Effects of 4G Long-Term Evolution Electromagnetic Fields on Thyroid Hormone Dysfunction and Behavioral Changes in Adolescent Male Mice
<p>Measurement of body weight. All animals subjected to LTE-RF-EMF (LTE) or Pb exposure were weighed weekly for 4 weeks.</p> "> Figure 2
<p>Evaluation of behavioral changes in the mice exposed to LTE or Pb treatments during adolescence. (<b>A</b>) The representative traces of movement measured in the open-field test. (<b>B</b>) Measured average velocity, distance traveled, and activity and time in the central zone. (<b>C</b>) The results of the marble-burying test with representative photos and quantification in the mice exposed to sham, LTE, or Pb treatments during adolescence. (<b>D</b>) The representative photos and scores of the built nests by the mice exposed to sham, LTE, or Pb treatments during adolescence. The data are presented as mean ± standard deviation (n = 10). * <span class="html-italic">p</span> < 0.05, *** <span class="html-italic">p</span> < 0.001, and **** <span class="html-italic">p</span> < 0.0001 versus sham; <sup>####</sup> <span class="html-italic">p</span> < 0.0001 versus LTE exposure.</p> "> Figure 3
<p>Analysis of the circulating hormone levels following LTE or Pb exposure during adolescence in the C57BL/6 mice. (<b>A</b>) Thyroid hormones: TSH, T3, and T4. (<b>B</b>) Pituitary hormones: brain-derived neurotrophic factor (BDNF) and adrenocorticotropic hormone (ACTH). (<b>C</b>) The testosterone levels. The data are presented as mean ± standard deviation (n = 7–8). * <span class="html-italic">p</span> < 0.05 versus sham.</p> "> Figure 4
<p>RT-qPCR analysis of the thyroid hormone-regulating genes in the hypothalamic–pituitary–thyroid (HPT) axis. The relative mRNA expression levels of <span class="html-italic">Trh, Dio2, Dio3</span>, and <span class="html-italic">Oatp1c1</span> in the hypothalamus (<b>A</b>); <span class="html-italic">Trhr</span> and <span class="html-italic">Tshβ</span> in the pituitary gland (<b>B</b>); and <span class="html-italic">Tpo</span> and <span class="html-italic">Tg</span> in the thyroid glands (<b>C</b>). The data are presented as mean ± standard deviation (n = 7–8). * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 versus sham; <sup>#</sup> <span class="html-italic">p</span> < 0.05 versus LTE exposure.</p> "> Figure 5
<p>Experimental scheme and in vivo LTE signal exposing chamber. (<b>A</b>) LTE and Pb exposure and experimental procedure. (<b>B</b>) Image of the reverberation chamber and the positioned cages in the chamber.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Body Weight Change
2.2. Effect of LTE or Pb Exposure on Behavior
2.3. Effect of LTE and Pb Exposure on Thyroid and Other Hormones during Adolescence
2.4. Effect of LTE and Pb Exposure on Gene Expression Related to Thyroid Metabolism
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. LTE-RF-EMF Exposure System
4.3. Behavioral Tests
4.4. Determination of Hormone Levels in the Blood
4.5. Quantitative Real-Time PCR (qRT-PCR)
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yrjölä, S.; Matinmikko-Blue, M.; Ahokangas, P. The Evolution of Mobile Communications. In The Changing World of Mobile Communications: 5G, 6G and the Future of Digital Services; Ahokangas, P., Aagaard, A., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 13–43. [Google Scholar]
- Fernández, C.; de Salles, A.A.; Sears, M.E.; Morris, R.D.; Davis, D.L. Absorption of wireless radiation in the child versus adult brain and eye from cell phone conversation or virtual reality. Environ. Res. 2018, 167, 694–699. [Google Scholar] [CrossRef] [PubMed]
- Mortavazi, S.; Habib, A.; Ganj-Karami, A.; Samimi-Doost, R.; Pour-Abedi, A.; Babaie, A. Alterations in TSH and Thyroid Hormones following Mobile Phone Use. Oman Med. J. 2009, 24, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Baby, N.M.; Koshy, G.; Mathew, A. The Effect of Electromagnetic Radiation due to Mobile Phone Use on Thyroid Function in Medical Students Studying in a Medical College in South India. Indian J. Endocrinol. Metab. 2017, 21, 797–802. [Google Scholar]
- Eskander, E.F.; Estefan, S.F.; Abd-Rabou, A.A. How does long term exposure to base stations and mobile phones affect human hormone profiles? Clin. Biochem. 2012, 45, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Bodewein, L.; Dechent, D.; Graefrath, D.; Kraus, T.; Krause, T.; Driessen, S. Systematic review of the physiological and health-related effects of radiofrequency electromagnetic field exposure from wireless communication devices on children and adolescents in experimental and epidemiological human studies. PLoS ONE 2022, 17, e0268641. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.H. Health effects of electromagnetic fields on children. Clin. Exp. Pediatr. 2020, 63, 422–428. [Google Scholar] [CrossRef]
- Sangün, Ö.; Dündar, B.; Çömlekçi, S.; Büyükgebiz, A. The Effects of Electromagnetic Field on the Endocrine System in Children and Adolescents. Pediatr. Endocrinol. Rev. 2015, 13, 531–545. [Google Scholar]
- Birks, L.E.; Struchen, B.; Eeftens, M.; van Wel, L.; Huss, A.; Gajšek, P.; Kheifets, L.; Gallastegi, M.; Dalmau-Bueno, A.; Estarlich, M. Spatial and temporal variability of personal environmental exposure to radio frequency electromagnetic fields in children in Europe. Environ. Int. 2018, 117, 204–214. [Google Scholar] [CrossRef]
- Arida, A.; Protogerou, A.D.; Kitas, G.D.; Sfikakis, P.P. Systemic Inflammatory Response and Atherosclerosis: The Paradigm of Chronic Inflammatory Rheumatic Diseases. Int. J. Mol. Sci. 2018, 19, 1890. [Google Scholar] [CrossRef]
- Kim, H.S.; Paik, M.J.; Kim, Y.J.; Lee, G.; Lee, Y.S.; Choi, H.D.; Kim, B.C.; Pack, J.K.; Kim, N.; Ahn, Y.H. Effects of whole-body exposure to 915 MHz RFID on secretory functions of the thyroid system in rats. Bioelectromagnetics 2013, 34, 521–529. [Google Scholar] [CrossRef]
- Jin, Y.B.; Choi, H.D.; Kim, B.C.; Pack, J.K.; Kim, N.; Lee, Y.S. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats. J. Radiat. Res. 2013, 54, 430–437. [Google Scholar] [CrossRef] [PubMed]
- Zufry, H.; Rudijanto, A.; Soeatmadji, D.W.; Sakti, S.P.; Munadi, K.; Sujuti, H.; Mintaroem, K. Effects of mobile phone electromagnetic radiation on thyroid glands and hormones in Rattus norvegicus brain: An analysis of thyroid function, reactive oxygen species, and monocarboxylate transporter 8. J. Adv. Pharm. Technol. Res. 2023, 14, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Koyu, A.; Cesur, G.; Ozguner, F.; Akdogan, M.; Mollaoglu, H.; Ozen, S. Effects of 900 MHz electromagnetic field on TSH and thyroid hormones in rats. Toxicol. Lett. 2005, 157, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.K. Chronic non-thermal exposure of modulated 2450 MHz microwave radiation alters thyroid hormones and behavior of male rats. Int. J. Radiat. Biol. 2008, 84, 505–513. [Google Scholar] [CrossRef]
- Sabatino, L.; Lapi, D.; Del Seppia, C. Factors and Mechanisms of Thyroid Hormone Activity in the Brain: Possible Role in Recovery and Protection. Biomolecules 2024, 14, 198. [Google Scholar] [CrossRef]
- Mytidou, C.; Koutsoulidou, A.; Zachariou, M.; Prokopi, M.; Kapnisis, K.; Spyrou, G.M.; Anayiotos, A.; Phylactou, L.A. Age-Related Exosomal and Endogenous Expression Patterns of miR-1, miR-133a, miR-133b, and miR-206 in Skeletal Muscles. Front. Physiol. 2021, 12, 708278. [Google Scholar] [CrossRef]
- Wang, S.; Lai, X.; Deng, Y.; Song, Y. Correlation between mouse age and human age in anti-tumor research: Significance and method establishment. Life Sci. 2020, 242, 117242. [Google Scholar] [CrossRef]
- International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz). Health Phys. 2020, 118, 483–524. [Google Scholar] [CrossRef]
- Dundar, B.; Oktem, F.; Arslan, M.K.; Delibas, N.; Baykal, B.; Arslan, C.; Gultepe, M.; Ilhan, I.E. The effect of long-term low-dose lead exposure on thyroid function in adolescents. Environ. Res. 2006, 101, 140–145. [Google Scholar] [CrossRef]
- Balachandar, R.; Viramgami, A.; Bagepally, B.S.; Upadhyay, K. Association Between Blood Lead Levels and Thyroid Function: An Updated Systematic Review and Meta-Analysis. Indian J. Clin. Biochem. 2023, 38, 426–436. [Google Scholar] [CrossRef]
- Chai, L.; Li, Y.; Chen, Z.; Chen, A.; Deng, H. Responses of growth, malformation, and thyroid hormone-dependent genes expression in Bufo gargarizans embryos following chronic exposure to Pb2+. Environ. Sci. Pollut. Res. Int. 2017, 24, 27953–27962. [Google Scholar] [CrossRef]
- Yang, H.; Liu, R.; Liang, Z.; Zheng, R.; Yang, Y.; Chai, L.; Wang, H. Chronic effects of lead on metamorphosis, development of thyroid gland, and skeletal ossification in Bufo gargarizans. Chemosphere 2019, 236, 124251. [Google Scholar] [CrossRef] [PubMed]
- Geronikolou, S.A.; Chamakou, A.; Mantzou, A.; Chrousos, G.; KanakaGantenbein, C. Frequent cellular phone use modifies hypothalamic-pituitary-adrenal axis response to a cellular phone call after mental stress in healthy children and adolescents: A pilot study. Sci. Total Environ. 2015, 536, 182–188. [Google Scholar] [CrossRef]
- Bhargav, H.; Srinivasan, T.M.; Bista, S.; Mooventhan, A.; Suresh, V.; Hankey, A.; Nagendra, H.R. Acute effects of mobile phone radiations on subtle energy levels of teenagers using electrophotonic imaging technique: A randomized controlled study. Int. J. Yoga 2017, 10, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Compatibility, E. Part 4-21: Testing and measurement techniques—reverberation chamber test methods. Standard IEC 2011, 61000–61004. [Google Scholar]
- Deacon, R.M. Digging and marble burying in mice: Simple methods for in vivo identification of biological impacts. Nat. Protoc. 2006, 1, 122–124. [Google Scholar] [CrossRef]
- Deacon, R.M. Assessing nest building in mice. Nat. Protoc. 2006, 1, 1117–1119. [Google Scholar] [CrossRef]
Gene Symbols | RefSeq | Sequence |
---|---|---|
Trh | NM_009426 | 3′-TGTGACTCCTGACCTTCCA-5′ |
5′-GGATGCTGGCGTTTTGTG-3′ | ||
Dio2 | NM_010050 | 3′-CTTCCTCCTAGATGCCTACAAAC-5′ |
5′-CTCCGAGGCATAATTGTTACCT-3′ | ||
Dio3 | NM_172119 | 3′-CACGTGCAAATGCTCCAAAG-5′ |
5′-CTCAAGTTAGCCAGACTCAGC-3′ | ||
Oatp1c1 | NM_021471 | 3′-CCAATGTTACTCCCAGCATCT-5′ |
5′-CCAGGAAGACATAAACCCACA-3′ | ||
Trhr | NM_013696 | 3′-TGACTCAATCCATCAGAACAAGA-5′ |
5′-GGCAAACAGAATTACAACCACT-3′ | ||
Tshβ | NM_009432 | 3′-GTCATCACAGCAGTAACTCACT-5′ |
5′-CACTCTCTCCTATCCACGTACA-3′ | ||
Tpo | NM_009417 | 3′-GTCCTCTGTTTGCATGTATCATTG-5′ |
5′-CTTTTCTAGTTCCTGCCTCTGA-3′ | ||
Tg | NM_009375 | 3′-TCTCCTGTGATAGTCAAGTCCA-5′ |
5′-CACATGAAACCTCTGACTCCA-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.-Y.; Son, Y.; Jeong, Y.J.; Lee, S.-H.; Kim, N.; Ahn, Y.H.; Jeon, S.B.; Choi, H.-D.; Lee, H.-J. Effects of 4G Long-Term Evolution Electromagnetic Fields on Thyroid Hormone Dysfunction and Behavioral Changes in Adolescent Male Mice. Int. J. Mol. Sci. 2024, 25, 10875. https://doi.org/10.3390/ijms252010875
Kim H-Y, Son Y, Jeong YJ, Lee S-H, Kim N, Ahn YH, Jeon SB, Choi H-D, Lee H-J. Effects of 4G Long-Term Evolution Electromagnetic Fields on Thyroid Hormone Dysfunction and Behavioral Changes in Adolescent Male Mice. International Journal of Molecular Sciences. 2024; 25(20):10875. https://doi.org/10.3390/ijms252010875
Chicago/Turabian StyleKim, Hyun-Yong, Yeonghoon Son, Ye Ji Jeong, Soo-Ho Lee, Nam Kim, Young Hwan Ahn, Sang Bong Jeon, Hyung-Do Choi, and Hae-June Lee. 2024. "Effects of 4G Long-Term Evolution Electromagnetic Fields on Thyroid Hormone Dysfunction and Behavioral Changes in Adolescent Male Mice" International Journal of Molecular Sciences 25, no. 20: 10875. https://doi.org/10.3390/ijms252010875
APA StyleKim, H.-Y., Son, Y., Jeong, Y. J., Lee, S.-H., Kim, N., Ahn, Y. H., Jeon, S. B., Choi, H.-D., & Lee, H.-J. (2024). Effects of 4G Long-Term Evolution Electromagnetic Fields on Thyroid Hormone Dysfunction and Behavioral Changes in Adolescent Male Mice. International Journal of Molecular Sciences, 25(20), 10875. https://doi.org/10.3390/ijms252010875