DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana
<p>Methylation levels of gene coding regions in <span class="html-italic">A. thaliana</span> autonomous pathway. Ellipses: genes with methylation related to flowering time and leaf number; Rectangles: gene coding regions universally methylated in the 27 <span class="html-italic">A. thaliana</span> accessions but not related to flowering time or leaf number; and Hexagons: gene coding regions generally not methylated in 27 <span class="html-italic">A. thaliana</span> accessions and not related to flowering time or leaf number.</p> "> Figure 2
<p>Correlation plot of methylation levels of the coding regions of <span class="html-italic">A. thaliana</span> autonomous pathway genes, flowering time and leaf number. mC: total number of methylated sites of coding regions.</p> "> Figure 3
<p>Relative expression levels of the <span class="html-italic">FVE</span> (<b>A</b>), <span class="html-italic">FY</span> (<b>B</b>), <span class="html-italic">FLD</span> (<b>C</b>), <span class="html-italic">PEP</span> (<b>D</b>), <span class="html-italic">HDA5</span> (<b>E</b>) and <span class="html-italic">PRP39-1</span> (<b>F</b>) genes and correlations with coding region methylation levels among Col-0, Br-0 and Tscha-1 (<b>G</b>–<b>L</b>). The different letters indicate significant differences among the different accessions, <span class="html-italic">p</span> < 0.05.</p> "> Figure 4
<p>Expression analysis of <span class="html-italic">FVE</span>(<span class="html-italic">CS</span>) and <span class="html-italic">FVE</span> in <span class="html-italic">fve-3</span> and their flowering phenotype. (<b>A</b>), Construction of <span class="html-italic">FVE</span> and <span class="html-italic">FVE</span>(<span class="html-italic">CS</span>) plant expression vectors; (<b>B</b>), Phenotypes of six-week-old seedlings of Col-0, <span class="html-italic">fve-3</span>+p<span class="html-italic">FVE</span>::<span class="html-italic">FVE</span>(<span class="html-italic">CS</span>), <span class="html-italic">fve-3</span>+p<span class="html-italic">FVE</span>::<span class="html-italic">FVE</span> and <span class="html-italic">fve-3</span>; (<b>C</b>), Flowering time differences among these plants; and (<b>D</b>), Leaf number differences among these plants. The different letters indicate significant differences among the different plants, <span class="html-italic">p</span> < 0.05.</p> "> Figure 5
<p>RT-qPCR analysis of the autonomous pathway genes <span class="html-italic">FVE</span>, <span class="html-italic">FLC</span>, <span class="html-italic">SOC1</span>, <span class="html-italic">LFY</span> and <span class="html-italic">AP1</span> of Col-0, <span class="html-italic">fve-3</span>+p<span class="html-italic">FVE</span>::<span class="html-italic">FVE</span>(<span class="html-italic">CS</span>), <span class="html-italic">fve-3</span>+p<span class="html-italic">FVE</span>::<span class="html-italic">FVE</span> and <span class="html-italic">fve-3</span>. The letters indicate significant differences among the different transgenic plants, <span class="html-italic">p</span> < 0.05.</p> "> Figure 6
<p>Methylated sites of <span class="html-italic">FVE</span> and <span class="html-italic">FVE</span>(<span class="html-italic">CS</span>) genes in Col-0, <span class="html-italic">fve-3</span>+p<span class="html-italic">FVE</span>::<span class="html-italic">FVE</span> and <span class="html-italic">fve-3</span>+p<span class="html-italic">FVE</span>::<span class="html-italic">FVE</span>(<span class="html-italic">CS</span>) plants.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Relationship between Flowering Time and the Methylation of Autonomous Pathway Genes
2.2. Relationship between the Methylation Level and Expression Level of Autonomous Pathway Genes
2.3. Reduction in the Flowering Variation Caused by 5-azaC Treatment
2.4. Restoration of the Flowering Phenotype of fve-3 by Expression of FVE or FVE(CS)
2.5. Expression Levels of the Autonomous Pathway Genes in fve-3+pFVE::FVE(CS) and fve-3+pFVE::FVE Plants
2.6. Methylation Levels of FVE and FVE(CS) in Col-0 and Transgenic Plants
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Growth Conditions and Flowering Time Statistical Analysis
4.2. Extraction of Epigenome and Transcriptome Data and Analysis of the DNA Methylation of Autonomous Pathway Genes and Its Correlations with Flowering Time and Leaf Numbers
4.3. Expression Dectection of Autonomous Pathway Genes
4.4. Codon Degeneracy-Based Nucleotide Substitution of the FVE Gene and Transgenic Verification
4.5. Methylation Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouché, F.; Lobet, G.; Tocquin, P.; Périlleux, C. FLOR-ID: An interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 2015, 44, 1167–1171. [Google Scholar] [CrossRef] [PubMed]
- Schemske, D.W.; Willson, M.F.; Melampy, M.N.; Miller, L.J.; Verner, L.; Schemske, K.M.; Best, L.B. Flowering ecology of some spring woodland herbs. Ecology 1978, 59, 351–366. [Google Scholar] [CrossRef]
- Lempe, J.; Balasubramanian, S.; Sureshkumar, S.; Singh, A.; Schmid, M.; Weigel, D. Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet. 2005, 1, 109–118. [Google Scholar] [CrossRef]
- Wilczek, A.M.; Roe, J.L.; Knapp, M.C.; Cooper, M.D.; Lopez-Gallego, C.; Martin, L.J.; Muir, C.D.; Sim, S.; Walker, A.; Anderson, J.; et al. Effects of genetic perturbation on seasonal life history plasticity. Science 2009, 323, 930–934. [Google Scholar] [CrossRef]
- Ausín, I.; Alonsoblanco, C.; Jarillo, J.A.; Ruizgarcía, L.; Martínezzapater, J.M. Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nature Genet. 2004, 36, 162–166. [Google Scholar] [CrossRef] [PubMed]
- Levy, Y.Y.; Dean, C. Control of flowering time. Curr. Opin. Plant Biol. 1998, 1, 49–54. [Google Scholar] [CrossRef]
- Reeves, P.H.; Murtas, G.; Dash, S.; Coupland, G. Early in short days 4, a mutation in Arabidopsis that causes early flowering and reduces the mRNA abundance of the floral repressor FLC. Development 2002, 129, 5349–5361. [Google Scholar] [CrossRef] [PubMed]
- Samis, K.E.; Heath, K.D.; Stinchcombe, J.R. Discordant longitudinal clines in flowering time and phytochrome C in Arabidopsis thaliana. Evolution 2008, 62, 2971–2983. [Google Scholar] [CrossRef]
- Srikanth, A.; Schmid, M. Regulation of flowering time: All roads lead to Rome. Cell. Mol. Life Sci. 2011, 68, 2013–2037. [Google Scholar] [CrossRef]
- Wagner, M.R.; Lundberg, D.S.; Colemanderr, D.; Tringe, S.G.; Dangl, J.L.; Mitchellolds, T. Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecol. Lett. 2014, 17, 717–726. [Google Scholar] [CrossRef]
- Blumel, M.; Dally, N.; Jung, C. Flowering time regulation in crops-what did we learn from Arabidopsis? Curr. Opin. Biotech. 2015, 32, 121–129. [Google Scholar] [CrossRef]
- Quiroz, S.; Yustis, J.C.; Chávez-Hernández, E.C.; Martínez, T.; Sanchez, M.D.L.P.; Garay-Arroyo, A.; Álvarez-Buylla, E.R.; García-Ponce, B. Beyond the genetic pathways, flowering regulation complexity in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, e5716. [Google Scholar] [CrossRef]
- Cheng, J.Z.; Zhou, Y.P.; Lv, T.X.; Xie, C.P.; Tian, C.E. Research progress on the autonomous flowering time pathway in Arabidopsis. Physiol. Mol. Biol. Plants 2017, 23, 477–485. [Google Scholar] [CrossRef]
- Qi, P.-L.; Zhou, H.-R.; Zhao, Q.-Q.; Feng, C.; Ning, Y.-Q.; Su, Y.-N.; Cai, X.-W.; Yuan, D.-Y.; Zhang, Z.-C.; Su, X.-M.; et al. Characterization of an autonomous pathway complex that promotes flowering in Arabidopsis. Nucleic Acids Res. 2022, 50, 7380–7395. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Yang, L.; Tian, M.; Xie, X.; Liu, C.; Ruan, Y. SDG26 is involved in trichome control in Arabidopsis thaliana: Affecting phytohormones and adjusting accumulation of H3K27me3 on genes related to trichome growth and development. Plants 2023, 12, e1651. [Google Scholar] [CrossRef] [PubMed]
- Burn, J.E.; Bagnall, D.J.; Metzger, J.D.; Dennis, E.S.; Peacock, W.J. DNA methylation, vernalization, and the initiation of flowering. Proc. Natl. Acad. Sci. USA 1993, 90, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, C.C.; Burn, J.E.; Perez, P.P.; Metzger, J.; Edwards, J.A.; Peacock, W.J.; Dennis, E.S. The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 1999, 11, 445–458. [Google Scholar] [CrossRef]
- Gallego-Bartolomé, J.; Gardiner, J.; Liu, W.; Papikian, A.; Ghoshal, B.; Kuo, H.Y.; Zhao, J.M.-C.; Segal, D.J.; Jacbsen, S.E. Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc. Natl. Acad. Sci. USA 2018, 115, 2125–2134. [Google Scholar] [CrossRef]
- Johnson, L.M.; Du, J.; Hale, C.J.; Bischof, S.; Feng, S.; Chodavarapu, R.K.; Zhong, X.; Marson, G.; Pellegrini, M.; Segal, D.J.; et al. SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 2015, 507, 124–128. [Google Scholar] [CrossRef]
- Kawakatsu, T.; Huang, S.C.; Jupe, F.; Sasaki, E.; Schmitz, R.J.; Urich, M.A.; Castanon, R.; Nery, J.R.; Barragan, C.; He, Y.; et al. Epigenomic diversity in a global collection of Arabidopsis thaliana accessions. Cell 2016, 166, 492–505. [Google Scholar] [CrossRef]
- Sanchez, D.H.; Paszkowski, J. Heat-induced release of epigenetic silencing reveals the concealed role of an imprinted plant gene. PLoS Genet. 2014, 10, e1004806. [Google Scholar] [CrossRef] [PubMed]
- Schübeler, D. Function and information content of DNA methylation. Nature 2015, 517, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Wolf, S.F.; Jolly, D.J.; Lunnen, K.D.; Friedmann, T.; Migeon, B.R. Methylation of the hypoxanthine phosphoribosyltransferase locus on the human X chromosome: Implications for X-chromosome inactivation. Proc. Natl. Acad. Sci. USA 1984, 81, 2806–2810. [Google Scholar] [CrossRef]
- Xie, H.J.; Li, H.; Liu, D.; Dai, W.; He, J.; Lin, S.; Duan, H.; Liu, L.; Chen, S.; Song, X.; et al. ICE1 demethylation drives the range expansion of a plant invader through cold tolerance divergence. Mol. Ecol. 2015, 24, 835–850. [Google Scholar] [CrossRef]
- Zilberman, D.; Gehring, M.; Tran, R.K.; Ballinger, T.; Henikoff, S. Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nature Genet. 2007, 39, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.J.; Sun, Y.; Cheng, B.; Xue, S.; Cheng, D.; Liu, L.; Meng, L.; Qiang, S. Variation in ICE1 methylation primarily determines phenotypic variation in freezing tolerance in Arabidopsis thaliana. Plant Cell Physiol. 2019, 60, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Xie, H.J.; Han, Y.; Li, X.; Dai, W.; Song, X.; Olsen, K.M.; Qiang, S. Climate-dependent variation in cold tolerance of weedy rice and rice mediated by OsICE1 promoter methylation. Mol. Ecol. 2020, 29, 121–137. [Google Scholar] [CrossRef] [PubMed]
- Johannes, F.; Porcher, E.; Teixeira, F.K.; Saliba-Colombani, V.; Simon, M.; Agier, N.; Bulski, A.; Albuisson, J.; Heredia, F.; Audigier, P.; et al. Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet. 2009, 5, e1000530. [Google Scholar] [CrossRef] [PubMed]
- Bewick, A.J.; Schmitz, R.J. Gene body DNA methylation in plants. Curr. Opin. Plant Biol. 2017, 36, 103–110. [Google Scholar] [CrossRef]
- Pecinka, A.; Abdelsamad, A.; Vu, G. Hidden genetic nature of epigenetic natural variation in plants. Trends Plant Sci. 2013, 18, 625–632. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Ecker, J.R. Epigenetic and epigenomic variation in Arabidopsis thaliana. Trends Plant Sci. 2012, 17, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Soppe, W.; Jacobsen, S.E.; Alonso-Blanco, C.; Jackson, J.P.; Kakutani, T.; Koornneef, M.; Peeters, A.J. The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol. Cell 2000, 6, 791–802. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, F.K.; Colot, V. Gene body DNA methylation in plants: A means to an end or an end to a means? EMBO J. 2014, 28, 997–998. [Google Scholar] [CrossRef]
- Boss, P.K.; Bastow, R.M.; Mylne, J.S.; Dean, C. Multiple pathways in the decision to flower: Enabling, promoting, and resetting. Plant Cell 2004, 16, S18–S31. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Cokus, S.J.; Zhang, X.; Chen, P.-Y.; Bostick, M.; Goll, M.G.; Hetzel, J.; Jain, J.; Strauss, S.H.; Halpern, M.E.; et al. Conservation and divergence of methylation patterning in plants and animals. Proc. Natl. Acad. Sci. USA 2010, 107, 8689–8694. [Google Scholar] [CrossRef]
- Zemach, A.; McDaniel, I.E.; Silva, P.; Zilberman, D. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science 2010, 328, 916–919. [Google Scholar] [CrossRef]
- Dowen, R.H.; Pelizzola, M.; Schmitz, R.J.; Lister, R.; Dowen, J.M.; Nery, J.R.; Dixon, J.E.; Ecker, J.R. Widespread dynamic DNA methylation in response to biotic stress. Proc. Natl. Acad. Sci. USA 2012, 109, 2183–2191. [Google Scholar] [CrossRef]
- Dubin, M.J.; Zhang, P.; Meng, D.; Remigereau, M.-S.; Osborne, E.J.; Casale, F.P.; Drewe, P.; Kahles, A.; Jean, G.; Vilhjálmsson, B.; et al. DNA methylation in Arabidopsis has a genetic basis and shows evidence of local adaptation. eLife 2014, 4, e05255. [Google Scholar] [CrossRef]
- Ramchandani, S.; Bhattacharya, S.K.; Cervoni, N.; Szyf, M. DNA methylation is a reversible biological signal. Proc. Natl. Acad. Sci. USA 1999, 96, 6107–6112. [Google Scholar] [CrossRef]
- Secco, D.; Wang, C.; Shou, H.; Schultz, M.D.; Chiarenza, S.; Nussaume, L.; Ecker, J.R.; Whelan, J.; Lister, R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. eLife 2015, 4, e09343. [Google Scholar] [CrossRef]
- Schmitz, R.J.; Schultz, M.D.; Urich, M.A.; Nery, J.R.; Pelizzola, M.; Libiger, O.; Alix, A.; McCosh, R.B.; Chen, H.; Schork, N.J.; et al. Patterns of population epigenomic diversity. Nature 2013, 495, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.; Pelizzola, M.; Dowen, R.H.; Hawkins, R.D.; Hon, G.; Tonto-Filippini, J.; Nery, J.R.; Lee, L.; Ye, Z.; Ngo, Q.-M.; et al. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009, 462, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Miura, K.; Jin, J.B.; Lee, J.; Yoo, C.Y.; Stirm, V.; Miura, T.; Ashworth, E.N.; Bressan, R.A.; Yun, D.-J.; Hasegawa, P.M. SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 2007, 194, 1403–1414. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, H.; Li, X.; Sun, Y.; Lin, L.; Xu, K.; Lu, H.; Cheng, B.; Xue, S.; Cheng, D.; Qiang, S. DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana. Int. J. Mol. Sci. 2024, 25, 7478. https://doi.org/10.3390/ijms25137478
Xie H, Li X, Sun Y, Lin L, Xu K, Lu H, Cheng B, Xue S, Cheng D, Qiang S. DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana. International Journal of Molecular Sciences. 2024; 25(13):7478. https://doi.org/10.3390/ijms25137478
Chicago/Turabian StyleXie, Hongjie, Xinchen Li, Yuli Sun, Lei Lin, Keke Xu, Huan Lu, Biao Cheng, Siming Xue, Dan Cheng, and Sheng Qiang. 2024. "DNA Methylation of the Autonomous Pathway Is Associated with Flowering Time Variations in Arabidopsis thaliana" International Journal of Molecular Sciences 25, no. 13: 7478. https://doi.org/10.3390/ijms25137478