ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response
<p>AZD0364 protects mice from noise-induced hearing loss when administered 45 min before noise exposure. (<b>A</b>) Molecular structure of tizaterkib. (<b>B</b>) Schedule of administration of noise exposure and tizaterkib treatments in FVB mice. Mice were given their first treatment of tizaterkib via an oral gavage 45 min before noise exposure. Mice were treated with the drug for a total of 3 days, twice a day, and exposed to noise once. (<b>C</b>) ABR threshold shifts following procedure in (<b>B</b>). Shaded region is the frequency range of the noise exposure. (<b>D</b>) Representative post-noise-exposure ABRs of noise-alone- and noise + tizaterkib-treated mice. (<b>E</b>) Percent weight change of different experimental cohorts throughout the 14-day protocol shown in (<b>B</b>). Noise + Carrier (red), noise + tizaterkib (green), tizaterkib alone (blue), and carrier (black). Data shown as means ± SEM; ** <span class="html-italic">p</span> < 0.01 and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by two-way ANOVA with a Bonferroni post hoc test. The color of the asterisks indicates the statistical significance of the treatment group with that same color compared to noise + carrier treated mice. <span class="html-italic">n</span> = 9–10 mice.</p> "> Figure 2
<p>Tizaterkib protects mice from noise-induced hearing loss when administered 24 h after noise exposure. (<b>A</b>) Schedule of noise exposure and tizaterkib, which began 24 h after noise exposure. Mice were treated with varying concentrations of tizaterkib twice a day for 3 whole days. (<b>B</b>) ABR threshold shifts following procedure in (<b>A</b>), with 25 and 5 mg/kg tizaterkib given to separate groups. Shaded region is the frequency range of the noise exposure. (<b>C</b>) ABR threshold shifts following the procedure in (<b>A</b>) with 0.5 mg/kg administered to mice. (<b>D</b>) ABR threshold shifts following the procedure in (<b>A</b>) with the 0.1 mg/kg tizaterkib treatment. (<b>E</b>) Dose–response curve of tizaterkib protection from noise-induced hearing loss at 16 kHz, with 100% protection as a 0 dB SPL threshold shift. (<b>F</b>) ABR threshold shifts of males and females, graphed separately, that were treated with tizaterkib or carrier following the procedure in (<b>A</b>). (<b>G</b>) Representative ABR traces of noise-alone- and noise + tizaterkib-treated mice. Noise + carrier (red), noise + tizaterkib (green), noise + 5 mg/kg tizaterkib (purple), tizaterkib alone (blue), and carrier (black). Data shown as means ± SEM; * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by two-way ANOVA with a Bonferroni post hoc test. The color of the asterisks indicates the statistical significance of the treatment group with that same color compared to noise + carrier treated mice. <span class="html-italic">n</span> = 9–10 mice.</p> "> Figure 3
<p>Tizaterkib protects mice from noise-induced synaptopathy in the 8 and 16 kHz regions. (<b>A</b>) Representative images of whole-mount cochlear sections stained with myosin VI (green) and Ctbp2 (red) in the 8 kHz region. (<b>B</b>) Number of Ctbp2 puncta per IHC in the 8 kHz region. (<b>C</b>) Representative images of whole-mount cochlear sections in the 16 kHz region. (<b>D</b>) Number of Ctbp2 puncta per IHC in the 16 kHz region. (<b>E</b>) ABR wave 1 amplitude for 16 kHz from the post experimental ABR recordings shown in <a href="#ijms-25-06305-f002" class="html-fig">Figure 2</a>C. The wave 1 amplitude was measured from 60–90 dB. Data shown as means ± SEM; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by one-way ANOVA with a Bonferroni post hoc test. Tizaterkib alone (blue), carrier (black), noise alone (red), noise + tizaterkib (green). <span class="html-italic">n</span> = 9 mice.</p> "> Figure 4
<p>Tizaterkib protects from noise-induced hearing loss when mice are exposed to 106 dB. (<b>A</b>) Schedule of noise exposure and tizaterkib treatment. Mice were exposed to 106 dB SPL for 2 h and tizaterkib treatment started 24 h after noise exposure. Mice were treated for 3 whole days, twice a day. (<b>B</b>) ABR threshold shifts following the protocol in (<b>A</b>). Shaded region is the frequency range of the noise exposure. (<b>C</b>) Representative ABR traces of noise-alone- and noise + tizaterkib-treated mice following the 106 dB SPL noise exposure. (<b>D</b>) DPOAE threshold shifts following the protocol in (<b>A</b>). Noise + carrier (red), noise + tizaterkib (green), tizaterkib alone (blue), and carrier (black). Data shown as means ± SEM; * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by two-way ANOVA with a Bonferroni post hoc test. The color of the asterisks indicates the statistical significance of the treatment group with that same color compared to noise + carrier treated mice. <span class="html-italic">n</span> = 13 mice.</p> "> Figure 5
<p>Tizaterkib treatment phenocopies the resistance to noise-induced hearing loss measured in the KSR1 KO mouse model. (<b>A</b>) KSR1 is a scaffolding protein for RAF, MEK, and ERK which enables the efficient transmission of MAPK signals. (<b>B</b>) Schedule of noise exposure and 5 mg/kg tizaterkib treatment in KSR1 WT and KO mice. Mice were exposed to 100 dB SPL for 2 h and tizaterkib treatment began 24 h after noise exposure. Mice were treated with tizaterkib or carrier twice a day for 3 whole days. (<b>C</b>) ABR threshold shifts following the protocol in (<b>B</b>). Shaded region is the frequency range of the noise exposure. WT + noise (red), KO + noise + tizaterkib (blue), WT + noise + tizaterkib (green), KO + noise (purple), and WT + carrier alone (black). Data shown as means ± SEM; * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by two-way ANOVA with a Bonferroni post hoc test. The color of the asterisks indicates the statistical significance of the treatment group with that same color compared to noise + carrier treated mice. <span class="html-italic">n</span> = 5–6 mice.</p> "> Figure 6
<p>Three days of treatment beginning 24 h after noise exposure produces the optimal protection in terms of tizaterkib administration. (<b>A</b>) Schedule of administration for noise exposure and tizaterkib treatment. Treatment with tizaterkib began 48 h after noise exposure and mice were treated for 3 days, twice a day. (<b>B</b>) ABR threshold shifts following the protocol in (<b>A</b>). Shaded region is the frequency range of the noise exposure. Noise alone (red), noise + tizaterkib (green), carrier (black), and tizaterkib alone (blue). (<b>C</b>) Schedule of administration of noise exposure and tizaterkib treatment. Treatment began 24 h after noise exposure and one cohort was treated for 1 day, one cohort was treated for 2 days, and another cohort was treated for 3 days. (<b>D</b>) ABR threshold shifts following the protocol in (<b>C</b>). Noise alone (red), 1-day treatment + noise (purple), 2-day treatment + noise (blue), 3-day treatment + noise (green), carrier alone (black). Data shown as means ± SEM; * <span class="html-italic">p</span> < 0.05, ** <span class="html-italic">p</span> < 0.01, and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by two-way ANOVA with a Bonferroni post hoc test. The color of the asterisks indicates statistical significance of the treatment group with respect to that same color compared to noise + carrier-treated mice. <span class="html-italic">n</span> = 6–10 mice.</p> "> Figure 7
<p>Tizaterkib treatment lowers the number of CD45-positive cells in the cochlea 4 days post noise exposure. (<b>A</b>) Representative low-magnification images of cochlear cryosections stained with CD45 (red) and DAPI (blue). The treatment protocol shown in <a href="#ijms-25-06305-f002" class="html-fig">Figure 2</a>A was utilized and mice were sacrificed 4 days after noise exposure, 1 h after the final tizaterkib treatment. (<b>B</b>) Quantification of the CD45-positive cells in the cochlear sections in (<b>A</b>). (<b>C</b>) Higher magnification of the images shown in (<b>A</b>) of the scala tympani. (<b>D</b>) Quantification of CD45-positive cells in the walls of the scala tympani as presented in (<b>C</b>). (<b>E</b>) Representative images of cochlear cryosections of the stria vascularis following noise and tizaterkib treatment. (<b>F</b>) Quantification of CD45-positive cells per experimental group from the images in (<b>E</b>). Carrier (black), tizaterkib alone (blue), noise alone (red), noise + tizaterkib (green). Data shown as means ± SEM, * <span class="html-italic">p</span> < 0.05 and *** <span class="html-italic">p</span> < 0.001 compared to noise alone by one-way ANOVA with a Bonferroni post hoc test. <span class="html-italic">n</span> = 3–6 mice, with 3 sections each per mouse.</p> "> Figure 8
<p>Tizaterkib treatment lowers the amount of CD45 and CD68 in the cochlea 6 days post noise exposure. (<b>A</b>) Western blots showing the amount of CD45 and CD68 in the cochlea following noise exposure and tizaterkib treatment. The same treatment protocol shown in <a href="#ijms-25-06305-f002" class="html-fig">Figure 2</a>A was utilized and mice were sacrificed 6 days after noise exposure. (<b>B</b>) CD45/GAPDH ratio, normalized to the carrier-alone lane. Band intensities were measured using ImageJ software (version 1.54g). (<b>C</b>) CD68/GAPDH ratio, normalized to the carrier-alone lane. Data shown as means ± SEM, * <span class="html-italic">p</span> < 0.05 and ** <span class="html-italic">p</span> < 0.01 compared to noise alone by one-way ANOVA with a Bonferroni post hoc test. The experimental groups, from left to right, are as follows: carrier alone, tizaterkib alone, noise alone, and noise + tizaterkib. Each group had the cochleae from 5 mice (10 cochleae) pooled together to make the tissue lysate. <span class="html-italic">n</span> = 5.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Tizaterkib Protects from Noise-Induced Hearing Loss When Treatment Begins 45 min before Noise Exposure
2.2. Tizaterkib Administration Protects from NIHL When Treatment Starts 24 h after Noise Exposure
2.3. Tizaterkib Protects from Noise-Induced Cochlear Synaptopathy
2.4. Tizaterkib Protects Mice from NIHL When Exposed to a Higher Noise Exposure Intensity of 106 dB SPL
2.5. Tizaterkib Treatment in KSR1 KO Mice Does Not Confer Any Extra Protection against NIHL
2.6. Three Days of Oral Tizaterkib Treatment Produces Better Protection from NIHL Compared to One and Two Days of Treatment
2.7. Tizaterkib-Treated Mice Have Significantly Less Immune Cells in Their Cochleae Compared to Noise-Alone-Treated Mice
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Mouse Models
4.3. Auditory Brainstem Response
4.4. Distortion Product Otoacoustic Emission
4.5. Noise Exposure
4.6. Tizaterkib Treatment
4.7. Ctbp2 Staining and Quantification
4.8. Cochlear Cryosectioning and CD45 Staining
4.9. Western Blotting
4.10. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, H.; Robinson, G.W.; Huang, J.; Lim, J.Y.-S.; Zhang, H.; Bass, J.K.; Broniscer, A.; Chintagumpala, M.; Bartels, U.; Gururangan, S.; et al. Common variants in ACYP2 influence susceptibility to cisplatin-induced hearing loss. Nat. Genet. 2015, 47, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Chadha, S.; Cieza, A. Promoting global action on hearing loss: World hearing day. Int. J. Audiol. 2017, 56, 145–147. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Yan, A.; Liu, K. What is noise-induced hearing loss? Br. J. Hosp. Med. 2019, 80, 525–529. [Google Scholar] [CrossRef] [PubMed]
- Ingersoll, M.A.; Malloy, E.A.; Caster, L.E.; Holland, E.M.; Xu, Z.; Zallocchi, M.; Currier, D.; Liu, H.; He, D.Z.Z.; Min, J.; et al. BRAF inhibition protects against hearing loss in mice. Sci. Adv. 2020, 6, eabd0561. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Aggarwal, A.; Dushyant, K.; Garg, S. Occupational Noise Induced Hearing Loss in India: A Systematic Review and Meta-Analysis. Indian J. Community Med. 2022, 47, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Xie, H.; Li, Y.; Jin, K. The Effect of Noise Exposure on High-Frequency Hearing Loss among Chinese Workers: A Meta-Analysis. Healthcare 2023, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- Torrente, M.C.; Tamblay, N.; Herrada, J.; Maass, J.C. Hearing loss in school-aged children. Acta Oto-Laryngol. 2023, 143, 28–30. [Google Scholar] [CrossRef] [PubMed]
- Paik, C.B.; Pei, M.; Oghalai, J.S. Review of blast noise and the auditory system. Hear. Res. 2022, 425, 108459. [Google Scholar] [CrossRef] [PubMed]
- Moore, B.C.J. The Effect of Exposure to Noise during Military Service on the Subsequent Progression of Hearing Loss. Int. J. Environ. Res. Public Health 2021, 18, 2436. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Guan, L.; Liu, Q.; Chen, D.; Chen, C.; Wang, Z. Hearing loss, depression, and medical service utilization among older adults: Evidence from China. Public Health 2022, 205, 122–129. [Google Scholar] [CrossRef]
- Foster, A.C.; Jacques, B.E.; Piu, F. Hearing loss: The final frontier of pharmacology. Pharmacol. Res. Perspect. 2022, 10, e00970. [Google Scholar] [CrossRef]
- Kurabi, A.; Keithley, E.M.; Housley, G.D.; Ryan, A.F.; Wong, A.C.-Y. Cellular mechanisms of noise-induced hearing loss. Hear. Res. 2017, 349, 129–137. [Google Scholar] [CrossRef]
- Basner, M.; Babisch, W.; Davis, A.; Brink, M.; Clark, C.; Janssen, S.; Stansfeld, S. Auditory and non-auditory effects of noise on health. Lancet 2014, 383, 1325–1332. [Google Scholar] [CrossRef]
- Fetoni, A.R.; Paciello, F.; Rolesi, R.; Paludetti, G.; Troiani, D. Targeting dysregulation of redox homeostasis in noise-induced hearing loss: Oxidative stress and ROS signaling. Free Radic. Biol. Med. 2019, 135, 46–59. [Google Scholar] [CrossRef]
- Varela-Nieto, I.; Murillo-Cuesta, S.; Calvino, M.; Cediel, R.; Lassaletta, L. Drug development for noise-induced hearing loss. Expert Opin. Drug Discov. 2020, 15, 1457–1471. [Google Scholar] [CrossRef]
- Teitz, T.; Fang, J.; Goktug, A.N.; Bonga, J.D.; Diao, S.; Hazlitt, R.A.; Iconaru, L.; Morfouace, M.; Currier, D.; Zhou, Y.; et al. CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss. J. Exp. Med. 2018, 215, 1187–1203. [Google Scholar] [CrossRef]
- Kennedy, C.L.; Shuster, B.; Amanipour, R.; Milon, B.; Patel, P.; Elkon, R.; Hertzano, R. Metformin Protects Against Noise-Induced Hearing Loss in Male Mice. Otol. Neurotol. 2023, 44, 956–963. [Google Scholar] [CrossRef]
- Lavoie, H.; Gagnon, J.; Therrien, M. ERK signalling: A master regulator of cell behaviour, life and fate. Nat. Rev. Mol. Cell Biol. 2020, 21, 607–632. [Google Scholar] [CrossRef]
- Dhillon, A.S.; Hagan, S.; Rath, O.; Kolch, W. MAP kinase signalling pathways in cancer. Oncogene 2007, 26, 3279–3290. [Google Scholar] [CrossRef]
- Lahne, M.; Gale, J.E. Damage-Induced Activation of ERK1/2 in Cochlear Supporting Cells Is a Hair Cell Death-Promoting Signal That Depends on Extracellular ATP and Calcium. J. Neurosci. 2008, 28, 4918–4928. [Google Scholar] [CrossRef]
- Maeda, Y.; Fukushima, K.; Omichi, R.; Kariya, S.; Nishizaki, K. Time Courses of Changes in Phospho- and Total- MAP Kinases in the Cochlea after Intense Noise Exposure. PLoS ONE 2013, 8, e58775. [Google Scholar] [CrossRef]
- Alagramam, K.N.; Stepanyan, R.; Jamesdaniel, S.; Chen, D.H.-C.; Davis, R.R. Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling. Noise Health 2014, 16, 400–409. [Google Scholar] [CrossRef]
- Braicu, C.; Buse, M.; Busuioc, C.; Drula, R.; Gulei, D.; Raduly, L.; Rusu, A.; Irimie, A.; Atanasov, A.G.; Slaby, O.; et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers 2019, 11, 1618. [Google Scholar] [CrossRef]
- Jo, S.-K.; Cho, W.Y.; Sung, S.A.; Kim, H.K.; Won, N.H. MEK inhibitor, U0126, attenuates cisplatin-induced renal injury by decreasing inflammation and apoptosis. Kidney Int. 2005, 67, 458–466. [Google Scholar] [CrossRef]
- Herranen, A.; Ikäheimo, K.; Virkkala, J.; Pirvola, U. The Stress Response in the Non-sensory Cells of the Cochlea Under Pathological Conditions—Possible Role in Mediating Noise Vulnerability. J. Assoc. Res. Otolaryngol. 2018, 19, 637–652. [Google Scholar] [CrossRef]
- Yue, J.; López, J.M. Understanding MAPK Signaling Pathways in Apoptosis. Int. J. Mol. Sci. 2020, 21, 2346. [Google Scholar] [CrossRef]
- Cagnol, S.; Chambard, J.-C. ERK and cell death: Mechanisms of ERK-induced cell death—Apoptosis, autophagy and senescence. FEBS J. 2010, 277, 2–21. [Google Scholar] [CrossRef]
- Flemington, V.; Davies, E.J.; Robinson, D.; Sandin, L.C.; Delpuech, O.; Zhang, P.; Hanson, L.; Farrington, P.; Bell, S.; Falenta, K.; et al. AZD0364 Is a Potent and Selective ERK1/2 Inhibitor That Enhances Antitumor Activity in KRAS-Mutant Tumor Models when Combined with the MEK Inhibitor, Selumetinib. Mol. Cancer Ther. 2021, 20, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.A.; Anderton, M.J.; Bethel, P.; Breed, J.; Cook, C.; Davies, E.J.; Dobson, A.; Dong, Z.; Fairley, G.; Farrington, P.; et al. Discovery of a Potent and Selective Oral Inhibitor of ERK1/2 (AZD0364) That Is Efficacious in Both Monotherapy and Combination Therapy in Models of Nonsmall Cell Lung Cancer (NSCLC). J. Med. Chem. 2019, 62, 11004–11018. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Jang, B.-C. Prednisone inhibits the IL-1β-induced expression of COX-2 in HEI-OC1 murine auditory cells through the inhibition of ERK-1/2, JNK-1 and AP-1 activity. Int. J. Mol. Med. 2014, 34, 1640–1646. [Google Scholar] [CrossRef]
- Kaur, T.; Borse, V.; Sheth, S.; Sheehan, K.; Ghosh, S.; Tupal, S.; Jajoo, S.; Mukherjea, D.; Rybak, L.P.; Ramkumar, V. Adenosine A1 Receptor Protects Against Cisplatin Ototoxicity by Suppressing the NOX3/STAT1 Inflammatory Pathway in the Cochlea. J. Neurosci. 2016, 36, 3962–3977. [Google Scholar] [CrossRef]
- Frye, M.D.; Ryan, A.F.; Kurabi, A. Inflammation associated with noise-induced hearing loss. J. Acoust. Soc. Am. 2019, 146, 4020–4032. [Google Scholar] [CrossRef]
- He, W.; Yu, J.; Sun, Y.; Kong, W. Macrophages in Noise-Exposed Cochlea: Changes, Regulation and the Potential Role. Aging Dis. 2020, 11, 191–199. [Google Scholar] [CrossRef]
- Milon, B.; Shulman, E.D.; So, K.S.; Cederroth, C.R.; Lipford, E.L.; Sperber, M.; Sellon, J.B.; Sarlus, H.; Pregernig, G.; Shuster, B.; et al. A cell-type-specific atlas of the inner ear transcriptional response to acoustic trauma. Cell Rep. 2021, 36, 109758. [Google Scholar] [CrossRef]
- Shin, S.H.; Jung, J.; Park, H.R.; Sim, N.S.; Choi, J.Y.; Bae, S.H. The Time Course of Monocytes Infiltration After Acoustic Overstimulation. Front. Cell. Neurosci. 2022, 16, 844480. [Google Scholar] [CrossRef]
- Wood, M.B.; Zuo, J. The Contribution of Immune Infiltrates to Ototoxicity and Cochlear Hair Cell Loss. Front. Cell. Neurosci. 2017, 11, 106. [Google Scholar] [CrossRef]
- Ramkumar, V.; Mukherjea, D.; Dhukhwa, A.; Rybak, L.P. Oxidative Stress and Inflammation Caused by Cisplatin Ototoxicity. Antioxidants 2021, 10, 1919. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Qiu, S.; Zhuang, W.; Jiang, W.; Wang, C.; Zhang, S.; Zhou, Z.; Sun, T.; Ke, Z.; et al. Oridonin ameliorates noise-induced hearing loss by blocking NLRP3-NEK7 mediated inflammasome activation. Int. Immunopharmacol. 2021, 95, 107576. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-B.; Li, M.-H.; Wu, L.-Y.; Wang, R.; Long, X.; Zhang, L.; Sun, W.; Guo, W.-W.; Pan, Y.; Zhang, Y.-S.; et al. Oridonin employs interleukin 1 receptor type 2 to treat noise-induced hearing loss by blocking inner ear inflammation. Biochem. Pharmacol. 2023, 210, 115457. [Google Scholar] [CrossRef] [PubMed]
- Dhukhwa, A.; Bhatta, P.; Sheth, S.; Korrapati, K.; Tieu, C.; Mamillapalli, C.; Ramkumar, V.; Mukherjea, D. Targeting Inflammatory Processes Mediated by TRPVI and TNF-α for Treating Noise-Induced Hearing Loss. Front. Cell. Neurosci. 2019, 13, 444. [Google Scholar] [CrossRef] [PubMed]
- Al Aameri, R.F.H.; Alanisi, E.M.A.; Oluwatosin, A.; Al Sallami, D.; Sheth, S.; Alberts, I.; Patel, S.; Rybak, L.P.; Ramkumar, V. Targeting CXCL1 chemokine signaling for treating cisplatin ototoxicity. Front. Immunol. 2023, 14, 1125948. [Google Scholar] [CrossRef]
- El Sabbagh, N.G.; Sewitch, M.J.; Bezdjian, A.; Daniel, S.J. Intratympanic dexamethasone in sudden sensorineural hearing loss: A systematic review and meta-analysis. Laryngoscope 2017, 127, 1897–1908. [Google Scholar] [CrossRef] [PubMed]
- Cederroth, C.R.; Park, J.; Basinou, V.; Weger, B.D.; Tserga, E.; Sarlus, H.; Magnusson, A.K.; Kadri, N.; Gachon, F.; Canlon, B. Circadian regulation of cochlear sensitivity to noise by circulating glucocorticoids. Curr. Biol. 2019, 29, 2477–2487.e6. [Google Scholar] [CrossRef]
- Hirose, K.; Discolo, C.M.; Keasler, J.R.; Ransohoff, R. Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. J. Comp. Neurol. 2005, 489, 180–194. [Google Scholar] [CrossRef] [PubMed]
- Bae, S.H.; Yoo, J.E.; Hong, J.W.; Park, H.R.; Noh, B.; Kim, H.; Kang, M.; Hyun, Y.-M.; Gee, H.Y.; Choi, J.Y.; et al. LCCL peptide cleavage after noise exposure exacerbates hearing loss and is associated with the monocyte infiltration in the cochlea. Hear. Res. 2021, 412, 108378. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Jia, G.; Zhang, Y.; Mao, H.; Zhao, L.; Li, W.; Chen, Y.; Ni, Y. Sox2 overexpression alleviates noise-induced hearing loss by inhibiting inflammation-related hair cell apoptosis. J. Neuroinflamm. 2022, 19, 59. [Google Scholar] [CrossRef] [PubMed]
- Lucas, R.M.; Luo, L.; Stow, J.L. ERK1/2 in immune signalling. Biochem. Soc. Trans. 2022, 50, 1341–1352. [Google Scholar] [CrossRef] [PubMed]
- Arthur, J.S.C.; Ley, S.C. Mitogen-activated protein kinases in innate immunity. Nat. Rev. Immunol. 2013, 13, 679–692. [Google Scholar] [CrossRef]
- Kim, J.; Cho, H.-J.; Sagong, B.; Kim, S.-J.; Lee, J.-T.; So, H.-S.; Lee, I.-K.; Kim, U.-K.; Lee, K.-Y.; Choo, Y.-S. Alpha-lipoic acid protects against cisplatin-induced ototoxicity via the regulation of MAPKs and proinflammatory cytokines. Biochem. Biophys. Res. Commun. 2014, 449, 183–189. [Google Scholar] [CrossRef]
- Kim, H.-J.; So, H.-S.; Lee, J.-H.; Park, C.; Lee, J.-B.; Youn, M.-J.; Kim, S.-J.; Yang, S.-H.; Lee, K.-M.; Kwon, K.-B.; et al. Role of proinflammatory cytokines in cisplatin-induced vestibular hair cell damage. Head Neck 2008, 30, 1445–1456. [Google Scholar] [CrossRef]
- Sabio, G.; Davis, R.J. TNF and MAP kinase signaling pathways. Semin. Immunol. 2014, 26, 237–245. [Google Scholar] [CrossRef]
- Nguyen, A.; Burack, W.R.; Stock, J.L.; Kortum, R.; Chaika, O.V.; Afkarian, M.; Muller, W.J.; Murphy, K.M.; Morrison, D.K.; Lewis, R.E.; et al. Kinase Suppressor of Ras (KSR) Is a Scaffold Which Facilitates Mitogen-Activated Protein Kinase Activation In Vivo. Mol. Cell. Biol. 2002, 22, 3035–3045. [Google Scholar] [CrossRef]
- Kortum, R.L.; Costanzo, D.L.; Haferbier, J.; Schreiner, S.J.; Razidlo, G.L.; Wu, M.-H.; Volle, D.J.; Mori, T.; Sakaue, H.; Chaika, N.V.; et al. The Molecular Scaffold Kinase Suppressor of Ras 1 (KSR1) Regulates Adipogenesis. Mol. Cell. Biol. 2005, 25, 7592–7604. [Google Scholar] [CrossRef]
- Ingersoll, M.A.; Lutze, R.D.; Kelmann, R.G.; Kresock, D.F.; Marsh, J.D.; Quevedo, R.V.; Zuo, J.; Teitz, T. KSR1 knockout mouse model demonstrates MAPK pathway’s key role in cisplatin- and noise-induced hearing loss. J. Neurosci. 2024, 44, e2174232024. [Google Scholar] [CrossRef]
- Fernandez, K.A.; Guo, D.; Micucci, S.; De Gruttola, V.; Liberman, M.C.; Kujawa, S.G. Noise-induced Cochlear Synaptopathy with and Without Sensory Cell Loss. Neuroscience 2020, 427, 43–57. [Google Scholar] [CrossRef]
- Paquette, S.T.; Gilels, F.; White, P.M. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse. Sci. Rep. 2016, 6, 25056. [Google Scholar] [CrossRef]
- Keithley, E.M. Inner ear immunity. Hear. Res. 2022, 419, 108518. [Google Scholar] [CrossRef]
- Gorthey, S.; Patel, R.; Vambutas, A. Immune-Mediated Sensorineural Hearing Loss in the Pediatric Population. Otolaryngol.–Head Neck Surg. 2022, 166, 768–771. [Google Scholar] [CrossRef] [PubMed]
- Hough, K.; Verschuur, C.A.; Cunningham, C.; Newman, T.A. Macrophages in the cochlea; an immunological link between risk factors and progressive hearing loss. Glia 2022, 70, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Nair, A.B.; Jacob, S. A simple practice guide for dose conversion between animals and human. J. Basic. Clin. Pharm. 2016, 7, 27–31. [Google Scholar] [CrossRef]
- Goldstein, M.J.; Peters, M.; Weber, B.L.; Davis, C.B. Optimizing the Therapeutic Window of Targeted Drugs in Oncology: Potency-Guided First-in-Human Studies. Clin. Transl. Sci. 2021, 14, 536–543. [Google Scholar] [CrossRef]
- Freyer, D.R.; Orgel, E.; Knight, K.; Krailo, M. Special considerations in the design and implementation of pediatric otoprotection trials. J. Cancer Surviv. 2023, 17, 4–16. [Google Scholar] [CrossRef]
- Jackson, K.D.; Achour, B.; Lee, J.; Geffert, R.M.; Beers, J.L.; Latham, B.D. Novel Approaches to Characterize Individual Drug Metabolism and Advance Precision Medicine. Drug Metab. Dispos. 2023, 51, 1238–1253. [Google Scholar] [CrossRef]
- Liberman, M.C.; Kujawa, S.G. Cochlear synaptopathy in acquired sensorineural hearing loss: Manifestations and mechanisms. Hear. Res. 2017, 349, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, K.A.; Jeffers, P.W.C.; Lall, K.; Liberman, M.C.; Kujawa, S.G. Aging after Noise Exposure: Acceleration of Cochlear Synaptopathy in “Recovered” Ears. J. Neurosci. 2015, 35, 7509–7520. [Google Scholar] [CrossRef]
- Sergeyenko, Y.; Lall, K.; Liberman, M.C.; Kujawa, S.G. Age-Related Cochlear Synaptopathy: An Early-Onset Contributor to Auditory Functional Decline. J. Neurosci. 2013, 33, 13686–13694. [Google Scholar] [CrossRef]
- Viana, L.M.; O’Malley, J.T.; Burgess, B.J.; Jones, D.D.; Oliveira, C.A.C.P.; Santos, F.; Merchant, S.N.; Liberman, L.D.; Liberman, M.C. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear. Res. 2015, 327, 78–88. [Google Scholar] [CrossRef]
- Kujawa, S.G.; Liberman, M.C. Synaptopathy in the noise-exposed and aging cochlea: Primary neural degeneration in acquired sensorineural hearing loss. Hear. Res. 2015, 330, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Kujawa, S.G.; Liberman, M.C. Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss. J. Neurosci. 2009, 29, 14077. [Google Scholar] [CrossRef] [PubMed]
- Manickam, V.; Gawande, D.Y.; Stothert, A.R.; Clayman, A.C.; Batalkina, L.; Warchol, M.E.; Ohlemiller, K.K.; Kaur, T. Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy. J. Neurosci. 2023, 43, 2075–2089. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Shah, L.; Dang, N.; Tan, X.; Almudevar, A.; White, P.M. SIRT3 promotes auditory function in young adult FVB/nJ mice but is dispensable for hearing recovery after noise exposure. PLoS ONE 2020, 15, e0235491. [Google Scholar] [CrossRef] [PubMed]
- Liberman, L.D.; Liberman, M.C. Dynamics of cochlear synaptopathy after acoustic overexposure. J. Assoc. Res. Otolaryngol. 2015, 16, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.-Z.; Liberman, L.D.; Liberman, M.C. Noise-induced synaptic loss and its post-exposure recovery in CBA/CaJ vs. C57BL/6J mice. Hear. Res. 2024, 445, 108996. [Google Scholar] [CrossRef] [PubMed]
- Mao, H.; Chen, Y. Noise-Induced Hearing Loss: Updates on Molecular Targets and Potential Interventions. Neural Plast. 2021, 2021, 4784385. [Google Scholar] [CrossRef] [PubMed]
- Wagner, E.L.; Im, J.-S.; Sala, S.; Nakahata, M.I.; Imbery, T.E.; Li, S.; Chen, D.; Nimchuk, K.; Noy, Y.; Archer, D.W.; et al. Repair of noise-induced damage to stereocilia F-actin cores is facilitated by XIRP2 and its novel mechanosensor domain. eLife 2023, 12, e72681. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-M.; Chen, W.; Guo, W.-W.; Jia, S.; Sun, J.-H.; Liu, H.-Z.; Young, W.-Y.; He, D.Z.Z. Regeneration of Stereocilia of Hair Cells by Forced Atoh1 Expression in the Adult Mammalian Cochlea. PLoS ONE 2012, 7, e46355. [Google Scholar] [CrossRef] [PubMed]
- Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018, 17, 48. [Google Scholar] [CrossRef]
- Tornabene, S.V.; Sato, K.; Pham, L.; Billings, P.; Keithley, E.M. Immune cell recruitment following acoustic trauma. Hear. Res. 2006, 222, 115–124. [Google Scholar] [CrossRef]
- Liu, W.; Danckwardt-Lillieström, N.; Schrott-Fischer, A.; Glueckert, R.; Rask-Andersen, H. Distribution of Immune Cells Including Macrophages in the Human Cochlea. Front. Neurol. 2021, 12, 781702. [Google Scholar] [CrossRef]
- Keithley, E.M.; Wang, X.; Barkdull, G.C. Tumor Necrosis Factor α Can Induce Recruitment of Inflammatory Cells to the Cochlea. Otol. Neurotol. 2008, 29, 854. [Google Scholar] [CrossRef]
- Tan, B.T.G.; Lee, M.M.G.; Ruan, R. Bone marrow-derived cells that home to acoustic deafened cochlea preserved their hematopoietic identity. J. Comp. Neurol. 2008, 509, 167–179. [Google Scholar] [CrossRef]
- Yang, W.; Vethanayagam, R.R.; Dong, Y.; Cai, Q.; Hu, B.H. Activation of the antigen presentation function of mononuclear phagocyte populations associated with the basilar membrane of the cochlea after acoustic overstimulation. Neuroscience 2015, 303, 1–15. [Google Scholar] [CrossRef]
- Bae, S.H.; Yoo, J.E.; Choe, Y.H.; Kwak, S.H.; Choi, J.Y.; Jung, J.; Hyun, Y.-M. Neutrophils infiltrate into the spiral ligament but not the stria vascularis in the cochlea during lipopolysaccharide-induced inflammation. Theranostics 2021, 11, 2522–2533. [Google Scholar] [CrossRef]
- Rai, V.; Wood, M.B.; Feng, H.; Schabla, N.M.; Tu, S.; Zuo, J. The immune response after noise damage in the cochlea is characterized by a heterogeneous mix of adaptive and innate immune cells. Sci. Rep. 2020, 10, 15167. [Google Scholar] [CrossRef] [PubMed]
- Samson, S.C.; Khan, A.M.; Mendoza, M.C. ERK signaling for cell migration and invasion. Front. Mol. Biosci. 2022, 9, 998475. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, S.; Takeda, K. ERK signalling as a regulator of cell motility. J. Biochem. 2017, 162, 145–154. [Google Scholar] [CrossRef]
- Pucilowska, J.; Vithayathil, J.; Pagani, M.; Kelly, C.; Karlo, J.C.; Robol, C.; Morella, I.; Gozzi, A.; Brambilla, R.; Landreth, G.E. Pharmacological Inhibition of ERK Signaling Rescues Pathophysiology and Behavioral Phenotype Associated with 16p11.2 Chromosomal Deletion in Mice. J. Neurosci. 2018, 38, 6640–6652. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Sun, J.; Tong, Q.; Lin, Q.; Qian, L.; Park, Y.; Zheng, Y. The Role of ERK1/2 in the Development of Diabetic Cardiomyopathy. Int. J. Mol. Sci. 2016, 17, 2001. [Google Scholar] [CrossRef]
- Pushpan, C.K.; Kresock, D.F.; Ingersoll, M.A.; Lutze, R.D.; Keirns, D.L.; Hunter, W.J.; Bashir, K.; Teitz, T. Repurposing AZD5438 and Dabrafenib for Cisplatin-Induced AKI. J. Am. Soc. Nephrol. 2024, 35, 22. [Google Scholar] [CrossRef]
- Lv, X.F.; Sun, L.L.; Cui, C.L.; Han, J.S. NAc Shell Arc/Arg3.1 Protein Mediates Reconsolidation of Morphine CPP by Increased GluR1 Cell Surface Expression: Activation of ERK-Coupled CREB is Required. Int. J. Neuropsychopharmacol. 2015, 18, pyv030. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Chotiner, J.K.; Steward, O. Actin polymerization and ERK phosphorylation are required for Arc/Arg3.1 mRNA targeting to activated synaptic sites on dendrites. J. Neurosci. 2007, 27, 9054–9067. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutze, R.D.; Ingersoll, M.A.; Thotam, A.; Joseph, A.; Fernandes, J.; Teitz, T. ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. Int. J. Mol. Sci. 2024, 25, 6305. https://doi.org/10.3390/ijms25126305
Lutze RD, Ingersoll MA, Thotam A, Joseph A, Fernandes J, Teitz T. ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. International Journal of Molecular Sciences. 2024; 25(12):6305. https://doi.org/10.3390/ijms25126305
Chicago/Turabian StyleLutze, Richard D., Matthew A. Ingersoll, Alena Thotam, Anjali Joseph, Joshua Fernandes, and Tal Teitz. 2024. "ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response" International Journal of Molecular Sciences 25, no. 12: 6305. https://doi.org/10.3390/ijms25126305
APA StyleLutze, R. D., Ingersoll, M. A., Thotam, A., Joseph, A., Fernandes, J., & Teitz, T. (2024). ERK1/2 Inhibition via the Oral Administration of Tizaterkib Alleviates Noise-Induced Hearing Loss While Tempering down the Immune Response. International Journal of Molecular Sciences, 25(12), 6305. https://doi.org/10.3390/ijms25126305