Scholar] [CrossRef]
- Liu, X.; Bai, M.; Fan, L.; Lou, Z. Serum 4-hydroxynonenal associates with the recurrence of patients with primary cerebral infarction. Front. Cell. Neurosci. 2022, 16, 998512. [Google Scholar] [CrossRef]
- Devos, D.; Moreau, C.; Kyheng, M.; Garçon, G.; Rolland, A.S.; Blasco, H.; Gelé, P.; Lenglet, T.T.; Veyrat-Durebex, C.; Corcia, P.; et al. A ferroptosis–based panel of prognostic biomarkers for Amyotrophic Lateral Sclerosis. Sci. Rep. 2019, 9, 2918. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Wei, T.; Xiao, H.; He, W.; Wei, Q. Decreased serum 4-Hydroxynonenal level as a biomarker for the progression of steroid-induced osteonecrosis of the femoral head. J. Orthop. Surg. Res. 2023, 18, 732. [Google Scholar] [CrossRef] [PubMed]
- Gerber, T.S.; Witzel, H.R.; Weinmann, A.; Bartsch, F.; Schindeldecker, M.; Galle, P.R.; Lang, H.; Roth, W.; Ridder, D.A.; Straub, B.K. Reduced Lipid Peroxidation Predicts Unfavorable Prognosis in Hepatocellular Carcinoma, but Not Intrahepatic Cholangiocarcinoma. Biomedicines 2023, 11, 2471. [Google Scholar] [CrossRef] [PubMed]
- Kemp, K.; Redondo, J.; Hares, K.; Rice, C.; Scolding, N.; Wilkins, A. Oxidative injury in multiple sclerosis cerebellar grey matter. Brain Res. 2016, 1642, 452–460. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Sawada, M.; Yamasaki, N.; Akazawa, S.; Furuta, H.; Uenishi, H.; Meng, X.; Nakahashi, T.; Ishigaki, Y.; Moriya, J. Neuroinflammation, Oxidative Stress, and Neurogenesis in a Mouse Model of Chronic Fatigue Syndrome, and the Treatment with Kampo Medicine. Biol. Pharm. Bull. 2020, 43, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Tanuma, N.; Miyata, R.; Hayashi, M.; Uchiyama, A.; Kurata, K. Oxidative stress as a biomarker of respiratory disturbance in patients with severe motor and intellectual disabilities. Brain Dev. 2008, 30, 402–409. [Google Scholar] [CrossRef] [PubMed]
- Tanuma, N.; Miyata, R.; Nakajima, K.; Okumura, A.; Kubota, M.; Hamano, S.-I.; Hayashi, M. Changes in Cerebrospinal Fluid Biomarkers in Human Herpesvirus-6-Associated Acute Encephalopathy/Febrile Seizures. Mediat. Inflamm. 2014, 2014, 564091. [Google Scholar] [CrossRef]
- Fritz, K.S.; Petersen, D.R. Exploring the Biology of Lipid Peroxidation-Derived Protein Carbonylation. Chem. Res. Toxicol. 2011, 24, 1411–1419. [Google Scholar] [CrossRef]
- Theodosis-Nobelos, P.; Rekka, E.A. The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. Molecules 2022, 27, 8402. [Google Scholar] [CrossRef]
- Perluigi, M.; Coccia, R.; Butterfield, D.A. 4-Hydroxy-2-Nonenal, a Reactive Product of Lipid Peroxidation, and Neurodegenerative Diseases: A Toxic Combination Illuminated by Redox Proteomics Studies. Antioxidants Redox Signal. 2012, 17, 1590–1609. [Google Scholar] [CrossRef]
- Esterbauer, H.; Eckl, P.; Ortner, A. Possible mutagens derived from lipids and lipid precursors. Mutat. Res. Genet. Toxicol. 1990, 238, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Dalleau, S.; Baradat, M.; Guéraud, F.; Huc, L. Cell death and diseases related to oxidative stress:4-hydroxynonenal (HNE) in the balance. Cell Death Differ. 2013, 20, 1615–1630. [Google Scholar] [CrossRef] [PubMed]
- Stojkovic, L.; Jovanovic, I.; Dincic, E.; Djordjevic, A.; Kuveljic, J.; Djuric, T.; Stankovic, A.; Vojinovic, S.; Zivkovic, M. Targeted RNAseq Revealed the Gene Expression Signature of Ferroptosis-Related Processes Associated with Disease Severity in Patients with Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 3016. [Google Scholar] [CrossRef] [PubMed]
- Murgia, F.; Lorefice, L.; Poddighe, S.; Fenu, G.; Secci, M.A.; Marrosu, M.G.; Cocco, E.; Atzori, L. Multi-Platform Characterization of Cerebrospinal Fluid and Serum Metabolome of Patients Affected by Relapsing–Remitting and Primary Progressive Multiple Sclerosis. J. Clin. Med. 2020, 9, 863. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.-Y.; Lee, P.; Adany, P.; Hughes, A.J.; Belliston, S.; Denney, D.R.; Lynch, S.G. In vivo evidence of oxidative stress in brains of patients with progressive multiple sclerosis. Mult. Scler. J. 2017, 24, 1029–1038. [Google Scholar] [CrossRef]
- Choi, I.-Y.; Lee, P.; Hughes, A.J.; Denney, D.R.; Lynch, S.G. Longitudinal changes of cerebral glutathione (GSH) levels associated with the clinical course of disease progression in patients with secondary progressive multiple sclerosis. Mult. Scler. J. 2016, 23, 956–962. [Google Scholar] [CrossRef]
- Hajam, Y.A.; Rani, R.; Ganie, S.Y.; Sheikh, T.A.; Javaid, D.; Qadri, S.S.; Pramodh, S.; Alsulimani, A.; Alkhanani, M.F.; Harakeh, S.; et al. Oxidative Stress in Human Pathology and Aging: Molecular Mechanisms and Perspectives. Cells 2022, 11, 552. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Juchem, C.; Swanberg, K.M.; Prinsen, H.; Pelletier, D. In vivo cortical glutathione response to oral fumarate therapy in relapsing-remitting multiple sclerosis: A single-arm open-label phase IV trial using 7-Tesla 1H MRS. NeuroImage Clin. 2023, 39, 103495. [Google Scholar] [CrossRef]
- Tang, D.; Chen, X.; Kang, R.; Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. Cell Res. 2021, 31, 107–125. [Google Scholar] [CrossRef]
- Matar, A.; Jennani, S.; Abdallah, H.; Mohsen, N.; Borjac, J. Serum Iron and Zinc Levels in Lebanese Multiple Sclerosis Patients. Acta Neurol. 2020, 29, 5–11. [Google Scholar]
- Al-Radaideh, A.; El-Haj, N.; Hijjawi, N. Iron deposition and atrophy in cerebral grey matter and their possible association with serum iron in relapsing-remitting multiple sclerosis. Clin. Imaging 2020, 69, 238–242. [Google Scholar] [CrossRef]
- LeVine, S.M.; Lynch, S.G.; Ou, C.-N.; Wulser, M.J.; Tam, E.; Boo, N. Ferritin, transferrin and iron concentrations in the cerebrospinal fluid of multiple sclerosis patients. Brain Res. 1999, 821, 511–515. [Google Scholar] [CrossRef]
- Oliveira, S.R.; Kallaur, A.P.; Lopes, J.; Simão, A.N.C.; Reiche, E.M.; de Almeida, E.R.D.; Morimoto, H.K.; Pereira, W.L.d.C.J.d.; Alfieri, D.F.; Flauzino, T.; et al. Insulin resistance, atherogenicity, and iron metabolism in multiple sclerosis with and without depression: Associations with inflammatory and oxidative stress biomarkers and uric acid. Psychiatry Res. 2017, 250, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Knyszyńska, A.; Radecka, A.; Zabielska, P.; Łuczak, J.; Karakiewicz, B.; Lubkowska, A. The Role of Iron Metabolism in Fatigue, Depression, and Quality of Life in Multiple Sclerosis Patients. Int. J. Environ. Res. Public Health 2020, 17, 6818. [Google Scholar] [CrossRef] [PubMed]
- Mohseni, G.K.; Hosseini, S.A.; Majdinasab, N.; Cheraghian, B. Effects of N-acetylcysteine on oxidative stress biomarkers, depression, and anxiety symptoms in patients with multiple sclerosis. Neuropsychopharmacol. Rep. 2023, 43, 382–390. [Google Scholar] [CrossRef]
- Salter, A.; Lancia, S.; Kowalec, K.; Fitzgerald, K.C.; Marrie, R.A. Investigating the Prevalence of Comorbidity in Multiple Sclerosis Clinical Trial Populations. Neurology 2024, 102, e209135. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Lassmann, H. Classification of demyelinating diseases at the interface between etiology and pathogenesis. Curr. Opin. Neurol. 2001, 14, 253–258. [Google Scholar] [CrossRef]
- Lassmann, H. Pathophysiology of inflammation and tissue injury in multiple sclerosis: What are the targets for therapy. J. Neurol. Sci. 2011, 306, 167–169. [Google Scholar] [CrossRef]
- Lorscheider, J.; Buzzard, K.; Jokubaitis, V.; Spelman, T.; Havrdova, E.; Horakova, D.; Trojano, M.; Izquierdo, G.; Girard, M.; Duquette, P.; et al. Defining secondary progressive multiple sclerosis. Brain 2016, 139, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Lublin, F.D.; Reingold, S.C.; Cohen, J.A.; Cutter, G.R.; Sørensen, P.S.; Thompson, A.J.; Wolinsky, J.S.; Balcer, L.J.; Banwell, B.; Barkhof, F.; et al. Defining the clinical course of multiple sclerosis: The 2013 revisions. Neurology 2014, 83, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Roxburgh, R.H.; Seaman, S.R.; Masterman, T.; Hensiek, A.E.; Sawcer, S.J.; Vukusic, S.; Achiti, I.; Confavreux, C.; Coustans, M.; Le Page, E.; et al. Multiple Sclerosis Severity Score: Using disability and disease duration to rate disease severity. Neurology 2005, 64, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- MyAssays. Available online: https://www.myassays.com/four-parameter-logistic-curve.assay (accessed on 15 May 2024).
- MyAssays. Available online: https://www.myassays.com/linear-regression.assay (accessed on 15 May 2024).
Anthropometric and Clinical Parameters | RRMS n = 153 | PMS n = 69 | p-Value |
---|---|---|---|
Sex (women/men, n) | 79/74 | 42/27 | 0.25 $ |
Age (years) | 43.0 ± 9.8 | 49.1 ± 7.9 | 2 × 10−5 # |
Body mass index (BMI, kg/m2) | 24.40 ± 3.92 | 24.19 ± 4.12 | 0.67 & |
Smoking status (yes/no/no data, n) | 51/97/5 † | 24/42/3 † | 0.88 $ |
Disease onset age (years) | 32.6 ± 9.2 | 34.2 ± 10.2 | 0.43 & |
Disease duration (years) | 10.4 ± 5.9 | 14.8 ± 8.2 | 2 × 10−4 & |
EDSS | 1.8 ± 1.1 | 5.6 ± 1.2 | <10−6 & |
MSSS | 2.32 ± 1.79 | 6.22 ± 1.83 | <10−6 & |
Total number of relapses | 2.00 (0.00–17.00) | 6.00 (0.00–18.00) | <10−6 & |
Fatigue (yes/no/no data, n) | 75/61/17 † | 54/10/5 † | 6 × 10−5 $ |
Therapy (yes/no, n) | 139/14 | 50/19 | 3 × 10−4 $ |
Molecular Parameters | RRMS n = 153 | PMS n = 69 | p-Value |
---|---|---|---|
Malondialdehyde (MDA, ng/mL) | 98.94 ± 40.71 | 103.77 ± 67.50 | 0.89 |
4-Hydroxynonenal (4-HNE, pg/mL) | 1848.24 ± 1115.45 | 1712.27 ± 1289.24 | 0.03 |
Hexanoyl-lys adduct (HEL, nmol/L) | 12.68 ± 3.93 | 13.17 ± 3.77 | 0.39 |
Glutathione peroxidase 4 (GPX4, pg/mL) | 2503.18 ± 1606.99 | 2442.53 ± 1349.04 | 0.83 |
* Total glutathione (GSH + GSSG, μmol/L) | 44.46 ± 6.48 | 42.03 ± 11.26 | 0.006 |
* Reduced glutathione (GSH, μmol/L) | 15.77 ± 7.30 | 16.35 ± 8.13 | 0.91 |
* Oxidized glutathione (GSSG, μmol/L) | 14.35 ± 2.47 | 12.84 ± 3.41 | 0.003 |
* Reduced/oxidized glutathione (GSH/GSSG) | 1.18 ± 0.69 | 1.34 ± 0.69 | 0.17 |
Iron (Fe, µmol/L) | 14.63 ± 5.34 | 14.60 ± 4.63 | 0.85 |
Transferrin (Tf, g/L) | 2.53 ± 0.36 | 2.42 ± 0.43 | 0.07 |
Ferritin (Ft, ng/mL) | 65.71 ± 61.58 | 75.39 ± 116.71 | 0.56 |
Molecular Parameters | MS Course × Sex F p-Value | MS Course × Th F p-Value | MS Course × Fatigue F p-Value | MS Course × Smoking F p-Value |
---|---|---|---|---|
Malondialdehyde (MDA, ng/mL) | 0.13 0.72 | 7.13 0.009 | 0.10 0.75 | 0.00 0.99 |
4-Hydroxynonenal (4-HNE, pg/mL) | 0.92 0.34 | 0.21 0.65 | 6.19 0.01 | 2.02 0.16 |
Hexanoyl-lys adduct (HEL, nmol/L) | 0.07 0.78 | 5.77 0.02 | 0.50 0.48 | 0.66 0.42 |
Glutathione peroxidase 4 (GPX4, pg/mL) | 0.63 0.43 | 0.48 0.49 | 0.57 0.45 | 0.52 0.47 |
Total glutathione (GSH + GSSG, μmol/L) | 0.51 0.47 | 0.68 0.41 | 0.10 0.76 | 0.51 0.47 |
Reduced glutathione (GSH, μmol/L) | 1.35 0.25 | 0.10 0.75 | 2.99 0.09 | 0.47 0.49 |
Oxidized glutathione (GSSG, μmol/L) | 0.09 0.76 | 0.08 0.78 | 2.51 0.12 | 2.63 0.11 |
Reduced/oxidized glutathione (GSH/GSSG) | 1.16 0.28 | 0.03 0.87 | 4.27 0.04 | 1.40 0.24 |
Iron (Fe, µmol/L) | 0.84 0.36 | 0.65 0.42 | 2.78 0.10 | 0.33 0.57 |
Transferrin (Tf, g/L) | 0.41 0.52 | 0.004 0.95 | 0.007 0.94 | 1.33 0.25 |
Ferritin (Ft, ng/mL) | 0.18 0.67 | 2.15 0.15 | 0.46 0.50 | 1.91 0.17 |
Molecular Parameters | MS Course F p-Value | Age (y) F p-Value | BMI (kg/m2) F p-Value | Disease Durat. (y) F p-Value | EDSS F p-Value | MSSS F p-Value |
---|---|---|---|---|---|---|
Malondialdehyde (MDA, ng/mL) | 0.60 0.44 | 0.03 0.87 | 1.65 0.20 | 2.33 0.13 | 2.93 0.09 | 3.11 0.08 |
4-Hydroxynonenal (4-HNE, pg/mL) | 1.98 0.16 | 0.01 0.90 | 0.51 0.48 | 0.0002 0.99 | 0.11 0.74 | 0.15 0.70 |
Hexanoyl-lys adduct (HEL, nmol/L) | 0.26 0.61 | 0.04 0.84 | 0.11 0.74 | 0.18 0.67 | 0.02 0.88 | 0.00 1.00 |
Glutathione peroxidase 4 (GPX4, pg/mL) | 0.07 0.79 | 0.42 0.52 | 0.02 0.90 | 0.003 0.96 | 0.08 0.77 | 0.09 0.77 |
Total glutathione (GSH + GSSG, μmol/L) | 0.78 0.38 | 0.007 0.93 | 0.08 0.78 | 0.45 0.51 | 2.11 0.15 | 1.07 0.30 |
Reduced glutathione (GSH, μmol/L) | 4.94 0.03 | 0.03 0.87 | 1.08 0.30 | 3.02 0.09 | 4.29 0.04 | 2.29 0.13 |
Oxidized glutathione (GSSG, μmol/L) | 1.11 0.29 | 0.46 0.50 | 1.30 0.26 | 0.88 0.35 | 0.0005 0.98 | 0.003 0.96 |
Reduced/oxidized Glutathione (GSH/GSSG) | 5.37 0.02 | 0.18 0.67 | 1.82 0.18 | 3.46 0.07 | 3.11 0.08 | 1.71 0.19 |
Iron (Fe, µmol/L) | 1.00 0.32 | 4.00 0.05 | 0.80 0.37 | 0.24 0.63 | 0.59 0.44 | 0.58 0.45 |
Transferrin (Tf, g/L) | 0.00 1.00 | 0.50 0.48 | 1.11 0.29 | 0.25 0.62 | 0.44 0.51 | 0.49 0.48 |
Ferritin (Ft, ng/mL) | 0.004 0.95 | 1.84 0.18 | 1.17 0.28 | 0.24 0.62 | 0.31 0.58 | 1.01 0.32 |
(a) | |||||
Molecular Parameters | Age (Years) R p-Value | BMI (kg/m2) R p-Value | Disease Duration (y) R p-Value | EDSS R p-Value | MSSS R p-Value |
Malondialdehyde (MDA, ng/mL) | −0.04 0.65 | −0.11 0.18 | 0.06 0.49 | 0.02 0.76 | −0.04 0.67 |
4-Hydroxynonenal (4-HNE, pg/mL) | 0.05 0.58 | −0.11 0.20 | −0.09 0.30 | −0.08 0.37 | −0.02 0.78 |
Hexanoyl-lys adduct (HEL, nmol/L) | −0.005 0.95 | −0.16 0.06 | 0.25 0.003 | 0.12 0.13 | 0.01 0.86 |
Glutathione peroxidase 4 (GPX4, pg/mL) | −0.24 0.004 | 0.05 0.53 | −0.10 0.25 | −0.02 0.80 | 0.03 0.68 |
Total glutathione (GSH + GSSG, μmol/L) | 0.006 0.96 | −0.03 0.84 | −0.05 0.68 | −0.22 0.08 | −0.13 0.30 |
Reduced glutathione (GSH, μmol/L) | −0.15 0.24 | −0.19 0.16 | 0.07 0.58 | −0.21 0.10 | −0.17 0.17 |
Oxidized glutathione (GSSG, μmol/L) | 0.27 0.03 | 0.29 0.02 | −0.19 0.15 | 0.08 0.51 | 0.17 0.18 |
Reduced/oxidized glutathione (GSH/GSSG) | −0.18 0.16 | −0.22 0.09 | 0.12 0.37 | −0.22 0.08 | −0.20 0.11 |
Iron (Fe, µmol/L) | 0.07 0.38 | 0.05 0.54 | 0.14 0.08 | −0.10 0.21 | −0.15 0.07 |
Transferrin (Tf, g/L) | −0.06 0.43 | −0.05 0.52 | −0.26 0.002 | 0.11 0.19 | 0.20 0.01 |
Ferritin (Ft, ng/mL) | 0.04 0.59 | 0.21 0.01 | 0.13 0.12 | −0.19 0.02 | −0.19 0.02 |
(b) | |||||
Molecular Parameters | Age (Years) R p-Value | BMI (kg/m2) R p-Value | Disease Duration (y) R p-Value | EDSS R p-Value | MSSS R p-Value |
Malondialdehyde (MDA, ng/mL) | −0.02 0.90 | 0.07 0.59 | 0.009 0.94 | −0.03 0.80 | −0.0004 1.00 |
4-Hydroxynonenal (4-HNE, pg/mL) | −0.25 0.05 | 0.14 0.29 | −0.12 0.35 | −0.27 0.03 | −0.06 0.62 |
Hexanoyl-lys adduct (HEL, nmol/L) | 0.01 0.92 | −0.15 0.23 | −0.15 0.22 | −0.28 0.02 | −0.01 0.94 |
Glutathione peroxidase 4 (GPX4, pg/mL) | −0.13 0.31 | 0.19 0.14 | 0.12 0.35 | 0.23 0.06 | 0.23 0.06 |
Total glutathione (GSH + GSSG, μmol/L) | −0.09 0.61 | −0.02 0.93 | −0.12 0.49 | −0.20 0.25 | 0.04 0.82 |
Reduced glutathione (GSH, μmol/L) | 0.23 0.17 | 0.10 0.55 | 0.25 0.13 | −0.01 0.95 | −0.005 0.98 |
Oxidized glutathione (GSSG, μmol/L) | −0.28 0.09 | 0.0005 1.00 | −0.23 0.17 | −0.32 0.05 | −0.11 0.50 |
Reduced/oxidized glutathione (GSH/GSSG) | 0.29 0.08 | 0.05 0.78 | 0.30 0.07 | 0.18 0.29 | 0.07 0.70 |
Iron (Fe, µmol/L) | 0.30 0.01 | 0.11 0.38 | −0.08 0.54 | 0.04 0.76 | 0.04 0.77 |
Transferrin (Tf, g/L) | −0.24 0.06 | −0.13 0.31 | −0.07 0.58 | −0.11 0.39 | 0.03 0.83 |
Ferritin (Ft, ng/mL) | 0.17 0.17 | 0.27 0.03 | −0.09 0.48 | 0.06 0.61 | 0.11 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stojkovic, L.; Djordjevic, A.; Stefanovic, M.; Stankovic, A.; Dincic, E.; Djuric, T.; Zivkovic, M. Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing–Remitting and Progressive Multiple Sclerosis. Int. J. Mol. Sci. 2024, 25, 11024. https://doi.org/10.3390/ijms252011024
Stojkovic L, Djordjevic A, Stefanovic M, Stankovic A, Dincic E, Djuric T, Zivkovic M. Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing–Remitting and Progressive Multiple Sclerosis. International Journal of Molecular Sciences. 2024; 25(20):11024. https://doi.org/10.3390/ijms252011024
Chicago/Turabian StyleStojkovic, Ljiljana, Ana Djordjevic, Milan Stefanovic, Aleksandra Stankovic, Evica Dincic, Tamara Djuric, and Maja Zivkovic. 2024. "Circulatory Indicators of Lipid Peroxidation, the Driver of Ferroptosis, Reflect Differences between Relapsing–Remitting and Progressive Multiple Sclerosis" International Journal of Molecular Sciences 25, no. 20: 11024. https://doi.org/10.3390/ijms252011024