Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity
<p>Inflammation and oxidative stress in obese adipose tissue. Dysfunctional adipocytes secrete pro-inflammatory adipokines and recruit immune cells. Activated T cells, along with adipocyte-derived chemoattractants, facilitate the migration of monocytes into adipose tissue, where they differentiate from anti-inflammatory macrophages (M2) into pro-inflammatory macrophages (M1). Hypertrophic adipocytes and resident immune cells downregulate the secretion of anti-inflammatory cytokines while upregulating the release of inflammatory adipokines and cytokines, contributing to peripheral insulin resistance (IR). The hypertrophy of adipocytes leads to hypoxia (↓O2), which is associated with the production of reactive oxygen species (ROS), resulting in increased oxidative stress and the maintenance of chronic low-grade inflammation [<a href="#B11-ijms-25-10599" class="html-bibr">11</a>,<a href="#B12-ijms-25-10599" class="html-bibr">12</a>]. TNF-α—tumor necrosis factor-alpha, IL-1β—interleukin-1 beta, IL-6—interleukin 6, IFN-γ—interferon gamma, IgG—immunoglobulin G, IL-10—interleukin 10, MCP-1—monocyte chemoattractant protein-1, MPO—myeloperoxidase, SOD-1—superoxide dismutase-1.</p> "> Figure 2
<p>Immune cells present in obese adipose tissue expressing vitamin D receptor (VDR). Vitamin D exerts its immunoregulatory effects by binding to VDR, which is expressed in various immune cells. In the innate immune system, vitamin D enhances the chemotaxis and phagocytic activity of monocytes and macrophages, promotes the degranulation of mast cells, and modulates the activity of dendritic and natural killer (NK) cells. In the adaptive immune system, vitamin D facilitates the differentiation and function of T-helper 2 (Th2) cells and regulatory T cells (Treg) while concurrently suppressing the differentiation and activation of T-helper 1 (Th1) and T-helper 17 (Th17) cells. Additionally, vitamin D also modulates B cell function and immunoglobulin production [<a href="#B19-ijms-25-10599" class="html-bibr">19</a>,<a href="#B25-ijms-25-10599" class="html-bibr">25</a>].</p> "> Figure 3
<p>Spearman correlations network between vitamin D status, abdominal fat thickness, metabolic syndrome parameters, and inflammation/oxidative stress parameters. Statistically significant correlations with vitamin D are represented by red dots and red lines. Blue dots represent other parameters that are not significantly correlated with vitamin D. Vit D—vitamin D, BMI—body mass index, WC—waist circumference, SFT—subcutaneous fat thickness, VFT—visceral fat thickness, HDL-C—high-density lipoprotein cholesterol, SBP—systolic blood pressure, DBP—diastolic blood pressure, TGC—triglycerides, FG—fasting glucose, Adipo—adiponectin, CRP—C-reactive protein, MPO—myeloperoxidase, MCP-1—monocyte chemoattractant protein-1, WBC—white blood cells, I-TAC—interferon-inducible T-cell alpha chemoattractant.</p> "> Figure 4
<p>Heat map of Spearman correlations between vitamin D status, abdominal fat thickness, metabolic syndrome parameters, and inflammation/oxidative stress parameters. Positive correlations are represented by shades of red, while negative correlations are indicated by shades of blue.</p> "> Figure 5
<p>Estimation plot of mediation analysis between BMI as the independent variable, vitamin D as the mediator variable, and inflammation and oxidative stress as the dependent variable. On the mediation plot, the coefficients <span class="html-italic">a</span>, <span class="html-italic">b</span>, and <span class="html-italic">c</span>′ are displayed along with their standard errors. It is evident that the indirect path (coefficient <span class="html-italic">a</span> × <span class="html-italic">b</span>) is statistically non-significant, as it intersects the value of 0 (dashed line).</p> "> Figure 6
<p>Mediation path plot of analysis between BMI as the independent variable, vitamin D as the mediator variable, and inflammation and oxidative stress as the dependent variable. ** <span class="html-italic">p</span> < 0.01. BMI—Body Mass Index.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Sample Characteristics and Epidemiology
2.2. Sample Characteristics According to Vitamin D Status
2.3. Correlations between Vitamin D Status, Visceral and Subcutaneous Fat Thickness, Metabolic Syndrome Parameters, and Inflammation/Oxidative Stress Parameters
2.4. Multiple Linear Regression Analysis for Inflammation/Oxidative Stress Parameters as the Dependent Variable
2.5. Mediation Analysis for Inflammation/Oxidative Stress Parameters as the Dependent Variable
- a—this coefficient represents the effect of the independent variable (BMI) on the mediator variable (vitamin D). It indicates how changes in the BMI lead to changes in the vitamin D;
- b—this coefficient represents the effect of the mediator variable (vitamin D) on the dependent variable (inflammation and oxidative stress), controlling for the independent variable (BMI). It shows how changes in the mediator affect the outcome variable (inflammation and oxidative stress);
- c—this coefficient represents the total effect of the independent variable (BMI) on the dependent variable (inflammation and oxidative stress). It includes both the direct effect of BMI on inflammation and oxidative stress and the indirect effect that operates through the mediator vitamin D;
- a × b—mediation effect (illustrating how the independent variable influences the dependent variable through the mediator);
- c′—direct effect, which is the effect of the independent variable on the dependent variable when the mediator is included in the model.
3. Discussion
3.1. Metabolic Syndrome, Obesity, Inflammation and Oxidative Stress
3.2. Obesity, Vitamin D Status, Inflammation and Oxidative Stress
3.3. Obesity, Vitamin D Supplementation, Inflammation and Oxidative Stress
3.4. Limitations
4. Materials and Methods
4.1. Study Description
4.2. Sample
4.3. Data Collection
- Waist circumference ≥90th percentile* AND;
- Number of abnormalities ≥2;
- Triglyceride ≥150 mg/dL (1.7 mmol/L);
- High-density lipoprotein cholesterol <40 mg/dL (1.03 mmol/L);
- Blood pressure either:
- Systolic >130 mmHg;
- Diastolic ≥85 mmHg;
- Glucose ≥100 mg/dL (5.6 mmol/L).
4.4. Data Management and Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cornier, M.A.; Dabelea, D.; Hernandez, T.L.; Lindstrom, R.C.; Steig, A.J.; Stob, N.R.; Van Pelt, R.E.; Wang, H.; Eckel, R.H. The metabolic syndrome. Endocr. Rev. 2008, 29, 777–822. [Google Scholar] [CrossRef] [PubMed]
- Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z. The metabolic syndrome. Lancet 2005, 365, 1415–1428. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R.; Bremer, A.A.; Lustig, R.H. What is metabolic syndrome, and why are children getting it? Ann. N. Y. Acad. Sci. 2013, 1281, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Serbis, A.; Giapros, V.; Galli-Tsinopoulou, A.; Siomou, E. Metabolic Syndrome in Children and Adolescents: Is There a Universally Accepted Definition? Does it Matter? Metab Syndr. Relat. Disord. 2020, 18, 462–470. [Google Scholar] [CrossRef]
- Al-Hamad, D.; Raman, V. Metabolic syndrome in children and adolescents. Transl. Pediatr. 2017, 6, 397–407. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef]
- Dhawan, D.; Sharma, S. Abdominal Obesity, Adipokines and Non-communicable Diseases. J. Steroid Biochem. Mol. Biol. 2020, 203, 105737. [Google Scholar] [CrossRef]
- Espinola-Klein, C.; Gori, T.; Blankenberg, S.; Munzel, T. Inflammatory markers and cardiovascular risk in the metabolic syndrome. Front. BioSci. (Landmark Ed.) 2011, 16, 1663–1674. [Google Scholar] [CrossRef]
- Olza, J.; Aguilera, C.M.; Gil-Campos, M.; Leis, R.; Bueno, G.; Valle, M.; Canete, R.; Tojo, R.; Moreno, L.A.; Gil, A. A Continuous Metabolic Syndrome Score Is Associated with Specific Biomarkers of Inflammation and CVD Risk in Prepubertal Children. Ann. Nutr. Metab 2015, 66, 72–79. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. -Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Holvoet, P. Stress in obesity and associated metabolic and cardiovascular disorders. Scientifica 2012, 2012, 205027. [Google Scholar] [CrossRef] [PubMed]
- Hueso, L.; Ortega, R.; Selles, F.; Wu-Xiong, N.Y.; Ortega, J.; Civera, M.; Ascaso, J.F.; Sanz, M.J.; Real, J.T.; Piqueras, L. Upregulation of angiostatic chemokines IP-10/CXCL10 and I-TAC/CXCL11 in human obesity and their implication for adipose tissue angiogenesis. Int. J. Obes 2018, 42, 1406–1417. [Google Scholar] [CrossRef] [PubMed]
- Moreno, B.; Hueso, L.; Ortega, R.; Benito, E.; Martínez-Hervas, S.; Peiro, M.; Civera, M.; Sanz, M.J.; Piqueras, L.; Real, J.T. Association of chemokines IP-10/CXCL10 and I-TAC/CXCL11 with insulin resistance and enhance leukocyte endothelial arrest in obesity. Microvasc. Res. 2022, 139, 104254. [Google Scholar] [CrossRef] [PubMed]
- Kochumon, S.; Madhoun, A.A.; Al-Rashed, F.; Azim, R.; Al-Ozairi, E.; Al-Mulla, F.; Ahmad, R. Adipose tissue gene expression of CXCL10 and CXCL11 modulates inflammatory markers in obesity: Implications for metabolic inflammation and insulin resistance. Ther. Adv. Endocrinol. Metab. 2020, 11, 2042018820930902. [Google Scholar] [CrossRef]
- Ullah, A.; Ud Din, A.; Ding, W.; Shi, Z.; Pervaz, S.; Shen, B. A narrative review: CXC chemokines influence immune surveillance in obesity and obesity-related diseases: Type 2 diabetes and nonalcoholic fatty liver disease. Rev. Endocr. Metab. Disord. 2023, 24, 611–631. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, Y.A.; Kim, Y.S.; Lee, Y.; Seo, J.H. Association between Vitamin D Deficiency and Clinical Parameters in Men and Women Aged 50 Years or Older: A Cross-Sectional Cohort Study. Nutrients 2023, 15, 3043. [Google Scholar] [CrossRef]
- Chattranukulchai Shantavasinkul, P.; Nimitphong, H. Vitamin D and Visceral Obesity in Humans: What Should Clinicians Know? Nutrients 2022, 14, 3075. [Google Scholar] [CrossRef]
- Zakharova, I.; Klimov, L.; Kuryaninova, V.; Nikitina, I.; Malyavskaya, S.; Dolbnya, S.; Kasyanova, A.; Atanesyan, R.; Stoyan, M.; Todieva, A.; et al. Vitamin D Insufficiency in Overweight and Obese Children and Adolescents. Front. Endocrinol. 2019, 10, 103. [Google Scholar] [CrossRef]
- Bella, L.M.; Fieri, I.; Tessaro, F.H.G.; Nolasco, E.L.; Nunes, F.P.B.; Ferreira, S.S.; Azevedo, C.B.; Martins, J.O. Vitamin D Modulates Hematological Parameters and Cell Migration into Peritoneal and Pulmonary Cavities in Alloxan-Diabetic Mice. BioMed. Res. Int. 2017, 2017, 7651815. [Google Scholar] [CrossRef]
- Icardi, A.; Paoletti, E.; De Nicola, L.; Mazzaferro, S.; Russo, R.; Cozzolino, M. Renal anaemia and EPO hyporesponsiveness associated with vitamin D deficiency: The potential role of inflammation. Nephrol. Dial. Transpl. 2013, 28, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Sim, J.J.; Lac, P.T.; Liu, I.L.; Meguerditchian, S.O.; Kumar, V.A.; Kujubu, D.A.; Rasgon, S.A. Vitamin D deficiency and anemia: A cross-sectional study. Ann. Hematol. 2010, 89, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Palaniswamy, S.; Gill, D.; De Silva, N.M.; Lowry, E.; Jokelainen, J.; Karhu, T.; Mutt, S.J.; Dehghan, A.; Sliz, E.; Chasman, D.I.; et al. Could vitamin D reduce obesity-associated inflammation? Observational and Mendelian randomization study. Am J. Clin. Nutr. 2020, 111, 1036–1047. [Google Scholar] [CrossRef] [PubMed]
- Todosenko, N.; Vulf, M.; Yurova, K.; Khaziakhmatova, O.; Mikhailova, L.; Litvinova, L. Causal Links between Hypovitaminosis D and Dysregulation of the T Cell Connection of Immunity Associated with Obesity and Concomitant Pathologies. Biomedicines 2021, 9, 1750. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Xu, Q.; Zhu, R. Vitamin D and allergic diseases. Front. Immunol. 2024, 15, 1420883. [Google Scholar] [CrossRef]
- Codoner-Franch, P.; Tavarez-Alonso, S.; Simo-Jorda, R.; Laporta-Martin, P.; Carratala-Calvo, A.; Alonso-Iglesias, E. Vitamin D status is linked to biomarkers of oxidative stress, inflammation, and endothelial activation in obese children. J. Pediatr. 2012, 161, 848–854. [Google Scholar] [CrossRef]
- Pohorec, V.; Zadravec, N.; Turk, M.; Dolenšek, J.; Stožer, A. Alpha Cell Stimulus-Secretion Coupling and Intercellular Interactions in Health and Type 2 Diabetes. Acta Medico-Biotech. 2023, 16, 21–28. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef]
- Genovesi, S.; Parati, G. Cardiovascular Risk in Children: Focus on Pathophysiological Aspects. Int. J. Mol. Sci. 2020, 21, 6612. [Google Scholar] [CrossRef]
- Krajewska, M.; Witkowska-Sędek, E.; Rumińska, M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Majcher, A.; Pyrżak, B. Vitamin D Effects on Selected Anti-Inflammatory and Pro-Inflammatory Markers of Obesity-Related Chronic Inflammation. Front. Endocrinol. 2022, 13, 920340. [Google Scholar] [CrossRef]
- Krajewska, M.; Witkowska-Sędek, E.; Rumińska, M.; Kucharska, A.M.; Stelmaszczyk-Emmel, A.; Sobol, M.; Majcher, A.; Pyrżak, B. The link between vitamin D, chemerin and metabolic profile in overweight and obese children—preliminary results. Front. Endocrinol. 2023, 14, 1143755. [Google Scholar] [CrossRef] [PubMed]
- Cazeau, R.M.; Huang, H.; Bauer, J.A.; Hoffman, R.P. Effect of Vitamins C and E on Endothelial Function in Type 1 Diabetes Mellitus. J. Diabetes Res. 2016, 2016, 3271293. [Google Scholar] [CrossRef] [PubMed]
- Kaya, A.; Gamsizkan, Z.; Kaya, N.; Davran, F. The predictive role of laboratory parameters in cardiovascular risk assessment in obese. Medicine 2023, 102, e34634. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, A.; Ohnishi, S.; Orito, C.; Kawahara, Y.; Takasaki, H.; Takeda, H.; Sakamoto, N.; Hashino, S. Association of peripheral total and differential leukocyte counts with obesity-related complications in young adults. Obes. Facts 2015, 8, 1–16. [Google Scholar] [CrossRef]
- Țaranu, I.; Lazea, C.; Creț, V.; Răcătăianu, N.; Iancu, M.; Bolboacă, S.D. Inflammation-Related Markers and Thyroid Function Measures in Pediatric Patients: Is the Grade of Obesity Relevant? Diagnostics 2021, 11, 485. [Google Scholar] [CrossRef]
- Jaksic, M.; Martinovic, M.; Gligorovic-Barhanovic, N.; Vujacic, A.; Djurovic, D.; Nedovic-Vukovic, M. Association between inflammation, oxidative stress, vitamin D, copper and zinc with pre-obesity and obesity in school children from the city of Podgorica, Montenegro. J. Pediatr. Endocrinol. Metab 2019, 32, 951–957. [Google Scholar] [CrossRef]
- Bennour, I.; Haroun, N.; Sicard, F.; Mounien, L.; Landrier, J.F. Vitamin D and Obesity/Adiposity-A Brief Overview of Recent Studies. Nutrients 2022, 14, 2049. [Google Scholar] [CrossRef]
- Migliaccio, S.; Di Nisio, A.; Mele, C.; Scappaticcio, L.; Savastano, S.; Colao, A. Obesity and hypovitaminosis D: Causality or casualty? Int. J. Obes. Suppl. 2019, 9, 20–31. [Google Scholar] [CrossRef]
- Pourshahidi, L.K. Vitamin D and obesity: Current perspectives and future directions. Proc. Nutr. Soc. 2015, 74, 115–124. [Google Scholar] [CrossRef]
- Rafiq, R.; Walschot, F.; Lips, P.; Lamb, H.J.; de Roos, A.; Rosendaal, F.R.; Heijer, M.D.; de Jongh, R.T.; de Mutsert, R. Associations of different body fat deposits with serum 25-hydroxyvitamin D concentrations. Clin. Nutr. 2019, 38, 2851–2857. [Google Scholar] [CrossRef]
- Drincic, A.T.; Armas, L.A.; Van Diest, E.E.; Heaney, R.P. Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 2012, 20, 1444–1448. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Miazek, K.; Selmi, A.; Balcerczyk, A.; Śliwińska, A. The Action of Vitamin D in Adipose Tissue: Is There the Link between Vitamin D Deficiency and Adipose Tissue-Related Metabolic Disorders? Int. J. Mol. Sci. 2022, 23, 956. [Google Scholar] [CrossRef] [PubMed]
- Filgueiras, M.S.; Rocha, N.P.; Novaes, J.F.; Bressan, J. Vitamin D status, oxidative stress, and inflammation in children and adolescents: A systematic review. Crit. Rev. Food Sci. Nutr. 2020, 60, 660–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ji, X. Sample Size Estimation in Clinical Research: From Randomized Controlled Trials to Observational Studies. Chest 2020, 158, S12–S20. [Google Scholar] [CrossRef]
- De Lucia Rolfe, E.; Sleigh, A.; Finucane, F.M.; Brage, S.; Stolk, R.P.; Cooper, C.; Sharp, S.J.; Wareham, N.J.; Ong, K.K. Ultrasound measurements of visceral and subcutaneous abdominal thickness to predict abdominal adiposity among older men and women. Obesity (Silver Spring) 2010, 18, 625–631. [Google Scholar] [CrossRef]
- Stolk, R.P.; Wink, O.; Zelissen, P.M.; Meijer, R.; van Gils, A.P.; Grobbee, D.E. Validity and reproducibility of ultrasonography for the measurement of intra-abdominal adipose tissue. Int. J. Obes. Relat. Metab. Disord. 2001, 25, 1346–1351. [Google Scholar] [CrossRef]
- Physical status: The use and interpretation of anthropometry. Report of a WHO Expert Committee. World Health Organ. Tech. Rep. Ser. 1995, 854, 1–452. [Google Scholar]
- Centers for Disease Control and Prevention, N.C.f.H.S. Clinical Growth Charts. Available online: https://www.cdc.gov/growthcharts/clinical_charts.htm (accessed on 30 June 2024).
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents With Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents. Lancet 2007, 369, 2059–2061. [Google Scholar] [CrossRef]
- Fernández, J.R.; Redden, D.T.; Pietrobelli, A.; Allison, D.B. Waist circumference percentiles in nationally representative samples of African-American, European-American, and Mexican-American children and adolescents. J. Pediatr. 2004, 145, 439–444. [Google Scholar] [CrossRef]
- Mancia, G.; Bombelli, M.; Corrao, G.; Facchetti, R.; Madotto, F.; Giannattasio, C.; Trevano, F.Q.; Grassi, G.; Zanchetti, A.; Sega, R. Metabolic syndrome in the Pressioni Arteriose Monitorate E Loro Associazioni (PAMELA) study: Daily life blood pressure, cardiac damage, and prognosis. Hypertension 2007, 49, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Elliott, W.J.; Meyer, P.M. Incident diabetes in clinical trials of antihypertensive drugs: A network meta-analysis. Lancet 2007, 369, 201–207. [Google Scholar] [CrossRef] [PubMed]
- Meigs, J.B. Metabolic syndrome (insulin resistance syndrome or syndrome X). In UpToDate; Nathan, D.M., Wolfsdorf, J.I., Swenson, S., Eds.; UpToDate: Waltham, MA, USA, 2023; Available online: https://www.uptodate.com/contents/metabolic-syndrome-insulin-resistance-syndrome-or-syndrome-x (accessed on 30 June 2024).
- Amrein, K.; Scherkl, M.; Hoffmann, M.; Neuwersch-Sommeregger, S.; Köstenberger, M.; Tmava Berisha, A.; Martucci, G.; Pilz, S.; Malle, O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020, 74, 1498–1513. [Google Scholar] [CrossRef] [PubMed]
Parameters | Controls, Median (IQR), N = 30, A | Patients with Obesity, Overweight, Median (IQR), N = 80, B | Patients with MetS, Median (IQR), N = 7, C | p-Values (A and B) | p-Values (A and C) |
---|---|---|---|---|---|
Body mass index (kg/m2) | 19.9 (2.9) | 30.2 (6.9) | 32.7 (4.6) | <0.001 * | < 0.001 * |
Waist circumference (cm) | 70.5 (5.8) | 95.0 (20.5) | 112.0 (7.0) | <0.001 * | < 0.001 * |
Visceral fat thickness (mm) | 36.8 (11.9) | 60.0 (23.8) | 64.0 (35.7) | <0.001 * | < 0.001 * |
Subcutaneous fat thickness (mm) | 10.1 (10.7) | 36.5 (17.0) | 45.0 (26.5) | <0.001 * | < 0.001 * |
Systolic blood pressure (mmHg) | 114.0 (19.5) | 128.0 (21.3) | 129.0 (19.0) | <0.001 * | 0.009 * |
Diastolic blood pressure (mmHg) | 68.0 (10.5) | 80.5 (13.0) | 78.0 (14.0) | <0.001 * | 0.062 |
Fasting glucose (mmol/L) | 4.6 (0.5) | 4.6 (0.4) | 4.5 (0.7) | = 0.928 | 0.785 |
High-density lipoprotein cholesterol (mmol/L) | 1.6 (0.5) | 1.2 (0.3) | 0.9 (0.3) | <0.001 * | < 0.001 * |
Triglycerides (mmol/L) | 0.7 (0.5) | 1.1 (0.8) | 1.9 (0.8) | 0.003 * | < 0.001 * |
White blood cells (×109/L) | 5.7 (2.1) | 7.1 (3.5) | 7.7 (3.7) | 0.013 * | 0.078 |
C-reactive protein (mg/L) | 3 (0) | 3 (0) | 3 (5.5) | 0.002 * | < 0.001* |
Myeloperoxidase (ng/mL) | 290.0 (2778.8) | 1432.5 (2877.0) | 3615.0 (1465.0) | 0.006 * | 0.019 * |
Monocyte chemoattractant protein-1 (pg/mL) | 360.8 (103.0) | 333.0 (97.0) | 456.0 (270.0) | 0.633 | 0.358 |
Interferon-inducible T-cell alpha chemoattractant (pg/mL) | 62.5 (0.0) | 62.5 (0.0) | 62.5 (0.0) | 0.738 | 0.922 |
Adiponectin (ng/mL) | 5354.7 (1730.0) | 4190.0 (2962.5) | 3250.0 (2740.0) | 0.086 | 0.005 * |
Vitamin D (nmol/L) | 52.8 (19.2) | 46.6 (16.3) | 38.1 (21.1) | <0.001 * | 0.002 * |
Parameters | Normovitaminosis D, Median (IQR), N = 41 | Hypovitaminosis D, Median (IQR), N = 39 | p-Values |
---|---|---|---|
Body mass index (kg/m2) | 23.3 (10.2) | 25.6 (13.0) | 0.024 * |
Waist circumference (cm) | 83.0 (25.0) | 92.0 (31.0) | 0.022 * |
Visceral fat thickness (mm) | 46.7 (26.8) | 55.5 (26.8) | 0.035 * |
Subcutaneous fat thickness (mm) | 20.6 (29.3) | 31.5 (25.5) | 0.115 |
Systolic blood pressure (mmHg) | 117.5 (21.0) | 127.0 (23.0) | 0.063 |
Diastolic blood pressure (mmHg) | 74.0 (17.0) | 78.0 (17.0) | 0.221 |
Fasting glucose (mmol/L) | 4.8 (0.5) | 4.5 (0.4) | 0.073 |
High-density lipoprotein cholesterol (mmol/L) | 1.4 (0.6) | 1.2 (0.5) | 0.115 |
Triglycerides (mmol/L) | 0.7 (0.8) | 1.0 (0.7) | 0.042 * |
White blood cells (×109/L) | 6.2 (3.6) | 6.8 (3.0) | 0.969 |
C-reactive protein (mg/L) | 3.0 (0.0) | 3.0 (0,0) | 0.833 |
Myeloperoxidase (ng/mL) | 785.0 (2850.0) | 1542.5 (2966.3) | 0.494 |
Monocyte chemoattractant protein-1 (pg/mL) | 348.0 (88.0) | 333.0 (157.5) | 0.364 |
Interferon-inducible T-cell alpha chemoattractant (pg/mL) | 62.5 (0.0) | 62.5 (0.0) | 0.105 |
Adiponectin (ng/mL) | 5195.0 (2672.5) | 4190.0 (2832.5) | 0.032 * |
Vitamin D (nmol/L) | 58.4 (16.1) | 39.5 (10.9) | <0.001 * |
Vitamin D (nmol/L) | |
---|---|
Body mass index (kg/m2) | r = −0.385 p = 0.002 * |
Waist circumference (cm) | r = −0.402 p = 0.001 * |
Visceral fat thickness (mm) | r = −0.329 p = 0.009 * |
Subcutaneous fat thickness (mm) | r = −0.300 p = 0.019 * |
Systolic blood pressure (mmHg) | r = −0.234 p = 0.075 |
Diastolic blood pressure (mmHg) | r = −0.100 p = 0.489 |
Fasting glucose (mmol/L) | r = 0.111 p = 0.444 |
High-density lipoprotein cholesterol (mmol/L) | r = 0.289 p = 0.024 * |
Triglycerides (mmol/L) | r = −0.213 p = 0.111 |
White blood cells (×109/L) | r = 0.034 p = 0.804 |
C-reactive protein (mg/L) | r = −0.099 p = 0.499 |
Myeloperoxidase (ng/mL) | r = −0.153 p = 0.282 |
Monocyte chemoattractant protein-1 (pg/mL) | r = 0.053 p = 0.710 |
Interferon-inducible T-cell alpha chemoattractant (pg/mL) | r = 0.091 p = 0.517 |
Adiponectin (ng/mL) | r = 0.024 p = 0.124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hertiš Petek, T.; Homšak, E.; Svetej, M.; Marčun Varda, N. Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity. Int. J. Mol. Sci. 2024, 25, 10599. https://doi.org/10.3390/ijms251910599
Hertiš Petek T, Homšak E, Svetej M, Marčun Varda N. Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity. International Journal of Molecular Sciences. 2024; 25(19):10599. https://doi.org/10.3390/ijms251910599
Chicago/Turabian StyleHertiš Petek, Tjaša, Evgenija Homšak, Mateja Svetej, and Nataša Marčun Varda. 2024. "Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity" International Journal of Molecular Sciences 25, no. 19: 10599. https://doi.org/10.3390/ijms251910599
APA StyleHertiš Petek, T., Homšak, E., Svetej, M., & Marčun Varda, N. (2024). Metabolic Syndrome, Inflammation, Oxidative Stress, and Vitamin D Levels in Children and Adolescents with Obesity. International Journal of Molecular Sciences, 25(19), 10599. https://doi.org/10.3390/ijms251910599