Exploring Drought Resistance Genes from the Roots of the Wheat Cultivar Yunhan1818
<p>DEGs under drought stress conditions in the roots of wheat cv. YH1818. (<b>a</b>) Number of DEGs after 20% PEG treatment and control. (<b>b</b>) Venn diagram of DEGs. C0, C2, C7: control (1/2 Hoagland’s culture mixture) at 0, 2, and 7 DAT; D0, D2, D7: drought stress (1/2 Hoagland’s culture mixture with 20% PEG-6000) at 0, 2, and 7 DAT, marked in red.</p> "> Figure 2
<p>WGCNA for DEGs responding to drought stress in wheat roots. (<b>a</b>) Cluster dendrogram and module colors of 8597 DEGs. (<b>b</b>) Heatmap of the relationships between the modules and drought treatment. Positive and negative correlations are represented in red and blue, respectively. Each cell lists the <span class="html-italic">p</span> value to indicate the significance of the correlation, and the cells with significant correlations are marked with yellow dashed boxes; * indicates <span class="html-italic">p</span> < 0.05, ** indicates <span class="html-italic">p</span> < 0.01, and **** indicates <span class="html-italic">p</span> < 0.0001 according to the Pearson test. C2, C7: control at 2 and 7 DAT; D2, D7: drought stress at 2 and 7 DAT; CD0: control or drought stress at 0 DAT.</p> "> Figure 3
<p>SNP loci of DEGs in drought-responsive modules. (<b>a</b>) Distribution of SNPs on wheat chromosomes. (<b>b</b>) The number of SNPs on each chromosome.</p> "> Figure 4
<p>Manhattan plot of association analysis between SNPs of drought stress-response module genes and drought-tolerant phenotypes of 114 wheat germplasms. The threshold is set to −log<sub>10</sub> <span class="html-italic">p</span> > 7. DTC: drought tolerance coefficient; PH: plant height; RL: root length; RN: root number; SFW: shoot fresh weight; RFW: root fresh weight; R/SFW: the ratio of RFW/SFW.</p> "> Figure 5
<p>Response of candidate genes to drought stress in the roots of wheat cv. YH1818. (<b>a</b>) Cluster diagram of the transcription data of 10 DEGs after PEG treatment. FPKM values were normalized by z-score to present different degrees of upregulation, with small upregulation changes appearing in blue and large upregulation changes appearing in red. (<b>b</b>) RT–qPCR results of 10 DEGs after drought stress. D: drought treatment; C: control. The bars indicate the standard error. * indicates <span class="html-italic">p</span> < 0.05, ** indicates <span class="html-italic">p</span> < 0.01, *** indicates <span class="html-italic">p</span> < 0.001, and **** indicates <span class="html-italic">p</span> < 0.0001 according to the <span class="html-italic">t</span> test.</p> "> Figure 6
<p>Two haplotypes of <span class="html-italic">TaARF7-A</span>. (<b>a</b>) Location of three SNPs 2A71380, 2A73196, and 2A74450 in the gene. Gray boxes indicate exons. (<b>b</b>,<b>c</b>) Phenotypic differences in DTC-RFW and DTC-R/SFW between Hap1 and Hap2. ** indicates <span class="html-italic">p</span> < 0.01 and *** indicates <span class="html-italic">p</span> < 0.001 according to a <span class="html-italic">t</span> test. (<b>d</b>) Distribution frequency of the two haplotypes in 114 wheat germplasms, including 63 landraces and 51 cultivars.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Transcriptional Response to Drought Stress in Wheat Roots
2.2. Coexpression Modules of Drought-Stress-Responsive Genes
2.3. Association Analysis Between DEGs and DTC
2.4. DEGs That Responding to Drought Stress
2.5. KASP Marker Validation of Candidate Gene TaARF7-A
3. Discussion
3.1. Modules That Responding Drought Stress
3.2. Candidate Genes in Red Module and Salmon Module
3.3. TaARF7-A Is Involved Drought Tolerance
4. Materials and Methods
4.1. Plant Materials and Drought Treatment
4.2. RNA-Seq
4.3. WGCNA
4.4. Association Analysis
4.5. RT-qPCR
4.6. KASP
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of Extreme Weather Disasters on Global Crop Production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, S.; Huggins, T.D.; Beecher, F.; Chick, C.; Sengodon, P.; Mondal, S.; Paudel, A.; Ibrahim, A.M.H.; Tilley, M.; Hays, D.B. The Role of Leaf Epicuticular Wax in the Adaptation of Wheat (Triticum aestivum L.) to High Temperatures and Moisture Deficit Conditions. Crop Sci. 2018, 58, 679–689. [Google Scholar] [CrossRef]
- He, J.; Li, C.; Hu, N.; Zhu, Y.; He, Z.; Sun, Y.; Wang, Z.; Wang, Y. ECERIFERUM1-6A is Required for the Synthesis of Cuticular Wax Alkanes and Promotes Drought Tolerance in Wheat. Plant Physiol. 2022, 190, 1640–1657. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic Strategies for Improving Crop Yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef]
- Yoshida, T.; Christmann, A.; Yamaguchi-Shinozaki, K.; Grill, E.; Fernie, A.R. Revisiting the Basal Role of ABA—Roles Outside of Stress. Trends Plant Sci. 2019, 24, 625–635. [Google Scholar] [CrossRef]
- Munemasa, S.; Hauser, F.; Park, J.; Waadt, R.; Brandt, B.; Schroeder, J.I. Mechanisms of Abscisic Acid-Mediated Control of Stomatal Aperture. Curr. Opin. Plant Biol. 2015, 28, 154–162. [Google Scholar] [CrossRef]
- Li, Z.; Lian, Y.; Gong, P.; Song, L.; Hu, J.; Pang, H.; Ren, Y.; Xin, Z.; Wang, Z.; Lin, T. Network of the Transcriptome and Metabolomics Reveals a Novel Regulation of Drought Resistance During Germination in Wheat. Ann. Bot. 2022, 130, 717–735. [Google Scholar] [CrossRef]
- Hu, L.; Lv, X.; Zhang, Y.; Du, W.; Fan, S.; Kong, L. Transcriptomic and Metabolomic Profiling of Root Tissue in Drought-Tolerant and Drought-Susceptible Wheat Genotypes in Response to Water Stress. Int. J. Mol. Sci. 2024, 25, 10430. [Google Scholar] [CrossRef]
- Iquebal, M.A.; Sharma, P.; Jasrotia, R.S.; Jaiswal, S.; Kaur, A.; Saroha, M.; Angadi, U.B.; Sheoran, S.; Singh, R.; Singh, G.P.; et al. RNA-seq Analysis Reveals Drought-Responsive Molecular Pathways with Candidate Genes and Putative Molecular Markers in Root Tissue of Wheat. Sci. Rep. 2019, 9, 13917. [Google Scholar] [CrossRef]
- Chaichi, M.; Sanjarian, F.; Razavi, K.; Gonzalez-Hernandez, J.L. Analysis of Transcriptional Responses in Root Tissue of Bread Wheat Landrace (Triticum aestivum L.) Reveals Drought Avoidance Mechanisms under Water Scarcity. PLoS ONE 2019, 14, e0212671. [Google Scholar] [CrossRef] [PubMed]
- Mia, M.S.; Liu, H.; Wang, X.; Zhang, C.; Yan, G. Root Transcriptome Profiling of Contrasting Wheat Genotypes Provides an Insight to Their Adaptive Strategies to Water Deficit. Sci. Rep. 2020, 10, 4854. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, R.; Wang, H.; Li, D.; Wang, X.; Zhang, Y.; Zhen, W.; Duan, H.; Yan, G.; Li, Y. Transcriptomics Analyses Reveal Wheat Responses to Drought Stress during Reproductive Stages under Field Conditions. Front. Plant Sci. 2017, 8, 592. [Google Scholar] [CrossRef] [PubMed]
- Xi, W.; Hao, C.; Li, T.; Wang, H.; Zhang, X. Transcriptome Analysis of Roots from Wheat (Triticum aestivum L.) Varieties in Response to Drought Stress. Int. J. Mol. Sci. 2023, 24, 7245. [Google Scholar] [CrossRef]
- Placido, D.F.; Sandhu, J.; Sato, S.J.; Nersesian, N.; Quach, T.; Clemente, T.E.; Staswick, P.E.; Walia, H. The LATERAL ROOT DENSITY Gene Regulates Root Growth During Water Stress in Wheat. Plant Biotechnol. J. 2020, 18, 1955–1968. [Google Scholar] [CrossRef]
- Ma, J.; Wang, Y.; Tang, X.; Zhao, D.; Zhang, D.; Li, C.; Li, W.; Li, T.; Jiang, L. TaSINA2B, Interacting with TaSINA1D, Positively Regulates Drought Tolerance and Root Growth in Wheat (Triticum aestivum L.). Plant Cell Environ. 2023, 46, 3760–3774. [Google Scholar] [CrossRef]
- Qiao, L.; Zhang, W.; Li, X.; Zhang, L.; Zhang, X.; Li, X.; Guo, H.; Ren, Y.; Zheng, J.; Chang, Z. Characterization and Expression Patterns of Auxin Response Factors in Wheat. Front. Plant Sci. 2018, 9, 1395. [Google Scholar] [CrossRef]
- Janiak, A.; Kwaśniewski, M.; Szarejko, I. Gene Expression Regulation in Roots Under Drought. J. Exp. Bot. 2016, 67, 1003–1014. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.H. Root Response to Drought Stress in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef]
- Yao, T.; Feng, K.; Xie, M.; Barros, J.; Tschaplinski, T.J.; Tuskan, G.A.; Muchero, W.; Chen, J.G. Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Front. Plant Sci. 2021, 12, 704697. [Google Scholar] [CrossRef]
- Wang, P.; Hsu, C.C.; Du, Y.; Zhu, P.; Zhao, C.; Fu, X.; Zhang, C.; Paez, J.S.; Macho, A.P.; Tao, W.A.; et al. Mapping Proteome-wide Targets of Protein Kinases in Plant Stress Responses. Proc. Natl. Acad. Sci. USA 2020, 117, 3270–3280. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ding, Y.; Yang, Y.; Song, C.; Wang, B.; Yang, S.; Guo, Y.; Gong, Z. Protein Kinases in Plant Responses to Drought, Salt, and Cold Stress. J. Integr. Plant Biol. 2021, 63, 53–78. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Zhang, H.; Tian, S.; Chang, X.; Jing, R. TaSnRK2.4, an SNF1-type Serine/Threonine Protein Kinase of Wheat (Triticum aestivum L.), Confers Enhanced Multi-Stress Tolerance in Arabidopsis. J. Exp. Bot. 2010, 61, 683–696. [Google Scholar] [CrossRef] [PubMed]
- Rampino, P.; De Pascali, M.; De Caroli, M.; Luvisi, A.; De Bellis, L.; Piro, G.; Perrotta, C. Td4IN2: A Drought-Responsive Durum Wheat (Triticum durum Desf.) Gene Coding for a Resistance Like Protein with Serine/Threonine Protein Kinase, Nucleotide Binding Site and Leucine Rich Domains. Plant Physiol. Biochem. 2017, 120, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Kang, L.; Li, Y.; Wu, C.; Zheng, C.; Liu, P.; Huang, J. RING Finger Protein RGLG1 and RGLG2 Negatively Modulate MAPKKK18 Mediated Drought Stress Tolerance in Arabidopsis. J. Integr. Plant Biol. 2021, 63, 484–493. [Google Scholar] [CrossRef]
- Gao, Y.Q.; Huang, J.Q.; Reyt, G.; Song, T.; Love, A.; Tiemessen, D.; Xue, P.Y.; Wu, W.K.; George, M.W.; Chen, X.Y.; et al. A Dirigent Protein Complex Directs Lignin Polymerization and Assembly of the Root Diffusion Barrier. Science 2023, 382, 464–471. [Google Scholar] [CrossRef]
- Mishra, S.; Sahu, G.; Shaw, B.P. Integrative Small RNA and Transcriptome Analysis Provides Insight into Key Role of miR408 Towards Drought Tolerance Response in Cowpea. Plant Cell Rep. 2022, 41, 75–94. [Google Scholar] [CrossRef]
- Sharma, N.K.; Yadav, S.; Gupta, S.K.; Irulappan, V.; Francis, A.; Senthil-Kumar, M.; Chattopadhyay, D. MicroRNA397 Regulates Tolerance to Drought and Fungal Infection by Regulating Lignin Deposition in Chickpea Root. Plant Cell Environ. 2023, 46, 3501–3517. [Google Scholar] [CrossRef]
- Hong, Z.; Xu, H.; Shen, Y.; Liu, C.; Guo, F.; Muhammad, S.; Zhang, Y.; Niu, H.; Li, S.; Zhou, W.; et al. Bioengineering for Robust Tolerance Against Cold and Drought Stresses via Co-Overexpressing Three Cu-miRNAs in Major Food Crops. Cell Rep. 2024, 43, 114828. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, P.; Lu, Y.; Bai, Y.; Wei, Y.; Liu, G.; Shi, H. MeRAV5 Promotes Drought Stress Resistance in Cassava by Modulating Hydrogen Peroxide and Lignin Accumulation. Plant J. 2021, 107, 847–860. [Google Scholar] [CrossRef]
- Han, G.; Qiao, Z.; Li, Y.; Wang, C.; Wang, B. The Roles of CCCH Zinc-Finger Proteins in Plant Abiotic Stress Tolerance. Int. J. Mol. Sci. 2021, 22, 8327. [Google Scholar] [CrossRef] [PubMed]
- Seong, S.Y.; Shim, J.S.; Bang, S.W.; Kim, J.K. Overexpression of OsC3H10, a CCCH-Zinc Finger, Improves Drought Tolerance in Rice by Regulating Stress-Related Genes. Plants 2020, 9, 1298. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, M.G.; Jan, A.; Ishizaki, T.; Valencia, M.; Dedicova, B.; Maruyama, K.; Ogata, T.; Todaka, D.; Yamaguchi-Shinozaki, K.; Nakashima, K.; et al. Expression of the CCCH-Tandem Zinc finger Protein Gene OsTZF5 Under a Stress-Inducible Promoter Mitigates the Effect of Drought Stress on Rice Grain Yield Under field Conditions. Plant Biotechnol. J. 2020, 18, 1711–1721. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.S.; Park, S.H.; Lee, D.K.; Kim, Y.S.; Park, S.C.; Redillas, M.C.F.R.; Seo, J.S.; Kim, J.K. The Rice GLYCINE-RICH PROTEIN 3 Confers Drought Tolerance by Regulating mRNA Stability of ROS Scavenging-Related Genes. Rice 2021, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.Y.; Wang, M.M.; Huang, J.; Tang, H.J.; Lan, H.X.; Zhang, H.S. The OsDHODH1 Gene is Involved in Salt and Drought Tolerance in Rice. J. Integr. Plant Biol. 2009, 51, 825–833. [Google Scholar] [CrossRef]
- Song, X.; Xiong, Y.; Kong, X.; Huang, G. Roles of Auxin Response Factors in Rice Development and Stress Responses. Plant Cell Environ. 2023, 46, 1075–1086. [Google Scholar] [CrossRef]
- Qiao, L.; Li, H.; Zheng, J.; Zhang, X. Towards a Better Understanding of Auxin Response Factors for Improving Cereal Crops. J. Integr. Agric. 2024, in press. [CrossRef]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 Increases Rice Yield Under Drought Conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef]
- Kang, C.; He, S.; Zhai, H.; Li, R.; Zhao, N.; Liu, Q. A Sweetpotato Auxin Response Factor Gene (IbARF5) Is Involved in Carotenoid Biosynthesis and Salt and Drought Tolerance in Transgenic Arabidopsis. Front. Plant Sci. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Shen, X.; He, J.; Ping, Y.; Guo, J.; Hou, N.; Cao, F.; Li, X.; Geng, D.; Wang, S.; Chen, P.; et al. The Positive Feedback Regulatory Loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 Mediates Drought Tolerance in Apple Trees. Plant Physiol. 2022, 188, 1686–1708. [Google Scholar] [CrossRef]
- El Mamoun, I.; Bouzroud, S.; Zouine, M.; Smouni, A. The Knockdown of AUXIN RESPONSE FACTOR 2 Confers Enhanced Tolerance to Salt and Drought Stresses in Tomato (Solanum lycopersicum L.). Plants 2023, 12, 2804. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, D.; Liu, S.; Fang, Z.; Su, S.; Guo, C.; Zhao, C.; Tang, Y. Comprehensive Atlas of Wheat (Triticum aestivum L.) AUXIN RESPONSE FACTOR Expression During Male Reproductive Development and Abiotic Stress. Front. Plant Sci. 2020, 11, 586144. [Google Scholar] [CrossRef] [PubMed]
- Pshenichnikova, T.A.; Osipova, S.V.; Smirnova, O.G.; Leonova, I.N.; Permyakova, M.D.; Permyakov, A.V.; Rudikovskaya, E.G.; Konstantinov, D.K.; Verkhoturov, V.V.; Lohwasser, U.; et al. Regions of Chromosome 2A of Bread Wheat (Triticum aestivum L.) Associated with Variation in Physiological and Agronomical Traits under Contrasting Water Regimes. Plants 2021, 10, 1023. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhang, L.; Liu, Y.; Shen, X.; Guo, Y.; Ma, X.; Zhang, X.; Li, X.; Cheng, T.; Wen, H.; et al. RNA-Seq-Based WGCNA and Association Analysis Reveal the Key Regulatory Module and Genes Responding to Salt Stress in Wheat Roots. Plants 2024, 13, 274. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Z. GAPIT Version 3: Boosting Power and Accuracy for Genomic Association and Prediction. Genom. Proteom. Bioinform. 2021, 19, 629–640. [Google Scholar] [CrossRef]
- Qiao, L.; Li, Y.; Wang, L.; Gu, C.; Luo, S.; Li, X.; Yan, J.; Lu, C.; Chang, Z.; Gao, W.; et al. Identification of Salt-Stress-Responding Genes by Weighted Gene Correlation Network Analysis and Association Analysis in Wheat Leaves. Plants 2024, 13, 2642. [Google Scholar] [CrossRef]
SNP-ID | Position (IWGSC v1.0) | Trait | p-Value | Gene | Module |
---|---|---|---|---|---|
2D01736 | chr.2D:153001736 | DTC-RL | 1.55 × 10−7 | TraesCS2D02G201400 | Red |
2B02916 | chr.2B:248102916 | DTC-SFW | 1.42 × 10−7 | TraesCS2B02G244000 | Salmon |
2B02985 | chr.2B:248102985 | DTC-SFW | 3.76 × 10−8 | TraesCS2B02G244000 | Salmon |
3A80441 | chr.3A:749280441 | DTC-SFW | 1.81 × 10−7 | TraesCS3A02G537700 | Red |
1D43275 | chr.1D:34943275 | DTC-RFW | 1.39 × 10−7 | TraesCS1D02G053700 | Red |
2A71380 | chr.2A:755771380 | DTC-RFW | 2.36 × 10−7 | TraesCS2A02G547800 | Salmon |
3A39906 | chr.3A:569639906 | DTC-RFW | 5.32 × 10−8 | TraesCS3A02G325100 | Red |
3A40640 | chr.3A:569640640 | DTC-RFW | 5.04 × 10−8 | TraesCS3A02G325100 | Red |
5A80484 | chr.5A:138080484 | DTC-RFW | 6.72 × 10−8 | TraesCS5A02G097300 | Salmon |
1A39018 | chr.1A:24339018 | DTC-R/SFW | 3.13 × 10−9 | TraesCS1A02G043900 | Red |
1A39019 | chr.1A:24339019 | DTC-R/SFW | 3.13 × 10−9 | TraesCS1A02G043900 | Red |
2A71380 | chr.2A:755771380 | DTC-R/SFW | 1.25 × 10−11 | TraesCS2A02G547800 | Salmon |
2A73196 | chr.2A:755773196 | DTC-R/SFW | 1.07 × 10−8 | TraesCS2A02G547800 | Salmon |
2A74450 | chr.2A:755774450 | DTC-R/SFW | 2.33 × 10−8 | TraesCS2A02G547800 | Salmon |
3A60070 | chr.3A:8260070 | DTC-R/SFW | 1.93 × 10−7 | TraesCS3A02G008900 | Red |
3A60135 | chr.3A:8260135 | DTC-R/SFW | 3.49 × 10−8 | TraesCS3A02G008900 | Red |
7A22098 | chr.7A:727722098 | DTC-R/SFW | 3.07 × 10−9 | TraesCS7A02G556200 | Salmon |
7A22246 | chr.7A:727722246 | DTC-R/SFW | 3.90 × 10−8 | TraesCS7A02G556200 | Salmon |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, L.; Chang, L.; Kai, M.; Zhang, X.; Kang, T.; Wu, L.; Zhang, X.; Li, X.; Zhao, J.; Zhao, Z.; et al. Exploring Drought Resistance Genes from the Roots of the Wheat Cultivar Yunhan1818. Int. J. Mol. Sci. 2024, 25, 13458. https://doi.org/10.3390/ijms252413458
Qiao L, Chang L, Kai M, Zhang X, Kang T, Wu L, Zhang X, Li X, Zhao J, Zhao Z, et al. Exploring Drought Resistance Genes from the Roots of the Wheat Cultivar Yunhan1818. International Journal of Molecular Sciences. 2024; 25(24):13458. https://doi.org/10.3390/ijms252413458
Chicago/Turabian StyleQiao, Linyi, Lifang Chang, Mengxiang Kai, Xueqi Zhang, Tingting Kang, Lijuan Wu, Xiaojun Zhang, Xin Li, Jiajia Zhao, Zhiyong Zhao, and et al. 2024. "Exploring Drought Resistance Genes from the Roots of the Wheat Cultivar Yunhan1818" International Journal of Molecular Sciences 25, no. 24: 13458. https://doi.org/10.3390/ijms252413458
APA StyleQiao, L., Chang, L., Kai, M., Zhang, X., Kang, T., Wu, L., Zhang, X., Li, X., Zhao, J., Zhao, Z., & Zheng, J. (2024). Exploring Drought Resistance Genes from the Roots of the Wheat Cultivar Yunhan1818. International Journal of Molecular Sciences, 25(24), 13458. https://doi.org/10.3390/ijms252413458