Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features
<p>Cleavage assay of 55 bp substrate S0 (<b>A</b>), S18 (<b>B</b>), S2 (<b>C</b>), S8 (<b>D</b>), S11 (<b>E</b>), and S20 (<b>F</b>) analyzed by denaturing 15% polyacrylamide gel electrophoresis, and representation of time dependence of cleavage on graphs. Cleavage was performed using 2 nM FAM-labeled dsDNA and 50 nM complex Cas9/sgRNA (ratio 1:25): C<sub>p</sub>—product reaction control (32 bp); C<sub>S0</sub>, C<sub>S2</sub>, C<sub>S8</sub>, C<sub>S11</sub>, C<sub>S18</sub>, C<sub>S20</sub>—DNA substrate control. The data were averaged from three independent experiments. The degree (%) of cleavage and the error are given in <a href="#ijms-25-10862-t001" class="html-table">Table 1</a>. Blue dots represent experimentally obtained values of substrate cleavage; green lines are the result of fitting by the theoretical model.</p> "> Figure 1 Cont.
<p>Cleavage assay of 55 bp substrate S0 (<b>A</b>), S18 (<b>B</b>), S2 (<b>C</b>), S8 (<b>D</b>), S11 (<b>E</b>), and S20 (<b>F</b>) analyzed by denaturing 15% polyacrylamide gel electrophoresis, and representation of time dependence of cleavage on graphs. Cleavage was performed using 2 nM FAM-labeled dsDNA and 50 nM complex Cas9/sgRNA (ratio 1:25): C<sub>p</sub>—product reaction control (32 bp); C<sub>S0</sub>, C<sub>S2</sub>, C<sub>S8</sub>, C<sub>S11</sub>, C<sub>S18</sub>, C<sub>S20</sub>—DNA substrate control. The data were averaged from three independent experiments. The degree (%) of cleavage and the error are given in <a href="#ijms-25-10862-t001" class="html-table">Table 1</a>. Blue dots represent experimentally obtained values of substrate cleavage; green lines are the result of fitting by the theoretical model.</p> "> Figure 2
<p>Three-dimensional structure of the Cas9/sgRNA:DNA (S0) complex. The sgRNA is shown in dark yellow; the DNA strand complementary to the sgRNA is shown in pink; the mismatches in positions are shown in green; and the second DNA strand is shown in purple.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Efficiency of Cleavage of Substrates with Mismatches
2.2. Thermodynamic Parameters of Cas9/sgRNA:dsDNA Complex Formation
2.3. Structural Features of Cas9/sgRNA:dsDNA Complex Formation with Mismatches
3. Materials and Methods
3.1. Materials
3.2. Cas9 Protein
3.3. sgRNA
3.4. Oligonucleotide Substrates
3.5. Reactions with Oligonucleotide Substrates
3.6. Determination of Parameters
3.7. Computer Simulation
3.7.1. Molecular Dynamics Simulation
3.7.2. MM-GBSA Calculations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.D.; Scott, D.A.; Weinstein, J.A.; Ran, F.A.; Konermann, S.; Agarwala, V.; Li, Y.; Fine, E.J.; Wu, X.; Shalem, O.; et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013, 31, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Zhou, K.; Ma, L.; Gressel, S.; Doudna, J.A. Structural Biology. A Cas9-guide RNA complex preorganized for target DNA recognition. Science 2015, 348, 1477–1481. [Google Scholar] [CrossRef] [PubMed]
- Szczelkun, M.D.; Tikhomirova, M.S.; Sinkunas, T.; Gasiunas, G.; Karvelis, T.; Pschera, P.; Siksnys, V.; Seidel, R. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. Proc. Natl. Acad. Sci. USA 2014, 111, 9798–9803. [Google Scholar] [CrossRef] [PubMed]
- Sternberg, S.H.; Redding, S.; Jinek, M.; Greene, E.C.; Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014, 507, 62–67. [Google Scholar] [CrossRef]
- Knight, S.C.; Xie, L.; Deng, W.; Guglielmi, B.; Witkowsky, L.B.; Bosanac, L.; Zhang, E.T.; El Beheiry, M.; Masson, J.-B.; Dahan, M.; et al. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 2015, 350, 823–826. [Google Scholar] [CrossRef]
- Ma, H.; Tu, L.-C.; Naseri, A.; Huisman, M.; Zhang, S.; Grunwald, D.; Pederson, T. CRISPR-Cas9 nuclear dynamics and target recognition in living cells. J. Cell Biol. 2016, 214, 529–537. [Google Scholar] [CrossRef]
- Fu, Y.; Foden, J.A.; Khayter, C.; Maeder, M.L.; Reyon, D.; Joung, J.K.; Sander, J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 2013, 31, 822–826. [Google Scholar] [CrossRef]
- Hu, J.H.; Miller, S.M.; Geurts, M.H.; Tang, W.; Chen, L.; Sun, N.; Zeina, C.M.; Gao, X.; Rees, H.A.; Lin, Z.; et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 2018, 556, 57–63. [Google Scholar] [CrossRef]
- Kulishova, L.M.; Vokhtantsev, I.P.; Kim, D.V.; Zharkov, D.O. Mechanisms of the Specificity of the CRISPR/Cas9 System in Genome Editing. Mol. Biol. 2023, 57, 258–271. [Google Scholar] [CrossRef]
- Zhdanova, P.V.; Lomzov, A.A.; Prokhorova, D.V.; Stepanov, G.A.; Chernonosov, A.A.; Koval, V.V. Thermodynamic Swings: How Ideal Complex of Cas9-RNA/DNA Forms. Int. J. Mol. Sci. 2022, 23, 8891. [Google Scholar] [CrossRef] [PubMed]
- Baranova, S.V.; Zhdanova, P.V.; Lomzov, A.A.; Koval, V.V.; Chernonosov, A.A. Structure- and Content-Dependent Efficiency of Cas9-Assisted DNA Cleavage in Genome-Editing Systems. Int. J. Mol. Sci. 2022, 23, 13889. [Google Scholar] [CrossRef] [PubMed]
- Pulecio, J.; Verma, N.; Mejía-Ramírez, E.; Huangfu, D.; Raya, A. CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 2017, 21, 431–447. [Google Scholar] [CrossRef]
- Barrangou, R.; Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017, 2, 17092. [Google Scholar] [CrossRef]
- Lostao, A.; Lim, K.; Pallarés, M.C.; Ptak, A.; Marcuello, C. Recent advances in sensing the inter-biomolecular interactions at the nanoscale—A comprehensive review of AFM-based force spectroscopy. Int. J. Biol. Macromol. 2023, 238, 124089. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Le Gall, J.; Frock, R.L.; Strick, T.R. Shifted PAMs generate DNA overhangs and enhance SpCas9 post-catalytic complex dissociation. Nat. Struct. Mol. Biol. 2023, 30, 1707–1718. [Google Scholar] [CrossRef]
- Tsai, S.Q.; Zheng, Z.; Nguyen, N.T.; Liebers, M.; Topkar, V.V.; Thapar, V.; Wyvekens, N.; Khayter, C.; Iafrate, A.J.; Le, L.P.; et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 2015, 33, 187–197. [Google Scholar] [CrossRef]
- Bravo, J.P.K.; Liu, M.-S.; Hibshman, G.N.; Dangerfield, T.L.; Jung, K.; McCool, R.S.; Johnson, K.A.; Taylor, D.W. Structural basis for mismatch surveillance by CRISPR-Cas9. Nature 2022, 603, 343–347. [Google Scholar] [CrossRef]
- Hibshman, G.N.; Bravo, J.P.K.; Hooper, M.M.; Dangerfield, T.L.; Zhang, H.; Finkelstein, I.J.; Johnson, K.A.; Taylor, D.W. Unraveling the mechanisms of PAMless DNA interrogation by SpRY-Cas9. Nat. Commun. 2024, 15, 3663. [Google Scholar] [CrossRef]
- Eggers, A.R.; Chen, K.; Soczek, K.M.; Tuck, O.T.; Doherty, E.E.; Xu, B.; Trinidad, M.I.; Thornton, B.W.; Yoon, P.H.; Doudna, J.A. Rapid DNA unwinding accelerates genome editing by engineered CRISPR-Cas9. Cell 2024, 187, 3249–3261.e14. [Google Scholar] [CrossRef]
- Liu, M.-S.; Gong, S.; Yu, H.-H.; Jung, K.; Johnson, K.A.; Taylor, D.W. Engineered CRISPR/Cas9 enzymes improve discrimination by slowing DNA cleavage to allow release of off-target DNA. Nat. Commun. 2020, 11, 3576. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kriz, A.J.; Sharp, P.A. Target specificity of the CRISPR-Cas9 system. Quant. Biol. 2014, 2, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science 2013, 339, 823–826. [Google Scholar] [CrossRef] [PubMed]
- Prokhorova, D.; Matveeva, A.; Zakabunin, A.; Ryabchenko, A.; Stepanov, G. Influence of N1-Methylpseudouridine in Guide RNAs on CRISPR/Cas9 Activity. Int. J. Mol. Sci. 2023, 24, 17116. [Google Scholar] [CrossRef]
- Shankar, A.; Jagota, A.; Mittal, J. DNA base dimers are stabilized by hydrogen-bonding interactions including non-Watson-Crick pairing near graphite surfaces. J. Phys. Chem. B 2012, 116, 12088–12094. [Google Scholar] [CrossRef]
- Ivanov, I.E.; Wright, A.V.; Cofsky, J.C.; Aris, K.D.P.; Doudna, J.A.; Bryant, Z. Cas9 interrogates DNA in discrete steps modulated by mismatches and supercoiling. Proc. Natl. Acad. Sci. USA 2020, 117, 5853–5860. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Tee, L.Y.; Wang, X.-G.; Huang, Q.-S.; Yang, S.-H. Off-target Effects in CRISPR/Cas9-mediated Genome Engineering. Mol. Ther. Nucleic Acids 2015, 4, e264. [Google Scholar] [CrossRef]
- Cencic, R.; Miura, H.; Malina, A.; Robert, F.; Ethier, S.; Schmeing, T.M.; Dostie, J.; Pelletier, J. Protospacer adjacent motif (PAM)-distal sequences engage CRISPR Cas9 DNA target cleavage. PLoS ONE 2014, 9, e109213. [Google Scholar] [CrossRef]
- Pacesa, M.; Loeff, L.; Querques, I.; Muckenfuss, L.M.; Sawicka, M.; Jinek, M. R-loop formation and conformational activation mechanisms of Cas9. Nature 2022, 609, 191–196. [Google Scholar] [CrossRef]
- Bravo, J.P.K.; Hibshman, G.N.; Taylor, D.W. Constructing next-generation CRISPR-Cas tools from structural blueprints. Curr. Opin. Biotechnol. 2022, 78, 102839. [Google Scholar] [CrossRef]
- Jinek, M.; Jiang, F.; Taylor, D.W.; Sternberg, S.H.; Kaya, E.; Ma, E.; Anders, C.; Hauer, M.; Zhou, K.; Lin, S.; et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343, 1247997. [Google Scholar] [CrossRef] [PubMed]
- Anders, C.; Jinek, M. In vitro enzymology of Cas9. Methods Enzymol. 2014, 546, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Chau, V.; Landas, J.; Pang, Y. Preparation of calcium competent Escherichia coli and heat-shock transformation. Undergrad. J. Exp. Microbiol. Immunol. (UJEMI) 2017, 1, 22–25. [Google Scholar]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Case, D.; Belfon, K.; Ben-Shalom, S.; Brozell, S.; Cerutti, D.; CheathamIII, T.; Cruzeiro, V.; Darden, T.; Duke, R.; Giambasu, G.; et al. (Eds.) Amber20; University of California: San Francisco, CA, USA, 2020. [Google Scholar]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef]
- Cheatham, T.E.; Case, D.A. Twenty-five years of nucleic acid simulations. Biopolymers 2013, 99, 969–977. [Google Scholar] [CrossRef]
- Sengupta, A.; Li, Z.; Song, L.F.; Li, P.; Merz, K.M. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J. Chem. Inf. Model. 2021, 61, 869–880. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
Name | Sequence (5′→3′ Complementary RNA) | % Cleavage | t1/2, min |
---|---|---|---|
S8gc | GCACTGCAGGAACTCTACCATTT′TTTAGAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATCTTTAACTCAATAATTCTCCCCCCCAGG | 19.0 ± 0.7 | 39.7 ± 5.8 |
S8 | GCACTGCAGGAACTCTACCATTT′TTTAAAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATTTTTAACTCAATAATTCTCCCCCCCAGG | 21.9 ± 1.0 | 18.5 ± 5.7 |
S16 | GCACTGCAGGAACTCTACCATTT′TTTACAAATTGAATTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTTAACTTAATAATTCTCCCCCCCAGG | 22.6 ± 1.1 | 5.7 ± 1.2 |
S6 | GCACTGCAGGAACTCTACCATTT′TTAACAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AATTGTTTAACTCAATAATTCTCCCCCCCAGG | 23.0 ± 1.4 | 9.8 ± 2.7 |
S13 | GCACTGCAGGAACTCTACCATTT′TTTACAAATAGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTTATCTCAATAATTCTCCCCCCCAGG | 28.9 ± 1.2 | 15.5 ± 2.3 |
S2 | GCACTGCAGGAACTCTACCATAT′TTTACAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTATA′AAATGTTTAACTCAATAATTCTCCCCCCCAGG | 31.0 ± 1.1 | 13.5 ± 2.1 |
S4 | GCACTGCAGGAACTCTACCATTT′ATTACAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′TAATGTTTAACTCAATAATTCTCCCCCCCAGG | 35.8 ± 1.2 | 5.2 ± 0.9 |
S5 | GCACTGCAGGAACTCTACCATTT′TATACAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′ATATGTTTAACTCAATAATTCTCCCCCCCAGG | 36.9 ± 2.4 | 13.2 ± 2.4 |
S0 | GCACTGCAGGAACTCTACCATTT′TTTACAAATTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTTAACTCAATAATTCTCCCCCCCAGG | 38.0 ± 0.8 | 4.8 ± 0.7 |
S18 | GCACTGCAGGAACTCTACCATTT′TTTACAAATTGAGTAATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTTAACTCATTAATTCTCCCCCCCAGG | 39.0 ± 3.6 | 4.5 ± 1.9 |
S11gc | GCACTGCAGGAACTCTACCATTT′TTTACAAGTTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTCAACTCAATAATTCTCCCCCCCAGG | 42.5 ± 0.6 | 32.2 ± 1.3 |
S20gc | GCACTGCAGGAACTCTACCATTT′TTTACAAATTGAGTTAGTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTTAACTCAATCATTCTCCCCCCCAGG | 53.4 ± 0.8 | 25.3 ± 1.1 |
S11 | GCACTGCAGGAACTCTACCATTT′TTTACAATTTGAGTTATTAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTAAACTCAATAATTCTCCCCCCCAGG | 60.4 ± 7.8 | 12.8 ± 4.3 |
S20 | GCACTGCAGGAACTCTACCATTT′TTTACAAATTGAGTTAATAAGAGGGGGGGTCC CGTGACGTCCTTGAGATGGTAAA′AAATGTTTAACTCAATTATTCTCCCCCCCAGG | 69.0 ± 1.8 | 2.6 ± 0.4 |
Complex | Receptor | Ligand | ΔE, kcal/mol |
---|---|---|---|
Cas9/sgRNA:dsDNA (S0) | Cas9/sgRNA | dsDNA (S0) | −611.3 ± 3.0 |
Cas9/sgRNA:dsDNA (S2) | Cas9/sgRNA | dsDNA (S2) | −624.7 ± 3.0 |
Cas9/sgRNA:dsDNA (S8) | Cas9/sgRNA | dsDNA (S8) | −639.0 ± 3.1 |
Cas9/sgRNA:dsDNA (S8gc) | Cas9/sgRNA | dsDNA (S8gc) | −542.5 ± 3.6 |
Cas9/sgRNA:dsDNA (S11) | Cas9/sgRNA | dsDNA (S11) | −604.5 ± 2.9 |
Cas9/sgRNA:dsDNA (S11gc) | Cas9/sgRNA | dsDNA (S11gc) | −585.6 ± 2.8 |
Cas9/sgRNA:dsDNA (S20) | Cas9/sgRNA | dsDNA (S20) | −592.3 ± 2.5 |
Cas9/sgRNA:dsDNA (S20gc) | Cas9/sgRNA | dsDNA (S20gc) | −541.8 ± 3.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baranova, S.V.; Zhdanova, P.V.; Koveshnikova, A.D.; Pestryakov, P.E.; Vokhtantsev, I.P.; Chernonosov, A.A.; Koval, V.V. Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features. Int. J. Mol. Sci. 2024, 25, 10862. https://doi.org/10.3390/ijms251910862
Baranova SV, Zhdanova PV, Koveshnikova AD, Pestryakov PE, Vokhtantsev IP, Chernonosov AA, Koval VV. Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features. International Journal of Molecular Sciences. 2024; 25(19):10862. https://doi.org/10.3390/ijms251910862
Chicago/Turabian StyleBaranova, Svetlana V., Polina V. Zhdanova, Anastasia D. Koveshnikova, Pavel E. Pestryakov, Ivan P. Vokhtantsev, Alexander A. Chernonosov, and Vladimir V. Koval. 2024. "Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features" International Journal of Molecular Sciences 25, no. 19: 10862. https://doi.org/10.3390/ijms251910862
APA StyleBaranova, S. V., Zhdanova, P. V., Koveshnikova, A. D., Pestryakov, P. E., Vokhtantsev, I. P., Chernonosov, A. A., & Koval, V. V. (2024). Cleavage of DNA Substrate Containing Nucleotide Mismatch in the Complementary Region to sgRNA by Cas9 Endonuclease: Thermodynamic and Structural Features. International Journal of Molecular Sciences, 25(19), 10862. https://doi.org/10.3390/ijms251910862