Characterization, Evolution, Expression and Functional Divergence of the DMP Gene Family in Plants
<p>Phylogenetic relationship of 240 <span class="html-italic">DMP</span> genes from 24 species, including <span class="html-italic">Arabidopsis</span> and cotton, showing a classification of <span class="html-italic">DMP</span>s in various groups. (<b>A</b>) MEGA 11 software was used to construct phylogenetic trees using the neighbor-joining (NJ) method with 1000 bootstrap replications. Each color shows a different group (I–V). Species are denoted with different colors and symbols in the phylogenetic tree. (<b>B</b>) Classification and arrangement of <span class="html-italic">DMP</span> genes in various groups based on a phylogenetic tree. Plant species classes are highlighted in various colors on the left. Five groups on the right side are made based on the phylogenetic tree containing <span class="html-italic">DMP</span> genes.</p> "> Figure 1 Cont.
<p>Phylogenetic relationship of 240 <span class="html-italic">DMP</span> genes from 24 species, including <span class="html-italic">Arabidopsis</span> and cotton, showing a classification of <span class="html-italic">DMP</span>s in various groups. (<b>A</b>) MEGA 11 software was used to construct phylogenetic trees using the neighbor-joining (NJ) method with 1000 bootstrap replications. Each color shows a different group (I–V). Species are denoted with different colors and symbols in the phylogenetic tree. (<b>B</b>) Classification and arrangement of <span class="html-italic">DMP</span> genes in various groups based on a phylogenetic tree. Plant species classes are highlighted in various colors on the left. Five groups on the right side are made based on the phylogenetic tree containing <span class="html-italic">DMP</span> genes.</p> "> Figure 2
<p>Comparison of the gene structure, conserved motifs and domains in <span class="html-italic">DMP</span> genes between <span class="html-italic">Arabidopsis</span>, cotton and 22 other species. (<b>A</b>) The NJ phylogenetic tree was constructed in MEGA 11 software using <span class="html-italic">DMP</span> sequences from 24 species. (<b>B</b>) The conserved protein motif composition of all <span class="html-italic">DMP</span>s and motif 1–10 is shown in various colored boxes. (<b>C</b>) Representation of the domain of <span class="html-italic">Arabidopsis</span> and other species. Yellow boxes represent the <span class="html-italic">DMP</span> domain in the sequences. (<b>D</b>) Exon and Intron structure of <span class="html-italic">DMP</span> genes of all Selected species. The red box represents exon or coding region, and the grey line represents intron with the scale at the bottom for measurement length of sequences.</p> "> Figure 3
<p>Promoter region analysis of <span class="html-italic">DMP</span> sequences from two monocot and two dicot species along with phylogenetic tree of the <span class="html-italic">DMP</span>s for each species separately. (<b>A</b>,<b>B</b>) = Dicots (<span class="html-italic">Arabidopsis thaliana</span> and <span class="html-italic">Gossypium raimondi</span>). (<b>C</b>,<b>D</b>) = Monocots (<span class="html-italic">Sorghum bicolor</span> and <span class="html-italic">Zea mays</span>).</p> "> Figure 4
<p>Evolutionary events in the <span class="html-italic">DMP</span> gene family in plants. Numbers of gene losses are shown in red color after “+” and duplications in blue color after “−”in the phylogenetic tree on the left side.</p> "> Figure 5
<p>Expression profiles of <span class="html-italic">DMP</span> genes in various organ tissue from two monocot and two dicot species. Raw RNA-seq data were procured from relevant databases. (<b>A</b>) <span class="html-italic">Arabidopsis thaliana</span> from TAIR database (TAIR, v.11, <a href="http://www.arabidopsis.org" target="_blank">http://www.arabidopsis.org</a>). (<b>B</b>) <span class="html-italic">Avena sativa</span> and (<b>C</b>) <span class="html-italic">Glycine max</span> from Phytozome (<a href="https://phytozome.jgi.doe.gov/pz/portal.html/" target="_blank">https://phytozome.jgi.doe.gov/pz/portal.html/</a>, accessed on 5 March 2024). (<b>D</b>) <span class="html-italic">Gossypium hirsutum</span> from COTTONGEN (<a href="http://www.cottongen.org/" target="_blank">http://www.cottongen.org/</a>, accessed on 7 March 2024) and the Cotton Functional Genomics Database (CottonFGD, <a href="https://cottonfgd.org/" target="_blank">https://cottonfgd.org/</a>)<span class="html-italic">. DMP</span> gene expression levels are represented with various colors, with blue color indicating the least expression and red indicates the highest expression. Eudicot species (<b>A</b>,<b>C</b>,<b>D</b>); monocot species (<b>B</b>).</p> "> Figure 6
<p>Expression levels of <span class="html-italic">DMP</span> sequences in various tissues of cotton. <span class="html-italic">GhActin</span> was used as a reference. Error bars denote standard deviation measured from three experiments.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Identification of the DMP Proteins in Various Species
2.2. Phylogenetic Analysis of the DMP Gene Family
2.3. Gene Structure, Motifs and Domain Analysis of DMPs
2.4. Promoter Region Analysis in Dicots and Monocots
2.5. Duplication and Loss of DMP Genes in Plants during Evolution
2.6. Tissue Expression Levels of DMPs in Monocots and Eudicots
2.7. Tissues Expression of DMPs in Cotton
3. Discussion
4. Materials and Methods
4.1. Identification and Retrieval of DMP Gene Family
4.2. Amino-Acid Sequence Alignment and Phylogenetic Analysis
4.3. Conserved Motifs, Domain and Gene Structure Analysis
4.4. Promoter Analysis of Monocot and Eudicot Species
4.5. Gene Loss and Duplication Event Analysis
4.6. Expression Profiles of DMPs in Monocots and Eudicots
4.7. RNA Extraction and qRT-PCR Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xicluna, J.; Lacombe, B.; Dreyer, I.; Alcon, C.; Jeanguenin, L.; Sentenac, H.; Thibaud, J.-B.; Chérel, I. Increased functional diversity of plant K+ channels by preferential heteromerization of the shaker-like subunits AKT2 and KAT2. J. Biol. Chem. 2007, 282, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Mäser, P.; Thomine, S.; Schroeder, J.I.; Ward, J.M.; Hirschi, K.; Sze, H.; Talke, I.N.; Amtmann, A.; Maathuis, F.J.; Sanders, D. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 2001, 126, 1646–1667. [Google Scholar] [CrossRef] [PubMed]
- Kang JooHyun, K.J.; Hwang JaeUng, H.J.; Lee MiYoung, L.M.; Kim YuYoung, K.Y.; Assmann, S.; Martinoia, E.; Lee YoungSook, L.Y. PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc. Natl. Acad. Sci. USA 2010, 107, 2355–2360. [Google Scholar] [CrossRef] [PubMed]
- Mori, T.; Igawa, T.; Tamiya, G.; Miyagishima, S.-Y.; Berger, F. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis. Curr. Biol. 2014, 24, 170–175. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, X.; Chen, W.; Yao, J.; Li, Y.; Fang, S.; Lv, Y.; Li, X.; Pan, J.; Liu, C. Cotton DMP gene family: Characterization, evolution, and expression profiles during development and stress. Int. J. Biol. Macromol. 2021, 183, 1257–1269. [Google Scholar] [CrossRef]
- Kasaras, A.; Kunze, R. Expression, localisation and phylogeny of a novel family of plant-specific membrane proteins. Plant Biol. 2010, 12, 140–152. [Google Scholar] [CrossRef]
- Kasaras, A.; Melzer, M.; Kunze, R. Arabidopsis senescence-associated protein DMP1 is involved in membrane remodeling of the ER and tonoplast. BMC Plant Biol. 2012, 12, 54. [Google Scholar] [CrossRef]
- Olvera-Carrillo, Y.; Van Bel, M.; Van Hautegem, T.; Fendrych, M.; Huysmans, M.; Simaskova, M.; van Durme, M.; Buscaill, P.; Rivas, S.; Coll, N.S.; et al. A Conserved Core of Programmed Cell Death Indicator Genes Discriminates Developmentally and Environmentally Induced Programmed Cell Death in Plants. Plant Physiol. 2015, 169, 2684–2699. [Google Scholar] [CrossRef]
- Gao, Z.; Daneva, A.; Salanenka, Y.; Van Durme, M.; Huysmans, M.; Lin, Z.; De Winter, F.; Vanneste, S.; Karimi, M.; Van de Velde, J.; et al. KIRA1 and ORESARA1 terminate flower receptivity by promoting cell death in the stigma of Arabidopsis. Nat. Plants 2018, 4, 365–375. [Google Scholar] [CrossRef]
- Prigge, V.; Xu, X.; Li, L.; Babu, R.; Chen, S.; Atlin, G.N.; Melchinger, A.E. New Insights into the Genetics of in Vivo Induction of Maternal Haploids, the Backbone of Doubled Haploid Technology in Maize. Genetics 2012, 190, 781–793. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.; Zhang, J.; Jia, M.; Cao, L.; Yu, J.; Zhao, D. Haploid induction in allotetraploid tobacco using DMPs mutation. Planta 2022, 255, 98. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, Y.; Chen, B.; Liu, J.; Wang, D.; Li, M.; Qi, X.; Liu, C.; Boutilier, K.; Chen, S. Establishment of a DMP based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum. J. Integr. Plant Biol. 2022, 64, 1281–1294. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, B.; Wang, D.; Zhu, X.; Li, M.; Zhang, J.; Chen, M.; Wang, M.; Riksen, T.; Liu, J.; et al. In vivo maternal haploid induction in tomato. Plant Biotechnol. J. 2022, 20, 250–252. [Google Scholar] [CrossRef] [PubMed]
- Nawade, B.; Bosamia, T.C.; Lee, J.H.; Jang, J.H.; Lee, O.R. Genome-wide characterization of the soybean DOMAIN OF UNKNOWN FUNCTION 679 membrane protein gene family highlights their potential involvement in growth and stress response. Front. Plant Sci. 2023, 14, 1216082. [Google Scholar] [CrossRef]
- Lescot, M.; Déhais, P.; Thijs, G.; Marchal, K.; Moreau, Y.; Van de Peer, Y.; Rouzé, P.; Rombauts, S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002, 30, 325–327. [Google Scholar] [CrossRef]
- Chen, K.; Durand, D.; Farach-Colton, M. NOTUNG: A program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. 2000, 7, 429–447. [Google Scholar] [CrossRef]
- Guo, A.Y.; Zhu, Q.H.; Chen, X.; Luo, J.C. GSDS: A gene structure display server. Yi Chuan 2007, 29, 1023–1026. [Google Scholar] [CrossRef]
- Roy, S.W.; Gilbert, W. The evolution of spliceosomal introns: Patterns, puzzles and progress. Nat. Rev. Genet. 2006, 7, 211–221. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, C.; Qi, X.; Jiao, Y.; Wang, D.; Wang, Y.; Liu, Z.; Chen, C.; Chen, B.; Tian, X.; et al. Mutation of ZmDMP enhances haploid induction in maize. Nat. Plants 2019, 5, 575–580. [Google Scholar] [CrossRef]
- Galluzzi, L.; Baehrecke, E.H.; Ballabio, A.; Boya, P.; Bravo-San Pedro, J.M.; Cecconi, F.; Choi, A.M.; Chu, C.T.; Codogno, P.; Colombo, M.I.; et al. Molecular definitions of autophagy and related processes. Embo J. 2017, 36, 1811–1836. [Google Scholar] [CrossRef]
- Kasaras, A. Characterization of the Senescence-Associated Membrane Protein DMP1 and the DMP Family in Arabidopsis thaliana. Ph.D. Thesis, University of Berlin, Berlin, Germany, 2013. [Google Scholar] [CrossRef]
- Takahashi, T.; Mori, T.; Ueda, K.; Yamada, L.; Nagahara, S.; Higashiyama, T.; Sawada, H.; Igawa, T. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants. Development 2018, 145, dev170076. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Chen, B.; Li, M.; Wang, D.; Jiao, Y.; Qi, X.; Wang, M.; Liu, Z.; Chen, C.; Wang, Y.; et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis. Nat. Plants 2020, 6, 466–472. [Google Scholar] [CrossRef]
- Kasaras, A.; Kunze, R. Dual-targeting of Arabidopsis DMP1 isoforms to the tonoplast and the plasma membrane. PLoS ONE 2017, 12, e0174062. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liu, H.; Wang, J.; Zhao, G.; Niu, K.; Zhou, X.; Zhang, R.; Yao, R. Genome-wide identification of the oat DMP gene family and its expression analysis in response to seed aging. BMC Genom. 2024, 25, 863. [Google Scholar] [CrossRef]
- Hagan, I.; Yanagida, M. The product of the spindle formation gene sad1+ associates with the fission yeast spindle pole body and is essential for viability. J. Cell Biol. 1995, 129, 1033–1047. [Google Scholar] [CrossRef]
- Malone, C.J.; Fixsen, W.D.; Horvitz, H.R.; Han, M. UNC-84 localizes to the nuclear envelope and is required for nuclear migration and anchoring during C. elegans development. Development 1999, 126, 3171–3181. [Google Scholar] [CrossRef]
- Yuan, L.; Pan, J.; Zhu, S.; Li, Y.; Yao, J.; Li, Q.; Fang, S.; Liu, C.; Wang, X.; Li, B.; et al. Evolution and Functional Divergence of SUN Genes in Plants. Front. Plant Sci. 2021, 12, 646622. [Google Scholar] [CrossRef]
- Ezer, D.; Shepherd, S.J.K.; Brestovitsky, A.; Dickinson, P.; Cortijo, S.; Charoensawan, V.; Box, M.S.; Biswas, S.; Jaeger, K.E.; Wigge, P.A. The G-Box Transcriptional Regulatory Code in Arabidopsis. Plant Physiol. 2017, 175, 628–640. [Google Scholar] [CrossRef]
- Gangappa, S.N.; Maurya, J.P.; Yadav, V.; Chattopadhyay, S. The regulation of the Z-and G-box containing promoters by light signaling components, SPA1 and MYC2, in Arabidopsis. PLoS ONE 2013, 8, e62194. [Google Scholar] [CrossRef]
- Kobayashi, K.; Obayashi, T.; Masuda, T. Role of the G-box element in regulation of chlorophyll biosynthesis in Arabidopsis roots. Plant Signal. Behav. 2012, 7, 922–926. [Google Scholar] [CrossRef]
- Trishla, V.S.; Marriboina, S.; Boyidi, P.; Kirti, P.B. GUS-reporter based analysis of the promoter activity of Gossypium hirsutum NAC transcription factor, GhNAC4 that is induced by phytohormones and environmental stresses. Plant Cell Tissue Organ Cult. (PCTOC) 2020, 141, 643–654. [Google Scholar] [CrossRef]
- Martínez-Hernández, A.; López-Ochoa, L.; Argüello-Astorga, G.; Herrera-Estrella, L. Functional properties and regulatory complexity of a minimal RBCS light-responsive unit activated by phytochrome, cryptochrome, and plastid signals. Plant Physiol. 2002, 128, 1223–1233. [Google Scholar] [CrossRef] [PubMed]
- López-Ochoa, L.; Acevedo-Hernández, G.; Martínez-Hernández, A.; Argüello-Astorga, G.; Herrera-Estrella, L. Structural relationships between diverse cis-acting elements are critical for the functional properties of a rbcS minimal light regulatory unit. J. Exp. Bot. 2007, 58, 4397–4406. [Google Scholar] [CrossRef]
- Hagen, G.; Guilfoyle, T. Auxin-responsive gene expression: Genes, promoters and regulatory factors. Plant Mol. Biol. 2002, 49, 373–385. [Google Scholar] [CrossRef]
- Yamamoto, Y.Y.; Ichida, H.; Abe, T.; Suzuki, Y.; Sugano, S.; Obokata, J. Differentiation of core promoter architecture between plants and mammals revealed by LDSS analysis. Nucleic Acids Res. 2007, 35, 6219–6226. [Google Scholar] [CrossRef]
- Niggeweg, R.; Thurow, C.; Kegler, C.; Gatz, C. Tobacco transcription factor TGA2.2 is the main component of as-1-binding factor ASF-1 and is involved in salicylic acid- and auxin-inducible expression of as-1-containing target promoters. J. Biol. Chem. 2000, 275, 19897–19905. [Google Scholar] [CrossRef]
- Mönke, G.; Altschmied, L.; Tewes, A.; Reidt, W.; Mock, H.P.; Bäumlein, H.; Conrad, U. Seed-specific transcription factors ABI3 and FUS3: Molecular interaction with DNA. Planta 2004, 219, 158–166. [Google Scholar] [CrossRef]
- Huang, J.; Hai, Z.; Wang, R.; Yu, Y.; Chen, X.; Liang, W.; Wang, H. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber (Cucumis sativus L.). Front. Plant Sci. 2022, 13, 968418. [Google Scholar] [CrossRef]
- Yoshida, T.; Fujita, Y.; Maruyama, K.; Mogami, J.; Todaka, D.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Four Arabidopsis AREB/ABF transcription factors function predominantly in gene expression downstream of SnRK2 kinases in abscisic acid signalling in response to osmotic stress. Plant Cell Environ. 2015, 38, 35–49. [Google Scholar] [CrossRef]
- Rouster, J.; Leah, R.; Mundy, J.; Cameron-Mills, V. Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J. 1997, 11, 513–523. [Google Scholar] [CrossRef]
- Sobajima, H.; Tani, T.; Chujo, T.; Okada, K.; Suzuki, K.; Mori, S.; Minami, E.; Nishiyama, M.; Nojiri, H.; Yamane, H. Identification of a Jasmonic Acid-Responsive Region in the Promoter of the Rice 12-Oxophytodienoic Acid Reductase 1 Gene OsOPR1. Biosci. Biotechnol. Biochem. 2007, 71, 3110–3115. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Zhang, X.; Li, F.; Han, Z.; Ding, B. A point mutation in the IAA14 promoter enhances callus formation and regeneration. Physiol. Mol. Biol. Plants 2024, 30, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Smita, S.; Katiyar, A.; Chinnusamy, V.; Pandey, D.M.; Bansal, K.C. Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice. Front. Plant Sci. 2015, 6, 1157. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luo, M.; Cheng, L.; Lin, Y.; Chen, Q.; Sun, B.; Gu, X.; Wang, Y.; Li, M.; Luo, Y.; et al. Identification of the Cytosolic Glucose-6-Phosphate Dehydrogenase Gene from Strawberry Involved in Cold Stress Response. Int. J. Mol. Sci. 2020, 21, 7322. [Google Scholar] [CrossRef]
- Dolferus, R.; Klok, E.J.; Ismond, K.; Delessert, C.; Wilson, S.; Good, A.; Peacock, J.; Dennis, L. Molecular basis of the anaerobic response in plants. IUBMB Life 2001, 51, 79–82. [Google Scholar] [CrossRef]
- Siebertz, B.; Logemann, J.; Willmitzer, L.; Schell, J. Cis-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression. Plant Cell 1989, 1, 961–968. [Google Scholar] [CrossRef]
- Dhatterwal, P.; Basu, S.; Mehrotra, S.; Mehrotra, R. Genome wide analysis of W-box element in Arabidopsis thaliana reveals TGAC motif with genes down regulated by heat and salinity. Sci. Rep. 2019, 9, 1681. [Google Scholar] [CrossRef]
- Wang, K.; Wang, Z.; Li, F.; Ye, W.; Wang, J.; Song, G.; Yue, Z.; Cong, L.; Shang, H.; Zhu, S.; et al. The draft genome of a diploid cotton Gossypium raimondii. Nat. Genet. 2012, 44, 1098–1103. [Google Scholar] [CrossRef]
- Zhu, T.; Liang, C.; Meng, Z.; Sun, G.; Meng, Z.; Guo, S.; Zhang, R. CottonFGD: An integrated functional genomics database for cotton. BMC Plant Biol. 2017, 17, 101. [Google Scholar] [CrossRef]
- Letunic, I.; Bork, P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018, 46, D493–D496. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.-Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef] [PubMed]
- Hallgren, J.; Tsirigos, K.D.; Pedersen, M.D.; Almagro Armenteros, J.J.; Marcatili, P.; Nielsen, H.; Krogh, A.; Winther, O. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks. bioRxiv 2022. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Mol. Plant 2020, 13, 1194–1202. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Suleski, M.; Hedges, S.B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 2017, 34, 1812–1819. [Google Scholar] [CrossRef]
- Darby, C.A.; Stolzer, M.; Ropp, P.J.; Barker, D.; Durand, D. Xenolog classification. Bioinformatics 2016, 33, 640–649. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J.; et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, Z.; Tian, D.; Li, Y.; Aminu, I.M.; Tabusam, J.; Zhang, Y.; Zhu, S. Characterization, Evolution, Expression and Functional Divergence of the DMP Gene Family in Plants. Int. J. Mol. Sci. 2024, 25, 10435. https://doi.org/10.3390/ijms251910435
Ahmad Z, Tian D, Li Y, Aminu IM, Tabusam J, Zhang Y, Zhu S. Characterization, Evolution, Expression and Functional Divergence of the DMP Gene Family in Plants. International Journal of Molecular Sciences. 2024; 25(19):10435. https://doi.org/10.3390/ijms251910435
Chicago/Turabian StyleAhmad, Zeeshan, Dingyan Tian, Yan Li, Isah Mansur Aminu, Javaria Tabusam, Yongshan Zhang, and Shouhong Zhu. 2024. "Characterization, Evolution, Expression and Functional Divergence of the DMP Gene Family in Plants" International Journal of Molecular Sciences 25, no. 19: 10435. https://doi.org/10.3390/ijms251910435