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Abstract: Yakutia is one of the coldest permanently inhabited regions in the world, characterized
by a subarctic climate with average January temperatures near −40 ◦C and the minimum below
−60 ◦C. Recently, we demonstrated accelerated epigenetic aging of the Yakutian population in
comparison to their Central Russian counterparts, residing in a considerably milder climate. In this
paper, we analyzed these cohorts from the inflammaging perspective and addressed two hypotheses:
a mismatch in the immunological profiles and accelerated inflammatory aging in Yakuts. We found
that the levels of 17 cytokines displayed statistically significant differences in the mean values between
the groups (with minimal p-value = 2.06 × 10−19), and 6 of them are among 10 SImAge markers. We
demonstrated that five out of these six markers (PDGFB, CD40LG, VEGFA, PDGFA, and CXCL10)
had higher mean levels in the Yakutian cohort, and therefore, due to their positive chronological
age correlation, might indicate a trend toward accelerated inflammatory aging. At the same time,
a statistically significant biological age acceleration difference between the two cohorts according
to the inflammatory SImAge clock was not detected because they had similar levels of CXCL9,
CCL22, and IL6, the top contributing biomarkers to SImAge. We introduced an explainable deep
neural network to separate individual inflammatory profiles between the two groups, resulting
in over 95% accuracy. The obtained results allow for hypothesizing the specificity of cytokine and
chemokine profiles among people living in extremely cold climates, possibly reflecting the effects
of long-term human (dis)adaptation to cold conditions related to inflammaging and the risk of
developing a number of pathologies.

Keywords: Yakutia; inflammatory profile; cold environment; climate; deep neural network; explainable
artificial intelligence

1. Introduction

The Republic of Sakha (Yakutia) is one of the coldest permanently inhabited regions
of the world with a subarctic climate characterized by a huge amplitude of air temperature
fluctuations reaching 100 ◦C (up to −60 ◦C in winter, up to +40 ◦C in summer) and the
average winter temperature in Yakutsk reaching −42 ◦C [1]. A large part of the population
are Yakuts, an indigenous people living in the subarctic and arctic territories of Eastern
Siberia [2]. The territory of the modern Sakha Republic was settled about 30,000 years
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ago [3], and the northeastern part of Yakutia is located on one of the main migration routes
from the southern regions of the Yenisei, Amur, and Baikal to the Arctic coast and to the
Americas [4]; the last wave of migration to the territory of modern Yakutia was about
2000 years ago [5].

Environmental variables are of tremendous importance for the development of age-
related diseases, which has been accumulated in the concept of “exposome” [6,7]. Particular
attention is paid to the interplay between genetics and eco-evolutionary determinants
of human longevity [8]. Among others, the populations living in cold climates (the far
north in Russia, northern Canada and Scandinavia, Greenland, the highlands of South
America and Tibet) are understudied, primarily due to the remoteness of the location, harsh
weather conditions, and related difficulties in data collection. Existing results on Siberian
populations mainly address the genetics of adaptation to unfavorable environmental
factors [9], such as low lipid levels due to increased energy metabolism [10], high blood
pressure [11,12], cold adaptation genes related to energy and metabolic regulation [9], and
cold adaptation-related single nucleotide polymorphisms [1]. These geographical factor
can also influence epigenetic age acceleration [13]; in particular, we have demonstrated that
it is significantly higher in Yakutia representatives than in their counterparts from Central
Russia [2].

Some studies give grounds to expect specificity in inflammatory profiles of the
Yakutian population. In [14], it was shown that the Yakuts are characterized by an increased
IgA level (which may indicate inflammatory processes in the mucous membranes of the
respiratory, digestive, and urinary systems) and increased levels of IgE (allergy). People
newly arrived in the region manifested immune system activation associated with adaptive
mechanisms i.e. increased IgM levels (refers to acute inflammatory process).

Changes in immune profile are an important biomarker of human health status, related
to aging and age-related diseases, and some results suggest that there also exists geographic
specificity that might be influenced by ethnic, climate and nutritional factors [15–17].
The concept of inflammaging addresses the chronic, sterile, low-grade inflammation that
increases with age, subject to environmental factors and individual immunobiography,
and contributes to the pathogenesis of age-related diseases [18–21]. Inflammaging can be
quantified by estimating the biological age from the human immunological profile, based
on pro- and anti-inflammatory cytokines. One of the best known is the iAge inflammatory
model, which estimates age, based on cytokine, chemokine, and growth factor information.
This model has shown strong associations of cytokine CXCL9 with age, as well as associations
with multimorbidity, immune senescence, frailty and cardiovascular aging [22]. SImAge,
a small immunological clock model, is a deep neural network model that estimates age from
10 immunological measures and is sensitive to kidney disease and mortality [23]. The other
immunological models are Inflammatory Biologic Age [24], IMM-AGE [25], ipAGE [26], and
CyClo [27]. Inflammatory clock models implement machine learning approaches, which
put forth the issue of explainability of their results, especially when deep architectures are
used [28]. To the best of our knowledge, inflammatory clocks have not previously been
employed to characterize the regional differences in human populations

Here we present the results of inflammatory profiling of the two cohorts, a group of
Yakuts and a group of residents from Central Russia, that have previously been subject to
epigenetic data studies [2]. Both cohorts include participants from the general population,
without acute chronic diseases. The generated data represent the levels of 32 pro- and
anti-inflammatory cytokines, including 10 cytokines from the SImAge inflammatory biological
clock [23]. This investigation was primarily focused on identifying discrepancies in the
immunological profiles of the selected cohorts, as well as on analyzing inflammatory
age acceleration. We provided a statistical analysis of differential levels of the involved
cytokines and investigated if the inflammatory clocks manifest accelerated aging of the
Yakutian group with respect to the Central Russian one. We also sought to construct
immunological profiles by machine learning that separated the participants from the two
study cohorts and developed an explainable deep classifier, highlighting cytokines that
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serve as the most important features. The relevance of the identified inflammatory markers
to regional environmental factors was analyzed.

2. Results
2.1. Characterization of the Participants

The study cohort included the groups of participants from two distant geographic
regions—Yakutia (Republic of Sakha, highlighted in gray in Figure 1A) and Central
Russia (Nizhny Novgorod, Vladimir, and Moscow Regions, highlighted in yellow in
Figure 1A). These regions are about 5000 km apart and differ significantly in environmental
conditions. The analyzed cohort included 300 samples from Central Russia (100 men
and 200 women) and 137 samples from Yakutia (46 men and 91 women). In both groups
the distribution by sex was uneven; the number of women was about two times greater
than men. For the analysis, we used 32 common immunological biomarkers obtained
using Luminex xMAP technology for blood plasma samples. The values of the analyzed
biomarkers for all samples are presented in Supplementary Table S1.
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Yakutia and Central Russia differ in a huge number of various parameters affecting 
many aspects of life, despite being located within the same country (the most important 
in the context of this analysis are presented in Figure 1C). The main differences between 
the studied regions are climate and ethnicity. The Yakutia group included an indigenous 
population, Yakut by nationality, representing Asians, whereas the Central Russian par-
ticipants had Caucasian backgrounds. Yakuts live in an extremely cold subarctic climate 
with an average winter temperature of about −42 °C and more than 7 months of subzero 
temperatures. The inhabitants of Central Russia live in a much more comfortable humid 
continental climate with an average winter temperature of about −13 °C and a duration of 

Figure 1. Main characteristics of the study cohorts. (A) Geographic schematic representation of
the location of Yakutia (silver) and Central Russia (Nizhny Novgorod Oblast, gold) on a globe.
(B) Histogram of the age distribution of participants. (C) Table with some features of interest in the
compared cohorts—dataset and climate features, disease statistics, and blood cell estimates.
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The considered groups had similar and very wide age ranges—from 19 to 101 years in
the Central region, from 19 to 99 years in Yakutia. The age distributions in both cohorts are
presented in Figure 1B. During data collection, we paid special attention to ensuring that
all age groups were represented. The Central Russia group had more young participants
than Yakutia, and the number of older participants was about equal. In both regions there
was a slight underrepresentation of participants in the 70–80 age group.

Yakutia and Central Russia differ in a huge number of various parameters affecting
many aspects of life, despite being located within the same country (the most important
in the context of this analysis are presented in Figure 1C). The main differences between
the studied regions are climate and ethnicity. The Yakutia group included an indigenous
population, Yakut by nationality, representing Asians, whereas the Central Russian participants
had Caucasian backgrounds. Yakuts live in an extremely cold subarctic climate with
an average winter temperature of about −42 ◦C and more than 7 months of subzero
temperatures. The inhabitants of Central Russia live in a much more comfortable humid
continental climate with an average winter temperature of about −13 ◦C and a duration of
subzero temperatures of about 5 months [29]. Disease types are differentially represented
in the considered regions—in particular, allergic reactions, digestive diseases and diabetes
are more prevalent in Central Russia, while the incidence of viral infections and obesity is
higher in Yakutia [30].

2.2. Identifying Differences in Inflammatory Profiles
2.2.1. Differential Analysis of Cytokine Levels

One approach to assessing differences in the levels of immunological parameters
between representatives of the considered groups can be a statistical test (Mann–Whitney
U-test) that measures, for example, the mean levels of distributions of certain cytokines
and indicate the presence/absence of statistical significance. Not only mean values, but
also variance, can be compared (the Levene test measures the variance of distributions
relative to the median). The biomarker distributions together with the FDR-corrected
p-values are presented in Figure 2A. Seventeen cytokines demonstrated statistically
significant differences between the regions, and most of them had higher mean values
in Yakutia representatives. Only four biomarkers displayed statistically significantly
different distribution variances: IL27, IL18, PDGFB and CXCL9 (the first three also
have different mean values), while the majority had a similar variance between the
groups. Detailed statistical metrics for the distributions of all cytokines are given in
Supplementary Table S2. At the same time, none of the biomarkers showed clear separability
for the two populations, which means that it is not possible to determine whether a sample
belongs to one group or another based on the value of a single biomarker. The commonalities
in the immunomarkers profiles could be due to the factors shared between the populations,
like the lifestyle, socioeconomic status and morbidities; however, the current data are
insufficient to address this issue in detail. Of note, statistical tests allow a direct comparison
of cytokine levels individually without taking into account the interactions between
them. A deep machine learning classifier based on a number of biomarkers can help
to overcome this problem (cf. Section 2.2.3).
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Figure 2. (A) (left) Bar plot illustrating FDR-corrected p-values of the Mann–Whitney U-test (red)
and Levene test (blue) for each immunological biomarker when comparing the mean and variance
(relative to the median) values of the distributions in the two study cohorts. (right) Violin plots
showing the distributions of all immunological biomarker levels with the FDR-corrected p-value
of the Mann–Whitney U-test. (B) (left) Scatter plot representing the dependence of chronological
age on predicted immunological age using the SImAge model [23]. One point corresponds to one
participant. MAE for Yakutia is 8.05 years, for Central Russia it is 7.14 years. Pearson correlation
coefficient for Yakutia is 0.897, for Central Russia it is 0.898. (right) Violin plots representing SImAge
acceleration distributions in two cohorts; Mann–Whitney U-test p-value is 0.35 and shows no
statistically significant difference between the mean of the two distributions. (C) The main steps
in building a deep classifier include applying lightweight deep neural networks for tabular data,
techniques to overcome class imbalance, cross-validation and testing on a separate block of data. The
results of the classifier on the test data demonstrate an accuracy of 0.956; a confusion matrix and spider
plot with more metrics are also shown. (D) Results of applying explainable artificial intelligence
(SHAP) to the final deep classifier. The distributions for each individual biomarker demonstrate the
relationship between the biomarker level and SHAP value for all participants. The biomarker level is
color coded. Movement toward negative SHAP values corresponds to an increase in the probability
of predicting the Central region, while movement toward positive values corresponds to an increase
in the probability of predicting Yakutia. The five most important cytokines are highlighted in red.
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2.2.2. Immunologic/Inflammatory Clock

We also compared these two cohorts by immunological age acceleration using the
SImAge model [23]. The choice of the model was data driven, since it is adapted for the
employed immunological panel (cf. Materials and Methods). Although Yakuts showed
accelerated epigenetic aging relative to representatives of the Central region (from 1 to
5 years depending on the epigenetic clock model) [2], they did not show significantly
accelerated immunological aging (Figure 2B). This may be due to the fact that the mean
levels of the three most important immunomarkers in the SImAge model (CXCL9, CCL22,
and IL6) are not statistically significantly different between the considered groups. However,
we note that six of the cytokines included in the SImAge model have statistically significantly
different levels in Yakuts. Levels of CD40LG, CXCL10, PDGFA, PDGFB, and VEGFA are
higher in Yakutia than in Central Russia, and only one, IL27, is lower in Yakutia. Since all
of these parameters have a positive correlation with age [23], this may indicate some weak
trend toward higher levels of inflammation in Yakuts.

2.2.3. Explainable Deep Learning Classifier

Another approach to detect differences between groups is to build an explainable deep
neural network classifier that both accounts for complex nonlinear dependencies in the
data and highlights the most important features (levels of certain cytokines) to separate
members from the considered geographic regions. Figure 2C presents the main steps of
the construction of the deep classifier and its performance on the test set (details of the
model construction and implemented technologies are presented in the Methods). The
input features of the classifier were represented by the levels of the 32 immunological
biomarkers in the blood plasma samples (the data are organized in tabular form—rows
represent samples, columns represent features), the target variable was a cohort (Central or
Yakutia). Since the classes (Central vs. Yakutia) were unbalanced (the number of samples in
one class significantly exceeded the number of samples in another class), we leveled out
these differences, reducing their impact on the classifier: the weighted sampler ensured
that the Yakutia class was not underrepresented in each batch when training the model,
and the macro-averaged metrics treated classes equally when calculating the results. The
training process included cross-validation, during which the best hyperparameters of the
machine learning models were identified, and they were tested on an independent subset
of the data (samples separated from the main dataset in advance and not involved in model
training). The best results were achieved by DANet neural network architecture (details
given in the Methods), which discriminated between samples from Yakutia and the Central
region with a high accuracy of 0.956. The other metrics of the final model and confusion
matrix are presented in Figure 2C.

Complex neural network architectures are often ‘black boxes’ whose decision-making
principles are hard to interpret. However, in recent years, eXplainable Artificial Intelligence
(XAI) approaches have been actively developed, which allow to identify the features that
have the highest impact on the final result (in our case, which biomarker values are most
important for distinguishing Yakuts from Centrals) [28,31,32]. One of the most common
techniques is SHAP, which utilizes game theory approaches and has a broad applicability,
allowing us to explain the results of the models identifying important features for the
considered classes. Figure 2D shows beeswarm plots displaying the magnitude of SHAP
values for all immunological biomarkers. In our case, more negative SHAP values increased
the probability of predicting the Central region and more positive values increased the
probability of predicting Yakutia. In particular, higher values of CD40LG (the first in
the ranking of the most important features for the classifier) increased the probability of
assigning the sample to the Yakutia group, and lower values increased the probability of
assigning the sample to the Central Russia group. Altogether, CD40LG, IL27, IL25, CCL4,
and CXCL10 manifest the most significant impacts on the classifier results (highlighted in
red in Figure 2D), while IL1B and CCL3, on the contrary, demonstrate the least contribution
to group differentiation. Thus, the members of the Yakutia and Central Russia populations
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that we included in our data are well separated by an immunological profile using a deep
classifier, although they are inseparable in terms of the levels of individual cytokines.

2.3. Outlook on Biological and Clinical Relevance

Next, we examined in more detail some biological functions of immunological biomarkers
that are in the top of importance for separating representatives of Yakutia and Central
Russia by two characteristics at the same time: SHAP values of the deep classifier and
Mann–Whitney U-test of statistical significance of the difference in means of distributions.

CD40LG (sCD40L), a soluble fragment of CD40 ligand, is a type II membrane protein
belonging to the tumor necrosis factor family and mainly expressed on the surface of
activated CD4+ T cells [33]. CD40LG from platelets mediates thrombotic and inflammatory
processes, contributing to inflammation associated with viral infections [34], which have
a higher prevalence in Yakutia (COVID-19 in particular) [35] due to, among other factors,
weakened nasal defenses (cold weather slows the ability to clear mucus from the nose,
which makes it easier for viruses to enter the body). Higher levels of CD40LG may be
associated with thrombogenesis, inflammation, atherosclerosis, coronary artery syndrome,
and systemic lupus erythematosus [33,36,37]. Viliui encephalomyelitis, a neurodegenerative
disease of the central nervous system, occurs only in the indigenous population of Yakutia,
and elevated CD40LG levels (like in our data) can be observed not only in patients but also
in healthy family members [38].

IL27 is a cytokine of the IL12 family that has both pro-inflammatory and anti-
inflammatory effects [39]. The proinflammatory effect of IL27 is manifested in its ability to
enhance the expression of inflammatory cytokines and chemokines in primary monocytes
and to promote proliferation of naive CD4+ T cells (estimates of the count of monocytes
and CD4T cells based on DNA methylation data are lower in Yakutia, as are the IL27 levels
observed here) [2,40,41]. High IL27 levels are associated with many autoimmune diseases
(rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis) [42], which are
statistically less common in Yakutia [35], and are also negatively correlated with HIV viral
load [42], which is more common in Yakutia (and IL27 levels are lower there) [35]. The role
of IL27 in the immune response against bacterial infections is different: at the beginning of
infection, IL27 stimulates immune responses at the site of infection, while at later stages,
IL27 suppresses inflammatory responses of immune cells to avoid multi-organ failure due
to excessive or persistent inflammation [41].

IL25 (IL17E) is a cytokine of the IL17 family, originally discovered through sequence
alignment of human genomic DNA. It is secreted in activated eosinophils and basophils in
allergy, in epithelial cells at sites of inflammation, in keratin-forming skin cells in psoriasis,
in mast cells, and in intestinal epithelial cells (tuft cells) [43]. An increase in the IL25 level
contributes to the development and increased severity of skin diseases (e.g., dermatitis
and psoriasis) [43], which are statistically less common in Yakutia [35]. A decrease in
its expression may be observed in inflammatory bowel disease (digestive diseases are
statistically twice more frequent in Yakutia), and increased levels are associated with obesity
and the intensity of low-grade inflammation and may be a biomarker of cardiovascular
disease risk (residents of Central Russia are statistically more likely to suffer from circulatory
diseases) [35,43,44].

CCL4 (MIP-1b), CC motif chemokine ligand 4 or macrophage inflammatory protein-
1b [45], is a highly acidic chemokine [46]. Monocytes, T and B lymphocytes, dendritic cells,
neutrophils, and NK cells are among the cellular sources of CCL4 (estimates of the NK cell
count according to DNA methylation data are higher in Yakutia, as well as the CCL4 levels
observed here) [2,45]. Reduced CCL4 concentrations may be observed in patients with type
1 and type 2 diabetes, the incidence of both being lower in Yakutia [35,47]. However, some
studies have observed increased CCL4 concentrations in patients in the prediabetic state
with a tendency to decrease with insulin intake, which may indicate that CCL4 levels may
differ at different stages of diabetes development or severity [47]. Elevated CCL4 levels
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may be associated with Parkinson’s disease, Alzheimer’s disease, and blood–brain barrier
dysfunction (neurodegenerative diseases are statistically more common in Yakutia) [35,48].

CXCL10 (IP10), also called C-X-C motif chemokine ligand 10 or interferon γ-induced
protein 10 kDa, is a major proinflammatory Th1 chemokine that is involved in the patho-
physiology of multiple diseases. It is released in response to IFN-γ from CD4+, CD8+ and
natural killer cells (estimates of CD8T and NK cell counts based on DNA methylation
data are higher in Yakuts, as are the CXCL10 levels observed here) [2,49]. CXCL10 plays
a key role in the development of respiratory symptoms in viral diseases (the population
of Yakutia is more susceptible to respiratory diseases and viral infections according to
statistics) [35,50]. Abnormal levels of CXCL10 were observed in body fluids of people
infected not only with viruses, but also with bacteria, fungi and parasites [51]. Elevated
levels of CXCL10 were observed in COVID-19 and were associated with a severe course
and progression of the disease, predicting ARDS and neurological complications (Yakutia
has higher levels of COVID-19) [35,52].

The key associations of the analyzed biomarkers are summarized in Table 1 and
Figure 3.

Table 1. Summary of the most different cytokines and respective key associations.

Cytokine Key Associations Relation to the Studied Regions References

CD40LG

Inflammation associated with viral infection Higher viral load in Yakutia [34]

Increases in patients with Viliui encephalomyelitis and
in healthy family members

Viliui encephalomyelitis occurs only in
the indigenous population of Yakutia [38]

IL27

Increases in patients with rheumatoid arthritis, systemic
lupus erythematosus, multiple sclerosis Less common in Yakutia [42]

Negatively correlated with HIV viral load Higher HIV incidence in Yakutia [42]

IL25

Activated eosinophils and basophils in allergy Fewer cases of allergy in Yakutia [43]

Development and severity of skin diseases
(dermatitis, psoriasis) Less common in Yakutia [43]

High level is a biomarker of cardiovascular disease risk Less common in Yakutia [43,44]

CCL4 Decreases in patients with type 1 and type 2 diabetes Fewer cases of both types in Yakutia [47]

CXCL10
Respiratory symptoms in viral diseases Higher viral load and more respiratory

diseases in Yakutia [50]

COVID-19 and its complications Higher levels of COVID-19 in Yakutia [52]

These inferences made, it should be kept in mind that this study refers to a single
limited-size group of participants from Yakutia, whereas no data from other populations
are available for direct comparison, to the best of our knowledge. Therefore, generalization
to the entire population has to be made with caution. Since chronic diseases in the acute
phase were an exclusion criterion, the possible relevance between the region-specific
inflammatory profiles and diseases is discussed in the context of open source general
statistics. Although we emphasize climate factors and morbidity statistics as the most
pronounced differences, the other region-specific socioeconomic factors, diet, water/air
quality, and so forth may also affect the immune status. The morbidity statistics for Central
Russia are associated with the Nizhny Novgorod region, since the absolute majority of
participants are its residents.
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physiology of multiple diseases. It is released in response to IFN-γ from CD4+, CD8+ and 
natural killer cells (estimates of CD8T and NK cell counts based on DNA methylation data 
are higher in Yakuts, as are the CXCL10 levels observed here) [2,49]. CXCL10 plays a key 
role in the development of respiratory symptoms in viral diseases (the population of Ya-
kutia is more susceptible to respiratory diseases and viral infections according to statistics) 
[35,50]. Abnormal levels of CXCL10 were observed in body fluids of people infected not 
only with viruses, but also with bacteria, fungi and parasites [51]. Elevated levels of 
CXCL10 were observed in COVID-19 and were associated with a severe course and pro-
gression of the disease, predicting ARDS and neurological complications (Yakutia has 
higher levels of COVID-19) [35,52]. 

The key associations of the analyzed biomarkers are summarized in Table 1 and Fig-
ure 3. 

 

Figure 3. Sankey plot presenting some key relationships between immunological biomarkers and
different body systems with the selected comorbidities. The immunomarkers are chosen as follows:
they are important for a deep classifier and at the same time have statistically significantly different
mean values of level distributions between the studied groups. The associations in the plot are based
on a literature review.

2.4. Sex-Specific Differences Inside and Between Regions

We also additionally investigated cytokine levels separately in men and women in
the studied regions. Age distributions in women and men were generally similar between
regions, with both sexes represented in all age groups (Figure 4A). We first examined sex
differences in immunologic profiles within each region using the Mann–Whitney U-test
(Figure 4B). In Central Russia, only one cytokine, IL18, was significantly different between
women and men; in Yakutia, none. Next, we compared women and men between regions
(Figure 4C). Here, the differences were more significant: 14 of 32 cytokines were significantly
different between the regions in women, and 10 of 32 cytokines were significantly different
in men. All 10 markers that differed significantly in men also differed significantly in
women. The female-specific cytokines were PDGFB, IL13, IL1RA, and TGFA. Noteworthy,
among the immunomarkers differing between sexes, all 14 were also significantly different
in the whole cohort study. IL5, IL15, IL8 differ when considering whole cohorts but do not
differ separately in men and women. All corresponding cytokine distributions in the four
studied subgroups are shown in Figure 4D.
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Figure 4. (A) Histograms of participant age distributions for women and men in Central Russia
(top) and Yakutia (bottom). (B) Results of Mann–Whitney U-test with FDR-corrected p-values for
women and men inside Central Russia (left) and Yakutia (right). Statistically significant features are
shown by the green bars. (C) Results of the Mann–Whitney U-test with FDR-corrected p-values for
women (left) and men (right) between the regions. Statistically significant features are shown by
green bars. (D) Violin plots showing the distributions of all immunological biomarker levels with the
FDR-corrected p-values of the pairwise Mann–Whitney U-tests for four groups: women and men
from Central Russia and Yakutia separately.

3. Discussion

This paper presents the results of a study of novel data on immunological profiles
(levels of 32 plasma cytokines) of a group of indigenous Yakuts that has not been previously
investigated. We compared their immunological profiles with those of Central Russian
counterparts who reside in a milder environment. Two approaches were employed to
identify differences in immunological profiles: statistical methods and explainable deep
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classifiers. We found that 17 cytokines display statistically significant differences in their
levels between the two groups. Most of them take higher levels in the Yakutian group. At
the same time, their levels manifest strongly overlapping distributions of values, and it
is impossible to discriminate between individual participants with respect to the groups
based on single biomarkers.

However, it turned out that the developed machine learning classifier based on
a deep DANet neural network can distinguish the participants from Yakutia and from
Central Russia, with a high accuracy (exceeding 95%). This suggests that the Yakutian
and Central Russia participants are characterized by specific multi-cytokine inflammatory
profiles. Explainable artificial intelligence approaches identified that the top-rated cytokines
in these profiles are CD40LG, IL27, IL25, CCL4, and CXCL10. These biomarkers were also
found to exhibit statistically significant differences.

3.1. Clinical and Practical Implications

All of these immunomarkers are directly related to the functioning of the immune
system and multiple processes associated with the activation of the immune response.
The existing literature suggests that the high levels of certain cytokines are related to
a higher incidence of certain diseases in the same region. Further investigation is required
to check this hypothesis, involving larger cohorts from representative populations. In
particular, the increased levels of CD40LG in Yakutia may be associated with a higher viral
load, and increased levels of IL27 in the Central region may be associated with a higher
HIV viral load and incidence of diseases of the musculoskeletal system and connective
tissue. Climate conditions in Yakutia, such as extremely low ambient temperatures, may
influence the high prevalence of viral diseases in Yakutia—their seasonality usually peaks
in winter [53,54], and antiviral nasal defense may be reduced under cold exposure [55]. The
associations of musculoskeletal diseases with environmental weather conditions are
quite heterogeneous [56,57]; however, high temperatures with low humidity have been
associated with increased gout symptoms [58]. Interestingly, a study of search queries
related to hip and knee pain showed a decrease in their number with decreasing temperatures
below negative values [59]. Elevated levels of IL25 in the Central region may be associated
with a higher incidence of skin diseases and circulatory diseases, and its decreased levels
in Yakutia—with digestive system diseases, which are highly prevalent among the native
Yakutia population [60]. Climate is one of the important factors for skin diseases—high
temperatures, humidity, UV levels, and air pollution are associated with the manifestation
and development of skin diseases such as psoriasis, dermatitis, and skin cancer and many
others [61–63]. Increased levels of CCL4 in Yakutia may be associated with a lower incidence
of diabetes and a higher incidence of nervous system diseases, and increased levels of
CXCL10 in Yakutia, with a higher incidence of respiratory diseases. Interestingly, it is
cold that may be one of the risk factors for some nervous system diseases [64], as well as
exacerbate respiratory symptoms [65]. Interestingly, the immunological biomarker CXCL9,
known to be the most associated with chronological age [22], is almost at the bottom
of the list and varies weakly among the analyzed cohorts. This may also imply that the
CXCL9-associated immunological component of aging is similar between populations.

The observed differences in cytokine levels may be related to the genotypes of the
populations studied. In particular, in a study of Canadian Aborigines living in northern
Canada in a rather cold climate, higher frequencies of single-nucleotide polymorphisms of
cytokines contributing to low IFNγ and TNFα production, as well as high IL-6 production,
were found compared to the Caucasian population. The authors linked these results to
the historical context in which these populations evolved: European populations that
experienced massive epidemics were selected for genotypes that support high levels of
IFNγ and TNFα expression, while the Aboriginal American population lived in areas
of low population density and were less exposed to infectious diseases [66]. A similar
situation could be observed for Siberian aboriginal populations. Currently, differences in the
microbial environment between European populations and Siberian aboriginal populations
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are decreasing due to close contacts over the past century, urbanization, and globalization
of lifestyle and diet. However, their genetic background may support an evolutionary
immunological profile.

The immunological profile can be also influenced by chronic viral infections that
do not manifest themselves but cause elevated antibody levels. In particular, chronic
hepatitis rates are higher in indigenous peoples of the North American Arctic zones than
in non-indigenous populations [67]. High levels of chronic hepatitis have also been found
in the Yakutian population [68]. As mass vaccination against hepatitis B began less than
40 years ago, older generations have a higher incidence of chronic hepatitis without clinical
manifestations.

3.2. Inflammaging

Surprisingly, the SImAge inflammatory clocks did not reveal a statistically significant
age acceleration between the groups. This may be due to the absence of a statistically
significant difference in the most important immunomarkers for SImAge (CXCL9, CCL22,
and IL6). Given the previous results indicating a consistent epigenetic age acceleration in
the Yakutian group [2], it can be conjectured that the employed epigenetic clocks reflect
some other mechanism of accelerated aging, activated in Yakuts and/or not strongly
associated with their inflammatory status. At the same time, six out of ten cytokines
in the SImAge clock (CD40LG, CXCL10, PDGFA, PDGFB, and VEGFA) are higher in
Yakutia than in Central Russia, and only one, IL27, is lower in Yakutia. This remodeling
of the inflammatory profile can be interpreted as an indication of a moderate trend
toward stronger inflammaging in the Yakutian population. Recent studies indicate that
different organs and systems may be characterized by their own clocks and different aging
rates [69,70]. In this regard, our results suggest that living and long-term adaptation in
extremely cold temperatures affects inflammatory and epigenetic levels differently; in
particular, leading to the inflammatory clock showing no significant acceleration, while the
epigenetic clock does. The underlying mechanism remains to be elucidated.

Elevated levels of pro-inflammatory immunomarkers may indicate chronic low-grade
inflammation and are often examined in the context of inflammaging. These markers
may be important for inflammatory clock models; in particular, the cytokine IL5 was
among the most important indicators contributing positively to the iAge inflammatory
age score [22] and the chemokine CXCL10 was involved in the CyClo model [27]. The
release of inflammatory cytokines IL18 [18] and CCL2 [71] has also been shown to occur
during inflammaging. All of the above immunomarkers have statistically higher values in
residents of Yakutia, which may also indicate signs of inflammaging in this cohort.

Altogether, the uncovered pronounced regional specificity of inflammatory profiles
on one hand, and only moderate traces of a stronger inflammaging among Yakuts on the
other, will inspire further investigations on this topic.

3.3. Confounding Factors

The human immune system is dynamic and responds to both internal and external
changes. Many factors can affect plasma cytokine and chemokine levels, both variable and
immutable. Among them, the following groups can be distinguished:

Genetic factors: There are many studies demonstrating the influence of genetic variants
on the biological mechanisms regulating cytokine levels, as well as on individual differences
in response to pathogens [72–76].

Evolutionary mechanisms: Studies of evolutionary mechanisms have shown their
influence on cytokine production and inheritance of cytokine pathways [77,78], and the
evolutionarily optimal immune response arises from the epidemiologic environment, life
cycle, and demography of the whole organism [79].

Climate factors: The immune system in general and mechanisms related to cytokine
production in particular can be influenced by a variety of climatic factors, including ambient
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temperature [80], UV exposure [81], humidity [82], climate change [83,84], water and air
pollution (sanitation problems in Yakutia were previously reported [85]).

Unhealthy habits: Cytokine profiles can be altered by constant negative exposures of
the body, including from unhealthy habits such as smoking and alcohol consumption [86–90].

Lifestyle: The conditions of a person’s daily life also imprint on immune status, such
as physical activity, nutrition, and sleep quality. Diet, gut microbiome, and the immune
system are closely linked, and studying the influence of an individual’s nutritional type
on their inflammatory status is of particular interest [78,86,91]. The cytokine profile and
immune response can be influenced by regular exercise, and even its effectiveness can be
monitored by the levels of individual cytokines [92,93]. Sleep regime can also be included
in this category, as sleep deprivation, in particular, can affect levels of inflammatory
immunomarkers [94].

Also potentially influencing immune status are access to medical care, socioeconomic
status, cultural background, and other factors. Thus, there is a wide range of factors that can
influence plasma cytokine and chemokine levels. A more in-depth study with additional
cohort information is of particular interest so that the influence of different cofactors can be
clearly separated.

3.4. Further Research Directions

Further studies could take several directions. First, it is of clear interest to test the
other models of inflammatory clocks, as well as to conduct a detailed investigation of
the divergence of immunological and epigenetic clocks, targeting epigenetic markers
associated with inflammatory status. Second, it is appealing to expand data collection
in Yakutia, also recording additional information on potential confounders, including
a comparative analysis of inflammatory status in extreme and non-extreme climates. Third,
it is challenging to broaden the geographic and evolutionary genetic context to include
other northern areas, such as northern Canada and Scandinavia, Alaska, Greenland, and
high mountainous areas, like the Andes and Tibet. Another promising issue is to address
the short-term adaptation from the proposed perspective.

3.5. Limitations

Several limitations have to be addressed.
Firstly, many specific details regarding phenotype and daily living conditions are

not available, due to the inherent difficulties associated with data collection in a remote
area. Factors potentially affecting immunologic profiles in extremely cold climates require
more detailed investigation.

There is an imbalance in the available data, given that fewer Yakut individuals
participated. However, this was taken into account when building the deep neural network
classifier.

The sample size of the data analyzed in this paper is limited, and the results should be
cautiously extrapolated to entire populations: (1) diversity and variability may be much
higher in the whole population than in a small sample; (2) an outlier in a small sample may
be an inlier in a large sample; (3) without information on factors that may affect cytokine
levels, there may be bias in the data; (4) there may not be enough data to reach statistical
significance for individual cytokines. The results of the classifier may change if the sample
size increases (either due to samples for these regions or data for other regions).

Immunological differences are the result of multiple factors, and climate is but one
among them; the detailed influence of others requires further study with more data.

Only two regions from the same country were compared. It would be of interest to
extend the analysis to include data from other parts of the world when similar data are
available in open access. It would then be possible to analyze the effects of different types
of climatic extremes on the immunological profiles and to identify the similarities and
differences between them.
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4. Materials and Methods
4.1. Data Collection

Participants were recruited as volunteers who responded to an invitation to participate
in the study following screening against the exclusion criteria. Efforts were made to
reduce heterogeneity in age and sex composition. All participants signed an informed
consent form explaining the purpose of the project, voluntary participation, confidentiality,
potential inconvenience, and details of the study procedure. Participation in the study
was not financially rewarded. All procedures performed in this study were free of charge
to volunteers. All participants filled out a consent form for the processing of personal
data, taking into account the principle of confidentiality, assuming accessibility only to the
research team and presentation of data in a common array. This study was approved by
the local ethical committee of Nizhny Novgorod State University. All study procedures
were conducted in accordance with the 1964 Declaration of Helsinki and its subsequent
amendments. Exclusion criteria included chronic diseases in the acute phase, oncologic
diseases, acute respiratory viral infections, and pregnancy. Diseases affect the levels of
pro-inflammatory and anti-inflammatory markers in the immunologic profile and may be
heterogeneous in their manifestations, which could have influenced the results.

The assay was performed on plasma using K3-EDTA anticoagulant, without hemolysis
and lipemia. Plasma was thawed, centrifuged (3000 rpm, 10 min) to remove debris, and
25 µL was collected in duplicate. Plasma with antibody-immobilized beads was incubated
with agitation on a shaker overnight (16–18 h) at 2–8 ◦C. The Luminex® assay was run
according to the manufacturer’s instructions using a 46-plex human cytokine panel (EMD
Millipore Corporation, Darmstadt, Germany, HCYTA-60 K-PX48). The assay plates were
measured using Magpix (Milliplex MAP). Data acquisition and analysis were performed
using the standard MAGPIX® software program set xPONENT version 4.2. Data quality
was examined based on the following criteria: the standard curve for each analyte had a 5P
R2 value > 0.95. To pass the assay technical quality control, the results for the two controls
in the kit needed to be within the 95% confidence interval (CI) provided by the vendor for
> 40 analyses tested. No further tests were performed on samples with results out of range
low (<OOR). Samples with results out of range high (>OOR) or greater than the standard
curve maximum value (SC max) were not tested at higher dilutions.

Data quality control was performed for both groups (Central Russia and Yakutia). Only
immunologic parameters, which had no missing values in the majority of samples, were
kept for analysis, which left us with 32 features. Data were also examined for the total
number of outliers. Outliers were defined by IQR (values of cytokine levels outside the
interval [Q1 − 1.5 × IQR; Q3 + 1.5 × IQR] were defined as outliers). Next, we counted the
number of features for which a sample was an outlier with a threshold of 25% (if at least
a quarter of the features in a particular sample were outliers, the sample was considered
an outlier). There were no such samples, so all were included in the analysis.

4.2. Statistical Analysis

The difference in the distribution of immunological biomarker levels in the studied
groups was tested using the Mann–Whitney U-test [95]. This is a nonparametric test for
comparing the results of two independent groups, which is used to test the probability that
two samples come from the same population, with a two-sided null hypothesis that the
two groups are not the same. The variance of the distributions of biomarker levels was
tested using the Levene test [96]. This is a nonparametric test, with a null hypothesis that
the variances(relative to median) are equal in the two groups. All obtained p-values were
FDR-corrected according to the Benjamini–Hochberg procedure [97].

4.3. Deep Neural Network Classifier

Immunological data is an example of a tabular data format, with columns containing
immunological biomarkers, rows containing participants, and a numerical value in each cell
representing the level of a particular immunological biomarker in a particular sample. The
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target variable here is the cohort (Yakutia or Central Russia), and we faced a binary
classification task. Already extracted features and the absence of spatial relationships
between them (like in images and texts, for example) characterize tabular data, so specialized
neural network architectures were developed to handle them.

To build a deep classifier that can separate representatives of Yakutia and Central
Russia by their immunological profile, we used lightweight architectures such as multilayer
perceptron (MLP), TabNet [98], Feature Tokenizer and Transformer (FT-Transformer) [99],
Gated Adaptive Network for Deep Automated Learning of Features (GANDALF) [100]
and Deep Abstract Network (DANet) [101]. MLP is one of the simplest neural network
architectures composed of several dense layers. TabNet consists of sequential modules,
each of which implements a sequential attention mechanism that selects the most relevant
features. FT-Transformer is an adaptation of the transformer architecture to tabular data.
GANDALF uses a new tabular processing unit with a gating mechanism and built-in Gated
Feature Learning Unit (GFLU) feature selection. DANet is focused on abstract layers, the
main idea of which is to group the correlated features and create higher-level abstract
features from them.

Before training the classifier, all data were divided into 2 parts: 80% for training/
validation and 20% for independent testing. When training the model, cross validation is
used, i.e., sequential division of the data into training and validation samples at a ratio
of 3 to 1, until all data are in the role of training and validation sets. Cross-validation
is necessary to determine the best combination of model hyperparameters to ensure the
highest classification accuracy. Since in the analyzed data there are more participants
from the Central region than participants from Yakutia, class imbalance techniques are
required to build a correct classifier. Weighted sampler ensures that the original class
distribution is preserved in the training, validation and test sets. All quality metrics used
for the machine learning model have macro averaging, which consists of simple averaging
without weighting factors, which allows classes to be considered equal despite an imbalance
in numbers. To avoid the model overfitting, we controlled the losses during the training and
validation data to stop the training early enough to prevent the model from memorizing
the data.

The final model results were calculated on a test set (not involved in any way in
the model training). A visual representation of the classifier results is the confusion
matrix, which shows the number of correctly and incorrectly classified samples of all
types. For a comprehensive assessment of the model quality, we considered the following
metrics: accuracy, F-1 score, precision, recall, specificity, AUROC, and Cohen’s kappa. Their
formulas are given below. All of these metrics were macro-averaged:

Accuracy =
TP + TN

TP + TN + FP + FN
,

F1 = 2
Precision × Recall
Precision + Recall

,

Precision =
TP

TP + FP
,

Recall =
TP

TP + FN
,

Speci f icity =
TN

TN + FP
,

Cohen′skappascore =
2 × (TP × TN − FN × FP)

(TP + FP)× (FP + TN) + (TP + FN)× (FN + TN)
,

where TP is true positive, FP is false positive, TN is true negative, and FN is false negative.
Deep neural network architectures are usually black boxes with opaque decision-

making principles. However, there is active development of explainable artificial intelligence
approaches that can explain why models make certain decisions, in particular, when
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classifying samples. One of the most common approaches is SHAP values, which use game
theory principles [102]. They are calculated for each sample and each feature and show
how a particular value changes the model’s final prediction. As a result, SHAP helps to
identify the features that contribute most to the final classifiers and which feature values
contribute to the probability of predicting a particular class.

5. Conclusions

The study presents the first report of cytokine profile data from the Yakut population
and a comparative analysis with the corresponding data from the Central Russian population.
Two main questions are addressed: differences in cytokine levels (by statistical tests and
by a deep neural network classifier) and the significance of inflammatory age acceleration
in Yakuts. Cytokines with statistically significant mean and variance differences were
found. Individual inflammatory profiles between the two groups were quite accurately
discriminated by an explainable deep neural network classifier. The difference in biological
age acceleration between the two cohorts on the SImAge clock was not statistically
significant, although higher levels of inflammatory cytokines positively correlating with
age in Yakuts may indicate a tendency toward inflammaging. Generally, the influence
of environmental factors on aging and age-related diseases is under active investigation
within the concept of the exposome. Inflammaging is one of the main mechanisms of
aging, and studying the contribution of environmental factors on inflammaging appears
challenging. The results of the study are one of the first steps in understanding this
relationship, and further research may focus on other conditions besides extreme cold,
such as a hot, humid and dry climate, as well as low pressure and oxygen levels at
high altitudes.
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