Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice
Abstract
:1. Introduction
2. Classification and Characteristics of Promoters in Rice
2.1. Constitutive Promoters
2.2. Tissue-Specific Promoters
2.2.1. Root-Specific Promoters
2.2.2. Green Tissue-Specific Promoters
2.2.3. Anther and Pollen-Specific Promoters
2.2.4. Seed-Specific Promoters
2.2.5. Tissue-Specific CREs
2.3. Inducible Promoters
2.3.1. Inducible Promoters by Physical Factors
2.3.2. Inducible Promoters by Chemical Factors
2.3.3. Multi-Factor Inducible Promoters
2.3.4. CREs in Inducible Promoters
3. Applications of Promoters and CREs in the Regulation of Cd Tolerance and Accumulation in Rice
4. Conclusions and Outlook
Funding
Acknowledgments
Conflicts of Interest
References
- Khanam, R.; Kumar, A.; Nayak, A.K.; Shahid, M.; Tripathi, R.; Vijayakumar, S.; Bhaduri, D.; Kumar, U.; Mohanty, S.; Panneerselvam, P.; et al. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. Sci. Total Environ. 2020, 699, 134330. [Google Scholar] [CrossRef] [PubMed]
- Shaari, N.E.M.; Tajudin, M.T.F.M.; Khandaker, M.M.; Majrashi, A.; Alenazi, M.M.; Abdullahi, U.A.; Mohd, K.S. Cadmium toxicity symptoms and uptake mechanism in plants: A review. Braz. J. Biol. 2022, 84, e252143. [Google Scholar] [CrossRef] [PubMed]
- Peera Sheikh Kulsum, P.G.; Khanam, R.; Das, S.; Nayak, A.K.; Tack, F.M.G.; Meers, E.; Vithanage, M.; Shahid, M.; Kumar, A.; Chakraborty, S.; et al. A state-of-the-art review on cadmium uptake, toxicity, and tolerance in rice: From physiological response to remediation process. Environ. Res. 2023, 220, 115098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.J. The World Agricultural Product Supply and Demand Situation Forecast briefing in September 2024. World Agric. 2024, 10, 135–138. [Google Scholar]
- FAO. Report of Rice Production in the Asia-Pacific Region: Issues and Perspectives by Papademetriou; FAO: Rome, Italy, 2017. [Google Scholar]
- Hussain, B.; Umer, M.J.; Li, J.; Ma, Y.; Abbas, Y.; Ashraf, M.N.; Tahir, N.; Ullah, A.; Gogoi, N.; Farooq, M. Strategies for reducing cadmium accumulation in rice grains. J. Clean. Prod. 2021, 286, 125557. [Google Scholar] [CrossRef]
- Hussain, B.; Lin, Q.; Hamid, Y.; Sanaullah, M.; Di, L.; Hashmi, M.L.U.R.; Khan, M.B.; He, Z.; Yang, X. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ. 2020, 712, 136497. [Google Scholar] [CrossRef]
- Jiang, M.; Jiang, J.; Li, S.; Li, M.; Tan, Y.; Song, S.; Shu, Q.; Huang, J. Glutamate alleviates cadmium toxicity in rice via suppressing cadmium uptake and translocation. J. Hazard. Mater. 2020, 384, 121319. [Google Scholar] [CrossRef]
- Chen, D.; Ye, X.; Zhang, Q.; Xiao, W.; Ni, Z.; Yang, L.; Zhao, S.; Hu, J.; Gao, N.; Huang, M. The effect of sepiolite application on rice Cd uptake—A two-year field study in Southern China. J. Environ. Manag. 2020, 254, 109788. [Google Scholar] [CrossRef]
- Wu, S.; Yang, Y.; Qin, Y.; Deng, X.; Zhang, Q.; Zou, D.; Zeng, Q. Cichorium intybus L. is a potential Cd-accumulator for phytoremediation of agricultural soil with strong tolerance and detoxification to Cd. J. Hazard. Mater. 2023, 451, 131182. [Google Scholar] [CrossRef]
- Arao, T.; Kawasaki, A.; Baba, K.; Mori, S.; Matsumoto, S. Effects of water management on cadmium and arsenic accumulation and dimethylarsinic acid concentrations in japanese rice. Environ. Sci. Technol. 2009, 43, 9361–9367. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.; Yang, Y.; Fu, G.; Tao, L.; Xiong, J. Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa). Sci. Total Environ. 2022, 846, 157484. [Google Scholar] [CrossRef] [PubMed]
- Hussain, B.; Ashraf, M.N.; Shafeeq-Ur-Rahman Abbas, A.; Li, J.; Farooq, M. Cadmium stress in paddy fields: Effects of soil conditions and remediation strategies. Sci. Total Environ. 2021, 754, 142188. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhu, Y.; Yu, L.; Yang, M.; Zou, X.; Yin, C.; Lin, Y. Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.). Cells 2022, 11, 569. [Google Scholar] [CrossRef]
- Dey, N.; Sarkar, S.; Acharya, S.; Maiti, I.B. Synthetic promoters in planta. Planta 2015, 242, 1077–1094. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Cui, P.; Zhang, B.; Zhu, J.; Liu, C.; Li, Q. Binding of the transcription factor MYC2-like to the ABRE of the OsCYP2 promoter enhances salt tolerance in Oryza sativa. PLoS ONE 2022, 17, e0276075. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, J.; Zhao, D.; Liu, Q.; Yang, Q.; Zhang, T. Targeting Cis-Regulatory Elements for Rice Grain Quality Improvement. Front. Plant Sci. 2021, 12, 705834. [Google Scholar] [CrossRef]
- Shao, J.F.; Xia, J.; Yamaji, N.; Shen, R.F.; Ma, J.F. Effective reduction of cadmium accumulation in rice grain by expressing OsHMA3 under the control of the OsHMA2 promoter. J. Exp. Bot. 2018, 69, 2743–2752. [Google Scholar] [CrossRef]
- Yocca, A.E.; Edger, P.P. Current status and future perspectives on the evolution of cis-regulatory elements in plants. Curr. Opin. Plant Biol. 2022, 65, 102139. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, R.J.; Grotewold, E.; Stam, M. Cis-regulatory sequences in plants: Their importance, discovery, and future challenges. Plant Cell 2022, 34, 718–741. [Google Scholar] [CrossRef]
- Ali, S.; Kim, W.C. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. Front. Plant Sci. 2019, 10, 1433. [Google Scholar] [CrossRef]
- Al-Kaff, N.S.; Kreike, M.M.; Covey, S.N.; Pitcher, R.; Page, A.M.; Dale, P.J. Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nat. Biotechnol. 2000, 18, 995–999. [Google Scholar] [CrossRef] [PubMed]
- McElroy, D.; Zhang, W.; Cao, J.; Wu, R. Isolation of an efficient actin promoter for use in rice transformation. Plant Cell 1990, 2, 163–171. [Google Scholar]
- Wang, Y.; Zhang, W.; Cao, J.; McElroy, D.; Wu, R. Characterization of cis-acting elements regulating transcription from the promoter of a constitutively active rice actin gene. Mol. Cell Biol. 1992, 12, 3399–3406. [Google Scholar]
- Cornejo, M.J.; Luth, D.; Blankenship, K.M.; Anderson, O.D.; Blechl, A.E. Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol. Biol. 1993, 23, 567–581. [Google Scholar] [CrossRef]
- Xu, D.; Duan, X.; Wang, B.; Hong, B.; Ho, T.; Wu, R. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 1996, 110, 249–257. [Google Scholar] [CrossRef]
- Bhattacharyya, J.; Chowdhury, A.H.; Ray, S.; Jha, J.K.; Das, S.; Gayen, S.; Chakraborty, A.; Mitra, J.; Maiti, M.K.; Basu, A.; et al. Native polyubiquitin promoter of rice provides increased constitutive expression in stable transgenic rice plants. Plant Cell Rep. 2012, 31, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Yi, N.; Kim, Y.S.; Jeong, M.H.; Bang, S.W.; Choi, Y.D.; Kim, J.K. Analysis of five novel putative constitutive gene promoters in transgenic rice plants. J. Exp. Bot. 2010, 61, 2459–2467. [Google Scholar] [CrossRef]
- Kummari, D.; Palakolanu, S.R.; Kishor, P.B.K.; Bhatnagar-Mathur, P.; Singam, P.; Vadez, V.; Sharma, K.K. An update and perspectives on the use of promoters in plant genetic engineering. J. Biosci. 2020, 45, 119. [Google Scholar] [CrossRef]
- Yasmeen, E.; Wang, J.; Riaz, M.; Zhang, L.; Zuo, K. Designing artificial synthetic promoters for accurate, smart, and versatile gene expression in plants. Plant Commun. 2023, 4, 100558. [Google Scholar] [CrossRef]
- Shrestha, A.; Khan, A.; Dey, N. Cis-trans engineering: Advances and perspectives on customized transcriptional regulation in plants. Mol. Plant 2018, 11, 886–898. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, J.H.; Poindexter, M.R.; Shao, Y.; Liu, W.; Lenaghan, S.C.; Ahkami, A.H.; Blumwald, E.; Stewart, C.N. Rational design and testing of abiotic stress-inducible synthetic promoters from poplar cis-regulatory elements. Plant Biotechnol. J. 2021, 19, 1354–1369. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Liu, Y.; Zhu, Y.; Chen, S.; Du, Y.; Deng, L.; Liu, L.; Li, X.; Chen, W.; Xu, Z.; et al. Transcription factor OsWRKY11 induces rice heading at low concentrations but inhibits rice heading at high concentrations. J. Integr. Plant Biol. 2024, 66, 1385–1407. [Google Scholar] [CrossRef] [PubMed]
- Yaschenko, A.E.; Fenech, M.; Mazzoni-Putman, S.; Alonso, J.M.; Stepanova, A.N. Deciphering the molecular basis of tissue-specific gene expression in plants: Can synthetic biology help? Curr. Opin. Plant Biol. 2022, 68, 102241. [Google Scholar] [CrossRef] [PubMed]
- Bughio, N.; Yamaguchi, H.; Nishizawa, N.K.; Nakanishi, H.; Mori, S. Cloning an iron-regulated metal transporter from rice. J. Exp. Bot. 2002, 53, 1677–1682. [Google Scholar] [CrossRef]
- Ueno, D.; Yamaji, N.; Kono, I.; Huang, C.F.; Ando, T.; Yano, M.; Ma, J.F. Gene limiting cadmium accumulation in rice. Proc. Natl. Acad. Sci. USA 2010, 107, 16500–16505. [Google Scholar] [CrossRef]
- Sasaki, A.; Yamaji, N.; Yokosho, K.; Ma, J.F. Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 2012, 24, 2155–2167. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Yamaji, N.; Mitani, N.; Konishi, S.; Katsuhara, M.; Ishiguro, M.; Murata, Y.; Yano, M. A silicon transporter in rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef]
- Ma, J.F.; Yamaji, N.; Mitani, N.; Tamai, K.; Konishi, S.; Fujiwara, T.; Katsuhara, M.; Yano, M. An efflux transporter of silicon in rice. Nature 2007, 448, 209–212. [Google Scholar] [CrossRef]
- Ai, P.; Sun, S.; Zhao, J.; Fan, X.; Xin, W.; Guo, Q.; Yu, L.; Shen, Q.; Wu, P.; Miller, A.J.; et al. Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J. 2009, 57, 798–809. [Google Scholar] [CrossRef]
- Kamiya, N.; Nagasaki, H.; Morikami, A.; Sato, Y.; Matsuoka, M. Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J. 2003, 35, 429–441. [Google Scholar] [CrossRef]
- Zhao, Y.; Hu, Y.; Dai, M.; Huang, L.; Zhou, D.X. The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 2009, 21, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.M.; Park, S.H.; Je, B.I.; Park, S.H.; Park, S.J.; Piao, H.L.; Eun, M.Y.; Dolan, L.; Han, C.D. OsCSLD1, a cellulose synthase-like D1 gene, is required for root hair morphogenesis in rice. Plant Physiol. 2007, 143, 1220–1230. [Google Scholar] [CrossRef]
- Won, S.K.; Choi, S.B.; Kumari, S.; Cho, M.; Lee, S.H.; Cho, H.T. Root hair-specific EXPANSIN B genes have been selected for Graminaceae root hairs. Mol. Cells 2010, 30, 369–376. [Google Scholar] [CrossRef]
- Yu, Z.; Kang, B.; He, X.; Lv, S.; Bai, Y.; Ding, W.; Chen, M.; Cho, H.-T.; Wu, P. Root hair-specific expansins modulate root hair elongation in rice. Plant J. 2011, 66, 725–734. [Google Scholar]
- Puig, J.; Meynard, D.; Khong, G.N.; Pauluzzi, G.; Guiderdoni, E.; Gantet, P. Analysis of the expression of the AGL17-like clade of MADS-box transcription factors in rice. Gene Expr. Patterns 2013, 13, 160–170. [Google Scholar] [CrossRef]
- Apriana, A.; Sisharmini, A.; Aswidinnoor, H.; Trijatmiko, K.R.; Sudarsono, S. Promoter deletion analysis reveals root-specific expression of the alkenal reductase gene (OsAER1) in Oryza sativa. Funct. Plant Biol. 2019, 46, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Mustafiz, A.; Sarkar, A.K.; Ariyadasa, T.U.; Singla-Pareek, S.L.; Sopory, S.K. Expression of abiotic stress inducible ETHE1-like protein from rice is higher in roots and is regulated by calcium. Physiol. Plant. 2014, 152, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Kudo, T.; Makita, N.; Kojima, M.; Tokunaga, H.; Sakakibara, H. Cytokinin activity of cis-zeatin and phenotypic alterations induced by overexpression of putative cis-Zeatin-O-glucosyltransferase in rice. Plant Physiol. 2012, 160, 319–331. [Google Scholar] [CrossRef]
- Cai, M.; Wei, J.; Li, X.; Xu, C.; Wang, S. A rice promoter containing both novel positive and negative cis-elements for regulation of green tissue-specific gene expression in transgenic plants. Plant Biotechnol. J. 2007, 5, 664–674. [Google Scholar] [CrossRef]
- Thilmony, R.; Guttman, M.; Thomson, J.G.; Blechl, A.E. The LP2 leucine-rich repeat receptor kinase gene promoter directs organ-specific, light-responsive expression in transgenic rice. Plant Biotechnol. J. 2009, 7, 867–882. [Google Scholar] [CrossRef]
- Ye, R.; Zhou, F.; Lin, Y. Two novel positive cis-regulatory elements involved in green tissue-specific promoter activity in rice (Oryza sativa L. ssp.). Plant Cell Rep. 2012, 31, 1159–1172. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Long, Y.; Zhao, Z.; Huang, G.; Huang, K.; Zhang, T.; Jiang, Y.; Yuan, Q.; Pei, X. Isolation and characterization of a green-tissue promoter from common wild rice (Oryza rufipogon Griff.). Int. J. Mol. Sci. 2018, 19, 2009. [Google Scholar] [CrossRef]
- Lin, M.; Yan, J.; Ali, M.M.; Wang, S.; Tian, S.; Chen, F.; Lin, Z. Isolation and Functional Characterization of a Green-Tissue Promoter in Japonica Rice (Oryza sativa subsp. Japonica). Biology 2022, 11, 1092. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Yan, W.; Peng, X.; Chen, Z.; Xu, C.; Wu, J.; Deng, X.W.; Tang, X. Identification of late-stage pollen-specific promoters for construction of pollen-inactivation system in rice. J. Integr. Plant Biol. 2020, 62, 1246–1263. [Google Scholar] [CrossRef] [PubMed]
- Niu, B.; Zhang, Z.; Zhang, J.; Zhou, Y.; Chen, C. The rice LEC1-like transcription factor OsNF-YB9 interacts with SPK, an endosperm-specific sucrose synthase protein kinase, and functions in seed development. Plant J. 2021, 106, 1233–1246. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Yuan, T.; Duan, L.; Li, X.; Wang, S. Identification of potential protein regulators bound to the tissue-specific positive and negative cis-acting elements of a green tissue-specific promoter in rice. Plant Biol. 2008, 10, 771–777. [Google Scholar] [CrossRef]
- Song, X.; Wang, L.; Fu, B.; Li, S.; Wei, Y.; Hong, Y.; Dai, S. Advances in identification and synthesis of promoter elements in higher plants. Bull. Bot. 2024, 59, 691–708. [Google Scholar]
- You, J.; Zong, W.; Li, X.; Ning, J.; Hu, H.; Li, X.; Xiao, J.; Xiong, L. The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice. J. Exp. Bot. 2013, 64, 569–583. [Google Scholar] [CrossRef]
- Hu, H.; Dai, M.; Yao, J.; Xiao, B.; Li, X.; Zhang, Q.; Xiong, L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc. Natl. Acad. Sci. USA 2006, 103, 12987–12992. [Google Scholar] [CrossRef]
- Yi, N.; Kim, Y.S.; Jeong, M.H.; Oh, S.J.; Jeong, J.S.; Park, S.H.; Jung, H.; Choi, Y.D.; Kim, J.K. Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth. Planta 2010, 232, 743–754. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Vij, S.; Tyagi, A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc. Natl. Acad. Sci. USA 2004, 101, 6309–6314. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wang, L.; Xu, Y.; Chen, N.; Ma, Q.; Li, F.; Chong, K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice. Planta 2007, 226, 1007–1016. [Google Scholar] [CrossRef] [PubMed]
- Su, C.F.; Wang, Y.C.; Hsieh, T.H.; Lu, C.A.; Tseng, T.H.; Yu, S.M.; Su, C.F.; Wang, Y.C.; Hsieh, T.H. A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol. 2010, 153, 145–158. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Qin, R.; Xu, R.; Li, H.; Yang, Y.; Li, L.; Wei, P.; Yang, J. Isolation and identification of five cold-inducible promoters from Oryza sativa. Planta 2018, 247, 99–111. [Google Scholar] [CrossRef]
- Maestri, E.; Klueva, N.; Perrotta, C.; Gulli, M.; Nguyen, H.T.; Marmiroli, N. Molecular genetics of heat tolerance and heat shock proteins in cereals. Plant Mol. Biol. 2002, 48, 667–681. [Google Scholar] [CrossRef]
- Ul Haq, S.; Khan, A.; Ali, M.; Khattak, A.M.; Gai, W.X.; Zhang, H.X.; Wei, A.M.; Gong, Z.H. Heat shock proteins: Dynamic biomolecules to counter plant biotic and abiotic stresses. Int. J. Mol. Sci. 2019, 20, 5321. [Google Scholar] [CrossRef]
- Guan, J.C.; Jinn, T.L.; Yeh, C.H.; Feng, S.P.; Chen, Y.M.; Lin, C.Y. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol. 2004, 56, 795–809. [Google Scholar] [CrossRef]
- Jung, K.H.; Gho, H.J.; Nguyen, M.X.; Kim, S.R.; An, G. Genome-wide expression analysis of HSP70 family genes in rice and identification of a cytosolic HSP70 gene highly induced under heat stress. Funct. Integr. Genom. 2013, 13, 391–402. [Google Scholar] [CrossRef]
- Rerksiri, W.; Zhang, X.; Xiong, H.; Chen, X. Expression and promoter analysis of six heat stress-inducible genes in rice. Sci. World J. 2013, 2013, 397401. [Google Scholar] [CrossRef]
- Li, J.; Qin, R.Y.; Li, H.; Xu, R.F.; Qiu, C.H.; Sun, Y.C.; Ma, H.; Yang, Y.C.; Ni, D.H.; Li, L.; et al. Identification and analysis of the mechanism underlying heat-inducible expression of rice aconitase 1. Plant Sci. 2015, 233, 22–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Zou, B.; Lu, S.; Ding, Y.; Liu, H.; Hua, J. Expression and promoter analysis of the OsHSP16.9C gene in rice. Biochem. Biophys. Res. Commun. 2016, 479, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, J.; Yang, Y.; Jiang, C.; Guo, Y. Designing salt stress-resilient crops: Current progress and future challenges. J. Integr. Plant Biol. 2024, 66, 303–329. [Google Scholar] [CrossRef]
- Huang, J.; Yang, X.; Wang, M.M.; Tang, H.J.; Ding, L.Y.; Shen, Y.; Zhang, H.S. A novel rice C2H2-type zinc finger protein lacking DLN-box/EAR-motif plays a role in salt tolerance. Biochim. Biophys. Acta 2007, 1769, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Schippers, J.H.; Mieulet, D.; Obata, T.; Fernie, A.R.; Guiderdoni, E.; Mueller-Roeber, B. MULTIPASS, a rice R2R3-type MYB transcription factor, regulates adaptive growth by integrating multiple hormonal pathways. Plant J. 2013, 76, 258–273. [Google Scholar] [CrossRef]
- Duan, Y.B.; Li, J.; Qin, R.Y.; Xu, R.F.; Li, H.; Yang, Y.C.; Ma, H.; Li, L.; Wei, P.C.; Yang, J.B. Identification of a regulatory element responsible for salt induction of rice OsRAV2 through ex situ and in situ promoter analysis. Plant Mol. Biol. 2016, 90, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, S.B.; Han, C.S.; Lim, M.N.; Lee, S.E.; Yoon, I.S.; Hwang, Y.S. Dissection of cis-regulatory element architecture of the rice oleosin gene promoters to assess abscisic acid responsiveness in suspension-cultured rice cells. J. Plant Physiol. 2017, 215, 20–29. [Google Scholar] [CrossRef]
- Kim, J.H.; Jung, I.J.; Kim, D.Y.; Fanata, W.I.; Son, B.H.; Yoo, J.Y.; Harmoko, R.; Ko, K.S.; Moon, C.J.; Jang, H.H.; et al. Proteomic identification of an embryo-specific 1Cys-Prx promoter and analysis of its activity in transgenic rice. Biochem. Biophys. Res. Commun. 2011, 408, 78–83. [Google Scholar] [CrossRef]
- Qiu, C.H.; Li, H.; Li, J.; Qin, R.Y.; Xu, R.F.; Yang, Y.C.; Ma, H.; Song, F.S.; Li, L.; Wei, P.C.; et al. Isolation and characterization of three cadmium-inducible promoters from Oryza sativa. J. Biotechnol. 2015, 216, 11–19. [Google Scholar] [CrossRef]
- Das, N.; Bhattacharya, S.; Bhattacharyya, S.; Maiti, M.K. Expression of rice MATE family transporter OsMATE2 modulates arsenic accumulation in tobacco and rice. Plant Mol. Biol. 2018, 98, 101–120. [Google Scholar] [CrossRef]
- Wang, F.Z.; Chen, M.X.; Yu, L.J.; Xie, L.J.; Yuan, L.B.; Qi, H.; Xiao, M.; Guo, W.; Chen, Z.; Yi, K.; et al. OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. Front. Plant Sci. 2017, 8, 1868. [Google Scholar] [CrossRef]
- Feng, B.; Xiong, J.; Tao, L. How rice plants response to abiotic stresses. Int. J. Mol. Sci. 2023, 24, 12806. [Google Scholar] [CrossRef] [PubMed]
- Nakashima, K.; Jan, A.; Todaka, D.; Maruyama, K.; Goto, S.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Comparative functional analysis of six drought-responsive promoters in transgenic rice. Planta 2014, 239, 47–60. [Google Scholar] [CrossRef]
- Hu, H.; You, J.; Fang, Y.; Zhu, X.; Qi, Z.; Xiong, L. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol. 2008, 67, 169–181. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, M.; Roychoudhury, A.; Sarkar, S.N.; Sengupta, D.N.; Datta, S.K.; Datta, K. Inducibility of three salinity/abscisic acid-regulated promoters in transgenic rice with gusA reporter gene. Plant Cell Rep. 2011, 30, 1617–1625. [Google Scholar] [CrossRef]
- Rai, M.; He, C.; Wu, R. Comparative functional analysis of three abiotic stress-inducible promoters in transgenic rice. Transgenic Res. 2009, 18, 787–799. [Google Scholar] [CrossRef]
- Dong, C.J.; Wang, Y.; Yu, S.S.; Liu, J.Y. Characterization of a novel rice metallothionein gene promoter: Its tissue specificity and heavy metal responsiveness. J. Integr. Plant Biol. 2010, 52, 914–924. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.; Maruyama, K.; Todaka, D.; Kidokoro, S.; Abo, M.; Yoshimura, E.; Shinozaki, K.; Nakashima, K.; Yamaguchi-Shinozaki, K. OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol. 2013, 161, 1202–1216. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.; Wu, T.M.; Pérez-Díaz, R.; Ruíz-Lara, S.; Hong, C.Y.; Casaretto, J.A. Organ- and stress-specific expression of the ASR genes in rice. Plant Cell Rep. 2014, 33, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Zhang, Y.; Chai, T. Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring heavy metal responsiveness. Plant Physiol. 2007, 143, 50–59. [Google Scholar] [CrossRef]
- Kobayashi, T.; Nakayama, Y.; Itai, R.N.; Nakanishi, H.; Yoshihara, T.; Mori, S.; Nishizawa, N.K. Identification of novel cis-acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants. Plant J. 2003, 36, 780–793. [Google Scholar] [CrossRef]
- Yamaji, N.; Xia, J.; Mitani-Ueno, N.; Yokosho, K.; Ma, J.F. Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant Physiol. 2013, 162, 927–939. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Zeng, M.; Wang, J.; Zeng, Z.; Dai, J.; Xie, Z.; Yang, Y.; Tian, L.; Chen, L.; Li, D. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice. Front. Plant Sci. 2018, 9, 476. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Zhu, Y.; Fan, T.; Peng, C.; Wang, J.; Sun, L.; Chen, C. OsZIP7 functions in xylem loading in roots and inter-vascular transfer in nodes to deliver Zn/Cd to grain in rice. Biochem. Biophys. Res. Commun. 2019, 512, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.; Duan, L.; Pruneda-Paz, J.L.; Oh, D.H.; Pound, M.; Kay, S.; Dinneny, J.R. The 6xABRE synthetic promoter enables the spatiotemporal analysis of ABA-mediated transcriptional regulation. Plant Physiol. 2018, 177, 1650–1665. [Google Scholar] [CrossRef] [PubMed]
- Jameel, A.; Noman, M.; Liu, W.; Ahmad, N.; Wang, F.; Li, X.; Li, H. Tinkering cis motifs jigsaw puzzle led to root-specific drought-inducible novel synthetic promoters. Int. J. Mol. Sci. 2020, 21, 1357. [Google Scholar] [CrossRef] [PubMed]
- Ge, H.; Li, X.; Chen, S.; Zhang, M.; Liu, Z.; Wang, J.; Li, X.; Yang, Y. The expression of CARK1 or RCAR11 driven by synthetic promoters increases drought tolerance in Arabidopsis thaliana. Int. J. Mol. Sci. 2018, 19, 1945. [Google Scholar] [CrossRef]
- Albertos, P.; Dündar, G.; Schenk, P.; Carrera, S.; Cavelius, P.; Sieberer, T.; Poppenberger, B. Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. EMBO J. 2022, 41, e108664. [Google Scholar] [CrossRef]
- Maruyama, K.; Ogata, T.; Kanamori, N.; Yoshiwara, K.; Goto, S.; Yamamoto, Y.Y.; Tokoro, Y.; Noda, C.; Takaki, Y.; Urawa, H.; et al. Design of an optimal promoter involved in the heat-induced transcriptional pathway in Arabidopsis, soybean, rice and maize. Plant J. 2017, 89, 671–680. [Google Scholar] [CrossRef]
- Bai, J.; Wang, X.; Wu, H.; Ling, F.; Zhao, Y.; Lin, Y.; Wang, R. Comprehensive construction strategy of bidirectional green tissue-specific synthetic promoters. Plant Biotechnol. J. 2020, 18, 668–678. [Google Scholar] [CrossRef]
- Danila, F.; Schreiber, T.; Ermakova, M.; Hua, L.; Vlad, D.; Lo, S.F.; Chen, Y.S.; Lambret-Frotte, J.; Hermanns, A.S.; Athmer, B.; et al. A single promoter-TALE system for tissue-specific and tuneable expression of multiple genes in rice. Plant Biotechnol. J. 2022, 20, 1786–1806. [Google Scholar] [CrossRef]
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
OsIRT1 | LOC_Os03g46470 | Os03g0667500 | Root | https://doi.org/10.1093/jxb/erf004 |
OsHMA3 | LOC_Os07g12900 | Os07g0232900 | Root | https://doi.org/10.1073/pnas.1005396107 |
Nramp5 | LOC_Os07g15370 | Os07g0257200 | Root | https://doi.org/10.1105/tpc.112.096925 |
Lsi1 | LOC_Os02g51110 | Os02g0745100 | Lateral root | https://doi.org/10.1038/nature04590 |
Lsi2 | LOC_Os03g01700 | Os03g0107300 | Lateral root | https://doi.org/10.1038/nature05964 |
OsPT2 | LOC_Os03g05640 | Os03g0150800 | Stele of primary and lateral roots | https://doi.org/10.1111/j.1365-313X.2008.03726.x |
OsPT6 | LOC_Os08g45000 | Os08g0564000 | Both epidermal and cortical cells of the younger primary | https://doi.org/10.1111/j.1365-313X.2008.03726.x |
QHB | LOC_Os01g63510 | Os01g0854500 | Root tip | https://doi.org/10.1046/j.1365-313x.2003.01816.x |
WOX11 | LOC_Os07g48560 | Os07g0684900 | Root tip and cell division zones of primary and lateral roots | https://doi.org/10.1105/tpc.108.061655 |
OsCSLD1 | LOC_Os10g42750 | Os10g0578200 | Root hair | https://doi.org/10.1104/pp.106.091546 |
OsEXPB5 | LOC_Os04g46650 | Os04g0552200 | Root hair | https://doi.org/10.1007/s10059-010-0127-7 |
OsEXPA17 | LOC_Os06g01920 | Os06g0108600 | Root hair | https://doi.org/10.1111/j.1365-313X.2011.04533.x |
OsMADS25 | LOC_Os04g23910 | Os04g0304400 | Root’s central cylinder | https://doi.org/10.1016/j.gep.2013.02.004 |
OsMADS27 | LOC_Os02g36924 | Os02g0579600 | Root’s central cylinder | https://doi.org/10.1016/j.gep.2013.02.004 |
OsETHE1 | LOC_Os01g47690 | Os01g0667200 | Root | https://doi.org/10.1111/ppl.12147 |
OsAER1 | Root | https://doi.org/10.1071/FP18237 |
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
cZOGT1 | LOC_Os04g46980 | Os04g0556500 | Leaf blade | https://doi.org/10.1104/pp.112.196733 |
cZOGT2 | LOC_Os04g46990 | Os04g0556600 | Leaf blade | https://doi.org/10.1104/pp.112.196733 |
OsCHLH | LOC_Os03g20700 | Os03g0323200 | Green tissue | https://doi.org/10.1093/pcp/pcg064 |
D54O | LOC_Os08g10020 | Os08g0200300 | Green tissue | https://doi.org/10.1111/j.1467-7652.2007.00271.x |
LP2 | LOC_Os02g40240 | Os02g0615800 | Green tissue | https://doi.org/10.1111/j.1467-7652.2009.00449.x |
DX1 | LOC_Os12g33120 | Os12g0515800 | Green tissue | https://doi.org/10.1007/s00299-012-1238-8 |
OrGSE | Green tissue | https://doi.org/10.3390/ijms19072009 | ||
Os8GSX7 | LOC_Os01g35580 | Os01g0538000 | Green tissue | https://doi.org/10.3390/biology11081092 |
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
OsCP1 | LOC_Os04g57490 | Os04g0670500 | Anther | https://doi.org/10.1023/B:PLAN.0000040904.15329.29 |
OsSCP1 | LOC_Os01g06490 | Os01g0158200 | Anther | https://doi.org/10.1007/s00299-005-0077-2 |
OsSCP2 | LOC_Os01g11670 | Os01g0215100 | Anther | https://doi.org/10.1007/s00299-005-0077-2 |
OsSCP3 | LOC_Os01g22980 | Os01g0332800 | Anther | https://doi.org/10.1007/s00299-005-0077-2 |
CYP703A3 | LOC_Os08g03682 | Os08g0131100 | Anther | https://doi.org/10.1105/tpc.108.062935 |
KAR | LOC_Os12g13930 | Os12g0242700 | Anther | https://doi.org/10.1105/tpc.108.062935 |
CYP704B2 | LOC_Os03g07250 | Os03g0168600 | Anther | https://doi.org/10.1105/tpc.109.070326 |
OsLSP4 | LOC_Os02g50770 | Os02g0741200 | Anther | https://doi.org/10.1007/s00497-014-0239-x |
OsLSP6 | LOC_Os01g69020 | Os01g0919200 | Anther | https://doi.org/10.1007/s00497-014-0239-x |
OsLSP7 | LOC_Os05g46530 | Os05g0543000 | Anther | https://doi.org/10.1007/s00497-014-0239-x |
OsLSP8 | LOC_Os07g14340 | Os07g0247000 | Anther | https://doi.org/10.1007/s00497-014-0239-x |
OsLSP9 | LOC_Os04g25190 | Os04g0317800 | Anther | https://doi.org/10.1007/s00497-014-0239-x |
OsLSP1 | LOC_Os02g09540 | Os02g0188600 | Anther | https://doi.org/10.1111/jipb.12912 |
OsLSP2 | LOC_Os01g68540 | Os01g0913600 | Anther | https://doi.org/10.1111/jipb.12912 |
OsLSP3 | LOC_Os10g21110 | Os10g0351700 | Anther | https://doi.org/10.1111/jipb.12912 |
OsSUT3 | LOC_Os10g26470 | Os10g0404500 | Anther | https://doi.org/10.3390/ijms21061909 |
OsHFP | LOC_Os04g13540 | Os04g0213100 | Anther-specific | https://doi.org/10.1016/j.bbrc.2012.08.088 |
OsLTP6 | LOC_Os10g05720 | Os10g0148000 | Anther-specific | https://doi.org/10.1038/nrg3583 |
OsIPP3 | LOC_Os05g46530 | Os05g0543000 | Anther-specific | https://doi.org/10.1007/s00497-015-0264-4 |
RTS | LOC_Os01g70440 | Os01g0929600 | Anther’s tapetum | https://doi.org/10.1007/s11103-006-9031-0 |
OSRIP18 | LOC_Os07g37090 | Os07g0556800 | Anther’s tapetum | https://doi.org/10.1007/s11103-006-9031-0 |
RIP1 | LOC_Os12g03822 | Os12g0132400 | Pollen | https://doi.org/10.1093/pcp/pcl013 |
MADS62 | LOC_Os08g38590 | Os08g0494100 | Pollen | https://doi.org/10.1038/nrg3583 |
MADS63 | LOC_Os06g11970 | Os06g0223300 | Pollen | https://doi.org/10.1038/nrg3583 |
MADS68 | LOC_Os11g43740 | Os11g0658700 | Pollen | https://doi.org/10.1038/nrg3583 |
OsUgp2 | LOC_Os02g02560 | Os02g0117700 | Pollen-specific | https://doi.org/10.1007/s11033-010-0553-9 |
OSIPA | Pollen-specific | https://doi.org/10.1007/s12033-010-9347-5 |
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
RSUS3 | LOC_Os07g42490 | Os07g0616800 | Endosperm | https://doi.org/10.1007/s00299-006-0158-x |
GluA-1 | LOC_Os01g55690 | Os01g0762500 | Endosperm | https://doi.org/10.1093/jxb/ern110 |
GluA-2 | LOC_Os10g26060 | Os10g0400200 | Endosperm | https://doi.org/10.1093/jxb/ern110 |
GluA-3 | LOC_Os03g31360 | Os03g0427300 | Endosperm | https://doi.org/10.1093/jxb/ern110 |
GluB-5 | LOC_Os02g16820 | Os02g0268100 | Endosperm | https://doi.org/10.1093/jxb/ern110 |
GluB-3 | Endosperm | https://doi.org/10.1093/jxb/ern110 | ||
GluC | LOC_Os02g25640 | Os02g0453600 | Endosperm | https://doi.org/10.1093/jxb/ern110 https://doi.org/10.1007/s00122-010-1386-6 |
OsSSII-3 | LOC_Os06g12450 | Os06g0229800 | Endosperm | https://doi.org/10.1002/jsfa.6230 |
GluB-1 | LOC_Os02g15178/ LOC_Os02g15169 | Os02g0249800/ Os02g0249900 | Endosperm close to the embryo | https://doi.org/10.1111/j.1467-7652.2004.00055.x https://doi.org/10.1073/pnas.0503428102 |
GluB-2 | LOC_Os02g15070 | Os02g0248800 | Endosperm | https://doi.org/10.1111/j.1467-7652.2004.00055.x |
GluB-4 | LOC_Os02g16830 | Os02g0268300 | Endosperm | https://doi.org/10.1111/j.1467-7652.2004.00055.x |
PG5a | LOC_Os05g26386/ LOC_Os05g26377 | Os05g0329100 | Outer portion of the endosperm | https://doi.org/10.1111/j.1467-7652.2004.00055.x |
Glb-1 | LOC_Os05g41970 | Os05g0499100 | Inner starchy endosperm tissue | https://doi.org/10.1111/j.1467-7652.2004.00055.x |
AL1 | LOC_Os01g28474 | Os01g0382200 | Aleurone layer of endosperm | https://doi.org/10.1007/s11103-011-9765-1 |
OLE18 | LOC_Os03g49190 | Os03g0699000 | Embryo and aleurone layer | https://doi.org/10.1111/j.1467-7652.2004.00055.x |
1Cys-Prx | LOC_Os07g44430 | Os07g0638300 | Embryo | https://doi.org/10.1016/j.bbrc.2011.03.120 |
OsNF-YB7 | LOC_Os02g49370 | Os02g0725700 | Embryo | https://doi.org/10.1111/tpj.15230 |
OsRRM | LOC_Os09g34070 | Os09g0516300 | Endosperm | https://doi.org/10.1038/cr.2007.43 |
OsNF-YB1 | LOC_Os02g49410 | Os02g0725900 | Endosperm | https://doi.org/10.1016/j.gene.2014.08.059 |
Plant Tissue | Cis-Acting Element |
---|---|
Root | RSE, ROOTMOTIFTAPOX1, RHERPATEXPA7, tef-box, TGA1a, MYCCONSENSUSAT, SORLIP1AT, RAV1AAT, LEAFYATAG, SURECOREATSULTR11, P1BS, SP8BFIBSP8AIB, 141NTG13, AUXREPSIAA4, OSE 1-ROOTNODULE, OSE2ROOTNODULE, WUSATAg, and XYLAT |
Stem/Tuber | ABF, as-2-box, BBOXSITE1STPAT, TSSR |
Leaf | GATFLK, LPSE1, PSE1, GRA, RAV1, TCCAAAA motifs |
Chlorenchyma | GEAT, GSE1, and GSE2 |
Other tissues (vascular bundle, guard cell, etc.) | ACIIIPVPAL2, BS1, DOF binding sites, LPSRE1 |
Flower | AGAMOUSAT, AGL 1, CArG-box, TACPyAT and CHS promoter core fragments (PCCHS, LCHS), GATA-box, CACT-box, CACG-box, MYBPLANT, MYB26PS |
Pollen | PS region, POLLEN1LELAT52, POLLEN1, GTGANTG10, VOZ binding sequence, GTGA-box, telo-box, A9 and TA29 promoter fragments, anther box |
Fruitage | TAAAG motif, E-box, SEF binding site, AGTTAGG, TGTCACA and SlHDC-A core promoter regions |
Grain | Skn-1, RY motif, O2 site, E-box, AACACORE, ABAD, AMYBOX1, CAREOSREP1, EM, ESP, GLMHVCHORD, Sph element, TGACGT motif, A 27 zn, Glb 1, GCN 4 motif, CANBNNAPA, CATGTAA |
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
SNAC1 | LOC_Os03g60080 | Os03g0815100 | Drought-inducible | https://doi.org/10.1073/pnas.0604882103 |
OsSRO1c | LOC_Os03g12820 | Os03g0230300 | Drought-inducible | https://doi.org/10.1093/jxb/ers349 |
Rab21 | LOC_Os11g26790 | Os11g0454300 | Drought-inducible | https://doi.org/10.1007/s00425-010-1212-z |
Wsi18 | LOC_Os01g50910 | Os01g0705200 | Drought-inducible | https://doi.org/10.1007/s00425-010-1212-z |
Lea3 | LOC_Os05g46480 | Os05g0542500 | Drought-inducible | https://doi.org/10.1007/s00425-010-1212-z |
Uge1 | LOC_Os05g51670 | Os05g0595100 | Drought-inducible | https://doi.org/10.1007/s00425-010-1212-z |
Dip1 | LOC_Os02g44870 | Os02g0669100 | Drought-inducible | https://doi.org/10.1007/s00425-010-1212-z |
R1G1B | LOC_Os05g04700 | Os05g0138300 | Drought-inducible | https://doi.org/10.1007/s00425-010-1212-z |
MYBS3 | LOC_Os10g41200 | Os10g0561400 | Cold-inducible | https://doi.org/10.1104/pp.110.153015 |
OsABA8ox1 | LOC_Os02g47470 | Os02g0703600 | Cold-inducible | https://doi.org/10.1007/s00425-017-2765-x |
OsMYB1R35 | LOC_Os04g49450 | Os04g0583900 | Cold-inducible | https://doi.org/10.1007/s00425-017-2765-x |
OsERF104 | LOC_Os08g36920 | Os08g0474000 | Cold-inducible | https://doi.org/10.1007/s00425-017-2765-x |
OsCYP19-4 | LOC_Os06g49470 | Os06g0708400 | Cold-inducible | https://doi.org/10.1007/s00425-017-2765-x |
OsABCB5 | LOC_Os01g50100 | Os01g0695800 | Cold-inducible | https://doi.org/10.1007/s00425-017-2765-x |
Oshsp16.9A | LOC_Os01g04370 | Os01g0136100 | Heat-inducible | https://doi.org/10.1007/s11103-004-5182-z |
OsctHsp70-1 | LOC_Os05g38530 | Os05g0460000 | Heat-inducible | https://doi.org/10.1007/s10142-013-0331-6 |
OsHsfB2c | LOC_Os09g35790 | Os09g0526600 | Heat-inducible | https://doi.org/10.1155/2013/397401 |
AWPM-19 | LOC_Os05g31670 | Os05g0381400 | Heat-inducible | https://doi.org/10.1155/2013/397401 |
Hsp90 | LOC_Os04g01740 | Os04g0107900 | Heat-inducible | https://doi.org/10.1155/2013/397401 |
OsACO1 | LOC_Os03g04410 | Os03g0136900 | Heat-inducible | https://doi.org/10.1016/j.plantsci.2015.01.003 |
OsHSP16.9C | LOC_Os01g04360 | Os01g0136000 | Heat-inducible | https://doi.org/10.1016/j.bbrc.2016.09.056 |
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
ZFP182 | LOC_Os03g60560 | Os03g0820300 | Salt-inducible | https://doi.org/10.1007/s11033-010-0553-9 |
OsRAV2 | LOC_Os01g04800 | Os01g0141000 | Salt-inducible | https://doi.org/10.1007/s11103-015-0393-z |
OsMPS | LOC_Os02g40530 | Os02g0618400 | Salt-inducible | https://doi.org/10.1111/tpj.12286 |
1Cys-Prx | LOC_Os07g44430 | Os07g0638300 | ABA-inducible | https://doi.org/10.1016/j.bbrc.2011.03.120 |
OsOle5 | LOC_Os03g49190 | Os03g0699000 | ABA-inducible | https://doi.org/10.1016/j.jplph.2017.04.015 |
OsHSP18.6 | LOC Os03g16030 | Os03g0267000 | Cd-inducible | https://doi.org/10.1016/j.jbiotec.2015.09.037 |
OsGSTU5 | LOC Os09g20220 | Os09g0367700 | Cd-inducible | https://doi.org/10.1016/j.jbiotec.2015.09.037 |
OsGSTU37 | LOC Os01g72150 | Os01g0949900 | Cd-inducible | https://doi.org/10.1016/j.jbiotec.2015.09.037 |
OsARM1 | LOC_Os05g37060 | Os05g0442400 | As-inducible | https://doi.org/10.3389/fpls.2017.01868 |
Gene | Gene ID (MSU_RGAP) | Gene ID (RAP) | Expression Location | Reference |
---|---|---|---|---|
LIP9 | LOC_Os02g44870 | Os02g0669100 | Drought, salinity, and ABA stress-inducible | https://doi.org/10.1007/s00425-013-1960-7 |
OsNAC6 | LOC_Os01g66120 | Os01g0884300 | Drought, salinity, and ABA stress-inducible | https://doi.org/10.1007/s00425-013-1960-7 |
OsLEA14a | LOC_Os01g50910 | Os01g0705200 | Drought, salinity, and ABA stress-inducible | https://doi.org/10.1007/s00425-013-1960-7 |
OsRAB16D | LOC_Os11g26780 | Os11g0454200 | Drought, salinity, and ABA stress-inducible | https://doi.org/10.1007/s00425-013-1960-7 |
Oshox24 | LOC_Os02g43330 | Os02g0649300 | Drought, salinity, and ABA stress-inducible | https://doi.org/10.1007/s00425-013-1960-7 |
OsLEA3-1 | LOC_Os05g46480 | Os05g0542500 | Drought, salinity, and ABA stress-inducible | https://doi.org/10.1007/s00425-013-1960-7; https://doi.org/10.1007/s00122-007-0538-9 |
SNAC2 | LOC_Os01g66120 | Os01g0884300 | Drought, salt, cold, wound stress-inducible | https://doi.org/10.1007/s11103-008-9309-5 |
Rab16A/RAB21 | LOC_Os11g26790 | Os11g0454300 | Salt and ABA-inducible | https://doi.org/10.1007/s00299-011-1072-4 https://doi.org/10.1007/s11248-009-9263-2 |
OsMT-I-4b | LOC_Os12g38051 | Os12g0568200 | Drought, salt, ABA, heavy metal and dark stress-inducible | https://doi.org/10.1111/j.1744-7909.2010.00966.x |
OsHsfB2c | LOC_Os09g35790 | Os09g0526600 | High heat stress-inducible, weak drought stress-inducible | https://doi.org/10.1155/2013/397401 |
HSP90 | LOC_Os02g04650 | Os02g0139100 | High heat stress-inducible, weak drought stress-inducible | https://doi.org/10.1155/2013/397401 |
PM19 | LOC_Os05g31670 | Os05g0381400 | High heat stress-inducible, weak drought stress-inducible | https://doi.org/10.1155/2013/397401 |
Oshsp17.3 | LOC_Os03g16020 | Os03g0266900 | Heat and Aze treatment-inducible | https://doi.org/10.1007/s11103-004-5182-z |
Oshsp18.0 | LOC_Os03g16030 | Os03g0267000 | Heat and Aze treatment-inducible | https://doi.org/10.1007/s11103-004-5182-z |
OsTZF1 | LOC_Os05g10670 | Os05g0195200 | ABA, NaCl inducible | https://doi.org/10.1104/pp.112.205385 |
OsASR1 | LOC_Os01g72900 | Os01g0959100 | Dehydration and low temperature-inducible | https://doi.org/10.1007/s00299-013-1512-4 |
OsASR5 | LOC_Os01g72900 | Os01g0959100 | Dehydration and low temperature-inducible | https://doi.org/10.1007/s00299-013-1512-4 |
Response Type | Cis-Acting Element | |
---|---|---|
Physical factor | Drought stress | RSE, ROOTMOTIFTAPOX1, RHERPATEXPA7, tef-box, TGA1a, MYCCONSENSUSAT, SORLIP1AT, RAV1AAT, LEAFYATAG, SURECOREATSULTR11, P1BS (Root hairs), SP8BFIBSP8AIB (Block root), 141NTG13 (Root tip), AUXREPSIAA4 (Root tip), OSE 1-ROOTNODULE (Root nodule-infected cells), OSE2ROOTNODULE (Root nodule-infected cells), WUSATAg (Apical meristem), and XYLAT (Core xylem) |
Temperature stress | DRE, CARGATCONSENSUS, CBF, CRT, LTRE, TCA-like, CAT-box, HSE, and GAATTC | |
Drought stress | ABAD, ABRE, ACGT, DRE, EMBP 1, MYB 1, MYB 2 and SRENTTTO1, NACR/HDZFR, MYBR/MYR, MBS, Erd 1, TC-rich repeat, GT1 motif, E-box, and STRE | |
Chemical factor | Salt stress | GT-1 |
Auxin | RE, AuxRE, TGA elements, conjugation elements CE1, and CE3 | |
Abscisic acid | ABRE, ABRC, ABRERATCAL, ABRELATERD1, coupled elements CEs, and STRE | |
Phytokinin | CANBNNAPA, MYBGAHV, and CARG 1 | |
Gibberellin | GARE motif and as-1-like | |
Jasmonic | 20NTNTNOS, JASE 1, JERE, T/G-box, ACG motif, and as-1-like | |
Ethylene | EIN 3, EREGCC, ERE, GCCCORE, YREGIONNTPRB1B, and Y regions | |
Salicylic acid | AS1, LS5, LS7, SARECAMV, and TCA 1 motifs | |
Heavy metal induction | MRE-like | |
Iron deficiency | IDE1, IDE2 | |
Cu | GTAC | |
Multiple factors | LTRE, CRT, MYBR, DRE, MYC-like, G-box, MYCR, as-1-like, TC-rich repeats, W-box, PRE2, H-box, E-box, |
Synthetic Promoter Name | cis-Element | Expression Pattern | Function | Reference |
---|---|---|---|---|
6×ABRE SP | ABRE | ABAt inducible | ABA inducible | https://doi.org/10.1104/pp.18.00401 |
Ap; Dp; ANDp | DRE; ABRE; TATA; CAAT | Stress inducible | ABA/drought inducible | https://doi.org/10.3390/ijms19071945 |
ZmDRO1B73 | cis elements from maize | Mainly in roots | ABA/drought inducible | https://doi.org/10.1111/pbi.13889 |
TGAC; ACGT | Salt, ABA inducible | https://doi.org/10.1038/s41598-019-38757-7 | ||
SP-DD; SP-FF; SP-FFDD | F element; D box | Ascochyta rabiei, JA/SA inducible | https://doi.org/10.1186/s13568-019-0919-x | |
BL1; BL2 | AGATA; AGATG, etc. | Stress inducible | Drought stress inducible | https://doi.org/10.3839/jabc.2021.007 |
SP1; SP2; SP3 | MYBPLANT; MYBPZM; E2FANTRNR; RAV1AT; SORLIP5 | Drought inducible | https://doi.org/10.1071/FP21314 | |
SynP15; SynP16; SynP18; | ABRE; MYB; E2F-VARIANT, etc. | Root specific | Root specific, drought inducible | https://doi.org/10.3390/ijms21041357 |
pKANADI- MotifSYNTHETIC; pKANADI- MotifSYNTHETIC; pWRKY- MotifSYNTHETIC; | Root specific | Cell type-specific (Root epidermis and cortical cell-specific) | https://doi.org/10.1105/tpc.20.00154 | |
STAP | EBE; TATA, etc. | Controlled and specific expression | Controllable-specific cell-type expression | https://doi.org/10.1111/pbi.13864 |
cor15A+HSE | HSE | Specific in individual cells of plant seedlings or roots | Cell type-specific | https://doi.org/10.1111/tpj.13420 |
GSSP1; GSSP3; GSSP5; GSSP6; GSSP7 | G Box; GT1; GEAT | Green tissue specific | Green tissue specific | https://doi.org/10.1038/srep18256 |
BiGSSP2; BiGSSP3; BiGSSP6; BiGSSP7; | Rca; Ppask; LP2; G box; GATA; GEAT, etc. | Green tissue specific | Bidirectional expression in green tissues | https://doi.org/10.1111/pbi.13231 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Mo, Q.; Cai, Z.; Jiang, Q.; Zhou, D.; Yi, J. Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice. Int. J. Mol. Sci. 2024, 25, 13237. https://doi.org/10.3390/ijms252413237
Xu X, Mo Q, Cai Z, Jiang Q, Zhou D, Yi J. Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice. International Journal of Molecular Sciences. 2024; 25(24):13237. https://doi.org/10.3390/ijms252413237
Chicago/Turabian StyleXu, Xinxin, Qingxian Mo, Zebin Cai, Qing Jiang, Danman Zhou, and Jicai Yi. 2024. "Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice" International Journal of Molecular Sciences 25, no. 24: 13237. https://doi.org/10.3390/ijms252413237
APA StyleXu, X., Mo, Q., Cai, Z., Jiang, Q., Zhou, D., & Yi, J. (2024). Promoters, Key Cis-Regulatory Elements, and Their Potential Applications in Regulation of Cadmium (Cd) in Rice. International Journal of Molecular Sciences, 25(24), 13237. https://doi.org/10.3390/ijms252413237