Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides
<p>Oncogenic and anticancer peptides involved in glioma development.</p> "> Figure 2
<p>Oncogenic peptides favoring (red rectangles) and anticancer peptides counteracting (green rectangles) the hallmarks (proliferative signaling maintenance, replicative immortality, invasion and metastasis activation, angiogenesis promotion, cell death resistance, immune destruction evasion, and energy metabolism reprogramming) responsible for glioma development.</p> "> Figure 3
<p>Anti-glioma therapeutic strategies: peptides, monoclonal antibodies, peptide receptor knockdown, peptide receptor antagonists, miR upregulation, drugs, and inhibitors.</p> "> Figure 4
<p>Chemical structures of peptide receptor antagonists showing anti-glioma effects. These structures were illustrated using KingDraw free software [<a href="#B142-ijms-25-07990" class="html-bibr">142</a>], except for VIPhyp, which was illustrated using the PepDraw program [<a href="#B143-ijms-25-07990" class="html-bibr">143</a>].</p> ">
Abstract
:1. Introduction
2. Glioma and Peptidergic Systems
2.1. Oncogenic Peptides
2.1.1. Adrenomedullin
2.1.2. Angiotensin
2.1.3. Bombesin/Gastrin-Releasing Peptide/Neuromedin B
2.1.4. Bradykinin
2.1.5. Cholecystokinin
2.1.6. Endothelin
2.1.7. Neurotensin
2.1.8. Substance P
2.2. Anticancer Peptides
2.2.1. Angiotensin (1-7)
2.2.2. Carnosine
2.2.3. Corticotropin-Releasing Factor/Urocortin
2.2.4. Endothelin
2.2.5. Enkephalin
2.2.6. Gonadotropin-Releasing Hormone
2.2.7. Luteinizing Hormone-Releasing Hormone
2.2.8. Pituitary Adenylate Cyclase-Activating Polypeptide
2.2.9. Somatostatin
2.2.10. Tat-NTS/Tat-Cx43266-283
2.3. Oncogenic and Anticancer Peptides
2.3.1. Growth Hormone-Releasing Hormone
2.3.2. Oxytocin
2.3.3. Vasoactive Intestinal Peptide
2.4. Other Peptides
2.4.1. Galanin
2.4.2. Melanocyte-Stimulating Hormone
2.4.3. Neuropeptide Y
3. Discussion
3.1. Oncogenic/Anticancer Peptides Favoring/Counteracting Glioma Development
3.2. Signaling Pathways Involved in Gliomas
3.3. Antitumor Therapeutic Strategies against Gliomas
3.4. Peptidergic Systems as Glioma Biomarkers
4. Future Research, Perspectives, and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sánchez, M.L.; Rodríguez, F.D.; Coveñas, R. Peptidergic Systems and Cancer: Focus on Tachykinin and Calcitonin/Calcitonin Gene-Related Peptide Families. Cancers 2023, 15, 1694. [Google Scholar] [CrossRef] [PubMed]
- Coveñas, R.; Muñoz, M. Involvement of the Substance P/Neurokinin-1 Receptor System in Cancer. Cancers 2022, 14, 3539. [Google Scholar] [CrossRef]
- Muñoz, M.; Coveñas, R. Neurokinin-1 Receptor: A New Promising Target in the Treatment of Cancer. Discov. Med. 2010, 10, 305–313. [Google Scholar] [PubMed]
- Robinson, P.; Coveñas, R.; Muñoz, M. Combination Therapy of Chemotherapy or Radiotherapy and the Neurokinin-1 Receptor Antagonist Aprepitant: A New Antitumor Strategy? Curr. Med. Chem. 2022, 30, 1798–1812. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A Summary. Neuro-Oncology 2021, 23, 1231–1251. [Google Scholar] [CrossRef] [PubMed]
- Weller, M.; Wick, W.; Aldape, K.; Brada, M.; Berger, M.; Pfister, S.M.; Nishikawa, R.; Rosenthal, M.; Wen, P.Y.; Stupp, R.; et al. Glioma. Nat. Rev. Dis. Primer 2015, 1, 15017. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, D.; Feng, Z.; Zhao, H.; Xiao, F.; Wei, Y.; Zhang, H.; Li, H.; Kong, L.; Li, M.; et al. Inhibition of Intermedin (Adrenomedullin 2) Suppresses the Growth of Glioblastoma and Increases the Antitumor Activity of Temozolomide. Mol. Cancer Ther. 2021, 20, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Price, M.; Neff, C.; Cioffi, G.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2016–2020. Neuro-Oncology 2023, 25 (Suppl. S2), iv1–iv99. [Google Scholar] [CrossRef] [PubMed]
- Szklener, K.; Bilski, M.; Nieoczym, K.; Mańdziuk, D.; Mańdziuk, S. Enhancing glioblastoma treatment through the integration of tumor-treating fields. Front. Oncol. 2023, 13, 1274587. [Google Scholar] [CrossRef]
- Vymazal, J.; Kazda, T.; Novak, T.; Slanina, P.; Sroubek, J.; Klener, J.; Hrbac, T.; Syrucek, M.; Rulseh, A.M. Eighteen years’ experience with tumor treating fields in the treatment of newly diagnosed glioblastoma. Front. Oncol. 2023, 12, 1014455. [Google Scholar] [CrossRef]
- Li, C.M.; Haratipour, P.; Lingeman, R.G.; Perry, J.J.P.; Gu, L.; Hickey, R.J.; Malkas, L.H. Novel Peptide Therapeutic Approaches for Cancer Treatment. Cells 2021, 10, 2908. [Google Scholar] [CrossRef]
- Chandran, M.; Candolfi, M.; Shah, D.; Mineharu, Y.; Yadav, V.N.; Koschmann, C.; Asad, A.S.; Lowenstein, P.R.; Castro, M.G. Single vs. Combination Immunotherapeutic Strategies for Glioma. Expert Opin. Biol. Ther. 2017, 17, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Reifenberger, G.; Wirsching, H.-G.; Knobbe-Thomsen, C.B.; Weller, M. Advances in the Molecular Genetics of Gliomas—Implications for Classification and Therapy. Nat. Rev. Clin. Oncol. 2017, 14, 434–452. [Google Scholar] [CrossRef] [PubMed]
- Drapeau, A.; Fortin, D. Chemotherapy Delivery Strategies to the Central Nervous System: Neither Optional nor Superfluous. Curr. Cancer Drug Targets 2015, 15, 752–768. [Google Scholar] [CrossRef]
- Lim, S.Y.; Ahn, S.-H.; Park, H.; Lee, J.; Choi, K.; Choi, C.; Choi, J.H.; Park, E.-M.; Choi, Y.-H. Transcriptional Regulation of Adrenomedullin by Oncostatin M in Human Astroglioma Cells: Implications for Tumor Invasion and Migration. Sci. Rep. 2014, 4, 6444. [Google Scholar] [CrossRef]
- He, Z.; Cheng, M.; Hu, J.; Liu, L.; Liu, P.; Chen, L.; Cao, D.; Tang, J. miR-1297 Sensitizes Glioma Cells to Temozolomide (TMZ) Treatment through Targeting Adrenomedullin (ADM). J. Transl. Med. 2022, 20, 443. [Google Scholar] [CrossRef]
- Boudouresque, F.; Berthois, Y.; Martin, P.-M.; Figarella-Branger, D.; Chinot, O.; Ouafik, L. Role of Adrenomedullin in Glioblastomas Growth. Bull. Cancer 2005, 92, 317–326. [Google Scholar] [PubMed]
- Sun, W.; Depping, R.; Jelkmann, W. Interleukin-1β Promotes Hypoxia-Induced Apoptosisof Glioblastoma Cells by Inhibiting Hypoxia-Induciblefactor-1 Mediated Adrenomedullin Production. Cell Death Discov. 2014, 5, e1020. [Google Scholar] [CrossRef] [PubMed]
- Perryman, R.; Renziehausen, A.; Shaye, H.; Kostagianni, A.D.; Tsiailanis, A.D.; Thorne, T.; Chatziathanasiadou, M.V.; Sivolapenko, G.B.; El Mubarak, M.A.; Han, G.W.; et al. Inhibition of the Angiotensin II Type 2 Receptor AT 2 R Is a Novel Therapeutic Strategy for Glioblastoma. Proc. Natl. Acad. Sci. USA 2022, 119, e2116289119. [Google Scholar] [CrossRef]
- Panza, S.; Malivindi, R.; Caruso, A.; Russo, U.; Giordano, F.; Győrffy, B.; Gelsomino, L.; De Amicis, F.; Barone, I.; Conforti, F.L.; et al. Novel Insights into the Antagonistic Effects of Losartan against Angiotensin II/AGTR1 Signaling in Glioblastoma Cells. Cancers 2021, 13, 4555. [Google Scholar] [CrossRef]
- Singh, A.; Srivastava, N.; Yadav, A.; Ateeq, B. Targeting AGTR1/NF-κB/CXCR4 Axis by miR-155attenuates Oncogenesis in Glioblastoma. Neoplasia 2020, 22, 497–510. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Chou, C.-H.; Li, Y.-F.; Huang, L.-C.; Kao, Y.; Hueng, D.-Y.; Tsai, C.-K. Antiproliferative and Apoptotic Effects of Telmisartan in Human Glioma Cells. Cancer Cell Int. 2023, 23, 111. [Google Scholar] [CrossRef]
- Ursu, R.; Thomas, L.; Psimaras, D.; Chinot, O.; Le Rhun, E.; Ricard, D.; Charissoux, M.; Cuzzubbo, S.; Sejalon, F.; Quillien, V.; et al. Angiotensin II Receptor Blockers, Steroids and Radiotherapy in Glioblastoma—A Randomised Multicentre Trial (ASTER Trial). An ANOCEF Study. Eur. J. Cancer 2019, 109, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Perdomo-Pantoja, A.; Mejía-Pérez, S.I.; Gómez-Flores-Ramos, L.; Lara-Velazquez, M.; Orillac, C.; Gómez-Amador, J.L.; Wegman-Ostrosky, T. Renin Angiotensin System and Its Role in Biomarkers and Treatment in Gliomas. J. Neurooncol. 2018, 138, 1–15. [Google Scholar] [CrossRef] [PubMed]
- O’Rawe, M.; Kilmister, E.J.; Mantamadiotis, T.; Kaye, A.H.; Tan, S.T.; Wickremesekera, A.C. The Renin–Angiotensin System in the Tumor Microenvironment of Glioblastoma. Cancers 2021, 13, 4004. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Expósito, M.J.; Martínez-Martos, J.M. Differential Effects of Doxazosin on Renin-Angiotensin-System- Regulating Aminopeptidase Activities in Neuroblastoma and Glioma Tumoral Cells. CNS Neurol. Disord. Drug Targets 2019, 18, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Johansen, M.D.; Urup, T.; Holst, C.B.; Christensen, I.J.; Grunnet, K.; Lassen, U.; Friis, S.; Poulsen, H.S. Outcome of Bevacizumab Therapy in Patients with Recurrent Glioblastoma Treated with Angiotensin System Inhibitors. Cancer Investig. 2018, 36, 512–519. [Google Scholar] [CrossRef]
- O’Rawe, M.; Wickremesekera, A.C.; Pandey, R.; Young, D.; Sim, D.; FitzJohn, T.; Burgess, C.; Kaye, A.H.; Tan, S.T. Treatment of Glioblastoma with Re-Purposed Renin-Angiotensin System Modulators: Results of a Phase I Clinical Trial. J. Clin. Neurosci. 2022, 95, 48–54. [Google Scholar] [CrossRef]
- Sharif, M. Mitogenic Signaling by Substance P and Bombesin-like Neuropeptide Receptors in Astrocytic/Glial Brain Tumor-Derived Cell Lines. Int. J. Oncol. 1998, 12, 273–359. [Google Scholar] [CrossRef]
- Sharif, T.R.; Luo, W.; Sharif, M. Functional Expression of Bombesin Receptor in Most Adult and Pediatric Human Glioblastoma Cell Lines; Role in Mitogenesis and in Stimulating the Mitogen-Activated Protein Kinase Pathway. Mol. Cell. Endocrinol. 1997, 130, 119–130. [Google Scholar] [CrossRef]
- Moody, T.W.; Lee, L.; Ramos-Alvarez, I.; Iordanskaia, T.; Mantey, S.A.; Jensen, R.T. Bombesin Receptor Family Activation and CNS/Neural Tumors: Review of Evidence Supporting Possible Role for Novel Targeted Therapy. Front. Endocrinol. 2021, 12, 728088. [Google Scholar] [CrossRef] [PubMed]
- Kanazawa, T.; Taki, H.; Okada, H. Nose-to-Brain Drug Delivery System with Ligand/Cell-Penetrating Peptide-Modified Polymeric Nano-Micelles for Intracerebral Gliomas. Eur. J. Pharm. Biopharm. 2020, 152, 85–94. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Chi, C.; Li, D.; Zhang, J.; Niu, G.; Lv, F.; Wang, J.; Che, W.; Zhang, L.; Ji, N.; et al. Resection and Survival Data from a Clinical Trial of Glioblastoma Multiforme-specific IRDye800-BBN Fluorescence-guided Surgery. Bioeng. Transl. Med. 2021, 6, e10182. [Google Scholar] [CrossRef]
- Flores, D.G.; Meurer, L.; Uberti, A.F.; Macedo, B.R.; Lenz, G.; Brunetto, A.L.; Schwartsmann, G.; Roesler, R. Gastrin-Releasing Peptide Receptor Content in Human Glioma and Normal Brain. Brain Res. Bull. 2010, 82, 95–98. [Google Scholar] [CrossRef] [PubMed]
- Flores, D.; De Farias, C.; Leites, J.; De Oliveira, M.; Lima, R.; Kikuchi Tamajusuku, A.; Di Leone, L.; Meurer, L.; Brunetto, A.; Schwartsmann, G.; et al. Gastrin-Releasing Peptide Receptors Regulate Proliferation of C6 Glioma Cells through a Phosphatidylinositol 3-Kinase-Dependent Mechanism. Curr. Neurovasc. Res. 2008, 5, 99–105. [Google Scholar] [CrossRef]
- Menegotto, P.R.; Da Costa Lopez, P.L.; Souza, B.K.; De Farias, C.B.; Filippi-Chiela, E.C.; Vieira, I.A.; Schwartsmann, G.; Lenz, G.; Roesler, R. Gastrin-Releasing Peptide Receptor Knockdown Induces Senescence in Glioblastoma Cells. Mol. Neurobiol. 2017, 54, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.-C.; Lan, Y.-H.; Lu, Y.-J.; Weng, Y.-L.; Chen, J.-P. Targeted Delivery of Irinotecan and SLP2 shRNA with GRP-Conjugated Magnetic Graphene Oxide for Glioblastoma Treatment. Biomater. Sci. 2022, 10, 3201–3222. [Google Scholar] [CrossRef] [PubMed]
- Moody, T.W.; Fagarasan, M.; Zia, F. Neuromedin B Stimulates Arachidonic Acid Release, c-Fos Gene Expression, and the Growth of C6 Glioma Cells. Peptides 1995, 16, 1133–1140. [Google Scholar] [CrossRef]
- Nicoletti, N.F.; Erig, T.C.; Zanin, R.F.; Pereira, T.C.B.; Bogo, M.R.; Campos, M.M.; Morrone, F.B. Mechanisms Involved in Kinin-Induced Glioma Cells Proliferation: The Role of ERK1/2 and PI3K/Akt Pathways. J. Neurooncol. 2014, 120, 235–244. [Google Scholar] [CrossRef]
- Shen, C.-K.; Huang, B.-R.; Charoensaensuk, V.; Yang, L.-Y.; Tsai, C.-F.; Liu, Y.-S.; Lu, D.-Y.; Yeh, W.-L.; Lin, C. Bradykinin B1 Receptor Affects Tumor-Associated Macrophage Activity and Glioblastoma Progression. Antioxidants 2023, 12, 1533. [Google Scholar] [CrossRef]
- Lu, D.; Leung, Y.; Huang, S.; Wong, K. Bradykinin-induced Cell Migration and COX-2 Production Mediated by the Bradykinin B1 Receptor in Glioma Cells. J. Cell. Biochem. 2010, 110, 141–150. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Hsu, J.-W.; Lin, H.-Y.; Lai, S.-W.; Huang, B.-R.; Tsai, C.-F.; Lu, D.-Y. Bradykinin B1 Receptor Contributes to Interleukin-8 Production and Glioblastoma Migration through Interaction of STAT3 and SP-1. Neuropharmacology 2019, 144, 143–154. [Google Scholar] [CrossRef]
- Rezaei, S.; Assaran Darban, R.; Javid, H.; Hashemy, S.I. The Therapeutic Potential of Aprepitant in Glioblastoma Cancer Cells through Redox Modification. BioMed Res. Int. 2022, 3, 8540403. [Google Scholar] [CrossRef]
- Montana, V.; Sontheimer, H. Bradykinin Promotes the Chemotactic Invasion of Primary Brain Tumors. J. Neurosci. 2011, 31, 4858–4867. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xue, Y.; Liu, Y. Bradykinin Increases the Permeability of the Blood-Tumor Barrier by the Caveolae-Mediated Transcellular Pathway. J. Neurooncol. 2010, 99, 187–194. [Google Scholar] [CrossRef]
- Oliveira, M.N.; Breznik, B.; Pillat, M.M.; Pereira, R.L.; Ulrich, H.; Lah, T.T. Kinins in Glioblastoma Microenvironment. Cancer Microenviron. 2019, 12, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Côté, J.; Bovenzi, V.; Savard, M.; Dubuc, C.; Fortier, A.; Neugebauer, W.; Tremblay, L.; Müller-Esterl, W.; Tsanaclis, A.-M.; Lepage, M.; et al. Induction of Selective Blood-Tumor Barrier Permeability and Macromolecular Transport by a Biostable Kinin B1 Receptor Agonist in a Glioma Rat Model. PLoS ONE 2012, 7, e37485. [Google Scholar] [CrossRef]
- Pillat, M.M.; Oliveira-Giacomelli, Á.; Das Neves Oliveira, M.; Andrejew, R.; Turrini, N.; Baranova, J.; Lah Turnšek, T.; Ulrich, H. Mesenchymal Stem Cell-glioblastoma Interactions Mediated via Kinin Receptors Unveiled by Cytometry. Cytom. A 2021, 99, 152–163. [Google Scholar] [CrossRef]
- Oikonomou, E.; Buchfelder, M.; Adams, E.F. Cholecystokinin (CCK) and CCK Receptor Expression by Human Gliomas: Evidence for an Autocrine/Paracrine Stimulatory Loop. Neuropeptides 2008, 42, 255–265. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, H.; Jin, K.; Jiang, T.; Shen, S.; Luo, Z.; Tuo, Y.; Jiang, X.; Liu, X.; Hu, Y.; et al. BQ123 Selectively Improved Tumor Perfusion and Enhanced Nanomedicine Delivery for Glioblastomas Treatment. Pharmacol. Res. 2018, 132, 211–219. [Google Scholar] [CrossRef]
- Lange, F.; Kaemmerer, D.; Behnke-Mursch, J.; Brück, W.; Schulz, S.; Lupp, A. Differential Somatostatin, CXCR4 Chemokine and Endothelin A Receptor Expression in WHO Grade I–IV Astrocytic Brain Tumors. J. Cancer Res. Clin. Oncol. 2018, 144, 1227–1237. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Zhang, L.; Jiang, B. Role of Endothelin B Receptor in Oligodendroglioma Proliferation and Survival: In Vitro and in Vivo Evidence. Mol. Med. Rep. 2014, 9, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Gong, X.; Xiao, H.; Zhou, J.; Xu, M.; Dai, Y.; Xu, L.; Feng, H.; Cui, H.; Yi, L. Neurotensin Promotes the Progression of Malignant Glioma through NTSR1 and Impacts the Prognosis of Glioma Patients. Mol. Cancer 2015, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Ou-yang, Q.; He, X.; Yang, A.; Li, B.; Xu, M. Interference with NTSR1 Expression Exerts an Anti-Invasion Effect via the Jun/miR-494/SOCS6 Axis of Glioblastoma Cells. Cell. Physiol. Biochem. 2018, 49, 2382–2395. [Google Scholar] [CrossRef]
- Xiao, H.; Zeng, Y.; Wang, Q.; Wei, S.; Zhu, X. A Novel Positive Feedback Loop Between NTSR1 and Wnt/β-Catenin Contributes to Tumor Growth of Glioblastoma. Cell. Physiol. Biochem. 2017, 43, 2133–2142. [Google Scholar] [CrossRef]
- Dong, Z.; Lei, Q.; Yang, R.; Zhu, S.; Ke, X.-X.; Yang, L.; Cui, H.; Yi, L. Inhibition of Neurotensin Receptor 1 Induces Intrinsic Apoptosis via Let-7a-3p/Bcl-w Axis in Glioblastoma. Br. J. Cancer 2017, 116, 1572–1584. [Google Scholar] [CrossRef] [PubMed]
- Mehboob, R.; Kurdi, M.; Baeesa, S.; Fawzy Halawa, T.; Tanvir, I.; Maghrabi, Y.; Hakamy, S.; Saeedi, R.; Moshref, R.; Nasief, H.; et al. Immunolocalization of Neurokinin 1 Receptor in WHO Grade 4 Astrocytomas, Oral Squamouscell and Urothelial Carcinoma. Folia Neuropathol. 2022, 60, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Majkowska-Pilip, A.; Rius, M.; Bruchertseifer, F.; Apostolidis, C.; Weis, M.; Bonelli, M.; Laurenza, M.; Królicki, L.; Morgenstern, A. In Vitro Evaluation of 225Ac-DOTA-substance P for Targeted Alpha Therapy of Glioblastoma Multiforme. Chem. Biol. Drug Des. 2018, 92, 1344–1356. [Google Scholar] [CrossRef]
- Muñoz, M.F.; Argüelles, S.; Rosso, M.; Medina, R.; Coveñas, R.; Ayala, A.; Muñoz, M. The Neurokinin-1 Receptor Is Essential for the Viability of Human Glioma Cells: A Possible Target for Treating Glioblastoma. BioMed Res. Int. 2022, 2022, 6291504. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, M.; Rosso, M.; Pérez, A.; Coveñas, R.; Rosso, R.; Zamarriego, C.; Piruat, J.I. The NK1 Receptor Is Involved in the Antitumoural Action of L-733,060 and in the Mitogenic Action of Substance P on Neuroblastoma and Glioma Cell Lines. Neuropeptides 2005, 39, 427–432. [Google Scholar] [CrossRef]
- Muñoz, M.; Coveñas, R. Glioma and Neurokinin-1 Receptor Antagonists: A New Therapeutic Approach. Anticancer Agents Med. Chem. 2019, 19, 92–100. [Google Scholar] [CrossRef]
- Afshari, A.R.; Motamed-Sanaye, A.; Sabri, H.; Soltani, A.; Karkon-Shayan, S.; Radvar, S.; Javid, H.; Mollazadeh, H.; Sathyapalan, T.; Sahebkar, A. Neurokinin-1 Receptor (NK-1R) Antagonists: Potential Targets in the Treatment of Glioblastoma Multiforme. Curr. Med. Chem. 2021, 28, 4877–4892. [Google Scholar] [CrossRef] [PubMed]
- Kast, R.E.; Ramiro, S.; Lladó, S.; Toro, S.; Coveñas, R.; Muñoz, M. Antitumor Action of Temozolomide, Ritonavir and Aprepitant against Human Glioma Cells. J. Neurooncol. 2016, 126, 425–431. [Google Scholar] [CrossRef]
- García-Aranda, M.; Téllez, T.; McKenna, L.; Redondo, M. Neurokinin-1 Receptor (NK-1R) Antagonists as a New Strategy to Overcome Cancer Resistance. Cancers 2022, 14, 2255. [Google Scholar] [CrossRef] [PubMed]
- Mehrabani, N.; Vaezi Kakhki, M.R.; Javid, H.; Ebrahimi, S.; Hashemy, S.I. The SP/NK1R System-Mediated ROS Generation in GBM Cells through Inhibiting Glutaredoxin Protein. Neurol. Res. Int. 2021, 2021, 9966000. [Google Scholar] [CrossRef]
- Korfi, F.; Javid, H.; Assaran Darban, R.; Hashemy, S.I. The Effect of SP/NK1R on the Expression and Activity of Catalase and Superoxide Dismutase in Glioblastoma Cancer Cells. Biochem. Res. Int. 2021, 2021, 6620708. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yamazaki, S.; Kumakura, S.; Someya, A.; Iseki, M.; Inada, E.; Nagaoka, I. Yokukansan, a Japanese Herbal Medicine, Suppresses Substance P-Induced Production of Interleukin-6 and Interleukin-8 by Human U373 MG Glioblastoma Astrocytoma Cells. Endocr. Metab. Immune Disord.—Drug Targets 2020, 20, 1073–1080. [Google Scholar] [CrossRef]
- Park, S.; Ahn, E.S.; Han, D.W.; Lee, J.H.; Min, K.T.; Kim, H.; Hong, Y. Pregabalin and Gabapentin Inhibit Substance P-induced NF-κB Activation in Neuroblastoma and Glioma Cells. J. Cell. Biochem. 2008, 105, 414–423. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Xie, J.; Liang, B.; Wu, J. Suppression of Angiotensin-(1–7) on the Disruption of Blood-Brain Barrier in Rat of Brain Glioma. Pathol. Oncol. Res. 2019, 25, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, H.; Heinrich, M.; Birkemeyer, C.; Meixensberger, J.; Gaunitz, F. The Proton-Coupled Oligopeptide Transporters PEPT2, PHT1 and PHT2 Mediate the Uptake of Carnosine in Glioblastoma Cells. Amino Acids 2019, 51, 999–1008. [Google Scholar] [CrossRef]
- Seidel, E.C.; Birkemeyer, C.; Baran-Schmidt, R.; Meixensberger, J.; Oppermann, H.; Gaunitz, F. Viability of Glioblastoma Cells and Fibroblasts in the Presence of Imidazole-Containing Compounds. Int. J. Mol. Sci. 2022, 23, 5834. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, H.; Faust, H.; Yamanishi, U.; Meixensberger, J.; Gaunitz, F. Carnosine Inhibits Glioblastoma Growth Independent from PI3K/Akt/mTOR Signaling. PLoS ONE 2019, 14, e0218972. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wu, M.; Chen, H.; Wen, T.; Lyu, J.; Shen, Y. Carnosine Suppresses Human Glioma Cells under Normoxic and Hypoxic Conditions Partly via Inhibiting Glutamine Metabolism. Acta Pharmacol. Sin. 2021, 42, 767–779. [Google Scholar] [CrossRef] [PubMed]
- Oppermann, H.; Dietterle, J.; Purcz, K.; Morawski, M.; Eisenlöffel, C.; Müller, W.; Meixensberger, J.; Gaunitz, F. Carnosine Selectively Inhibits Migration of IDH-Wildtype Glioblastoma Cells in a Co-Culture Model with Fibroblasts. Cancer Cell Int. 2018, 18, 111. [Google Scholar] [CrossRef]
- Dietterle, J.; Oppermann, H.; Glasow, A.; Neumann, K.; Meixensberger, J.; Gaunitz, F. Carnosine Increases Efficiency of Temozolomide and Irradiation Treatment of Isocitrate Dehydrogenase-Wildtype Glioblastoma Cells in Culture. Future Oncol. 2019, 15, 3683–3691. [Google Scholar] [CrossRef]
- Renner, C.; Asperger, A.; Seyffarth, A.; Meixensberger, J.; Gebhardt, R.; Gaunitz, F. Carnosine Inhibits ATP Production in Cells from Malignant Glioma. Neurol. Res. 2010, 32, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Kamada, M.; Ikeda, K.; Fujioka, K.; Akiyama, N.; Akiyoshi, K.; Inoue, Y.; Hanada, S.; Yamamoto, K.; Tojo, K.; Manome, Y. Expression of mRNAs of Urocortin and Corticotropin- Releasing Factor Receptors in Malignant Glioma Cell Lines. Anticancer Res. 2012, 32, 5299–5307. [Google Scholar] [PubMed]
- Yang, J.; Gan, X.; Tan, B.; Wang, J.; Chen, Y. Corticotropin-Releasing Factor Suppresses Glioma Progression by Upregulation of Long Non-Coding RNA-P21. Life Sci. 2019, 216, 92–100. [Google Scholar] [CrossRef]
- Moroz, M.A.; Huang, R.; Kochetkov, T.; Shi, W.; Thaler, H.; De Stanchina, E.; Gamez, I.; Ryan, R.P.; Blasberg, R.G. Comparison of Corticotropin-Releasing Factor, Dexamethasone, and Temozolomide: Treatment Efficacy and Toxicity in U87 and C6 Intracranial Gliomas. Clin. Cancer Res. 2011, 17, 3282–3292. [Google Scholar] [CrossRef]
- Ikeda, K.; Fujioka, K.; Tachibana, T.; Kim, S.U.; Tojo, K.; Manome, Y. Secretion of Urocortin I by Human Glioblastoma Cell Lines, Possibly via the Constitutive Pathway. Peptides 2015, 63, 63–70. [Google Scholar] [CrossRef]
- Niechi, I.; Erices, J.I.; Carrillo-Beltrán, D.; Uribe-Ojeda, A.; Torres, Á.; Rocha, J.D.; Uribe, D.; Toro, M.A.; Villalobos-Nova, K.; Gaete-Ramírez, B.; et al. Cancer Stem Cell and Aggressiveness Traits Are Promoted by Stable Endothelin-Converting Enzyme-1c in Glioblastoma Cells. Cells 2023, 12, 506. [Google Scholar] [CrossRef] [PubMed]
- Lazarczyk, M.; Matyja, E.; Lipkowski, A.W. A Comparative Study of Morphine Stimulation and Biphalin Inhibition of Human Glioblastoma T98G Cell Proliferation in Vitro. Peptides 2010, 31, 1606–1612. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Xie, H.; Tie, X.; Wang, R.; Wu, A.; Shan, F. NFAT-1 Hyper-Activation by Methionine Enkephalin (MENK) Significantly Induces Cell Apoptosis of Rats C6 Glioma in Vivo and in Vitro. Int. Immunopharmacol. 2018, 56, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Gao, Y.; Wen, L.; Zhai, Z.; Zhang, S.; Shan, F.; Feng, J. Methionine Enkephalin Regulates Microglia Polarization and Function. Int. Immunopharmacol. 2016, 40, 90–97. [Google Scholar] [CrossRef]
- Tripathi, P.H.; Akhtar, J.; Arora, J.; Saran, R.K.; Mishra, N.; Polisetty, R.V.; Sirdeshmukh, R.; Gautam, P. Quantitative Proteomic Analysis of GnRH Agonist Treated GBM Cell Line LN229 Revealed Regulatory Proteins Inhibiting Cancer Cell Proliferation. BMC Cancer 2022, 22, 133. [Google Scholar] [CrossRef]
- Marelli, M.M. Novel Insights into GnRH Receptor Activity: Role in the Control of Human Glioblastoma Cell Proliferation. Oncol. Rep. 2009, 21, 1277–1282. [Google Scholar] [CrossRef]
- Al Musaimi, O. Peptide Therapeutics: Unveiling the Potential against Cancer—A Journey through 1989. Cancers 2024, 16, 1032. [Google Scholar] [CrossRef]
- Jaszberenyi, M.; Schally, A.V.; Block, N.L.; Nadji, M.; Vidaurre, I.; Szalontay, L.; Rick, F.G. Inhibition of U-87 MG Glioblastoma by AN-152 (AEZS-108), a Targeted Cytotoxic Analog of Luteinizing Hormone-Releasing Hormone. Oncotarget 2013, 4, 422–432. [Google Scholar] [CrossRef]
- Jaworski, D.M. Expression of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and the PACAP-Selective Receptor in Cultured Rat Astrocytes, Human Brain Tumors, and in Response to Acute Intracranial Injury. Cell Tissue Res. 2000, 300, 219–230. [Google Scholar] [CrossRef]
- Cochaud, S.; Meunier, A.-C.; Monvoisin, A.; Bensalma, S.; Muller, J.-M.; Chadéneau, C. Neuropeptides of the VIP Family Inhibit Glioblastoma Cell Invasion. J. Neurooncol. 2015, 122, 63–73. [Google Scholar] [CrossRef]
- Tripathi, S.K.; Kean, R.; Bongiorno, E.; Hooper, D.C.; Jin, Y.-Y.; Wickstrom, E.; McCue, P.A.; Thakur, M.L. Targeting VPAC1 Receptors for Imaging Glioblastoma. Mol. Imaging Biol. 2020, 22, 293–302. [Google Scholar] [CrossRef] [PubMed]
- D’Amico, A.G.; Maugeri, G.; Vanella, L.; Pittalà, V.; Reglodi, D.; D’Agata, V. Multimodal Role of PACAP in Glioblastoma. Brain Sci. 2021, 11, 994. [Google Scholar] [CrossRef] [PubMed]
- Vertongen, P.; Camby, I.; Darro, F.; Kiss, R.; Robberecht, P. VIP and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Have an Antiproliferative Effect on the T98G Human Glioblastoma Cell Line through Interaction with VIP2 Receptor. Neuropeptides 1996, 30, 491–496. [Google Scholar] [CrossRef] [PubMed]
- Bensalma, S.; Turpault, S.; Balandre, A.-C.; De Boisvilliers, M.; Gaillard, A.; Chadéneau, C.; Muller, J.-M. PKA at a Cross-Road of Signaling Pathways Involved in the Regulation of Glioblastoma Migration and Invasion by the Neuropeptides VIP and PACAP. Cancers 2019, 11, 123. [Google Scholar] [CrossRef]
- Maugeri, G.; D’Amico, A.G.; Saccone, S.; Federico, C.; Rasà, D.M.; Caltabiano, R.; Broggi, G.; Giunta, S.; Musumeci, G.; D’Agata, V. Effect of PACAP on Hypoxia-Induced Angiogenesis and Epithelial–Mesenchymal Transition in Glioblastoma. Biomedicines 2021, 9, 965. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak-Bębenista, M.; Jasińska-Stroschein, M.; Kowalczyk, E. The Differential Effects of Neuroleptic Drugs and PACAP on the Expression of BDNF mRNA and Protein in a Human Glioblastoma Cell Line. Acta Neurobiol. Exp. 2017, 77, 205–213. [Google Scholar] [CrossRef]
- Nakamachi, T.; Sugiyama, K.; Watanabe, J.; Imai, N.; Kagami, N.; Hori, M.; Arata, S.; Shioda, S. Comparison of Expression and Proliferative Effect of Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) and Its Receptors on Human Astrocytoma Cell Lines. J. Mol. Neurosci. 2014, 54, 388–394. [Google Scholar] [CrossRef]
- He, J.-H.; Wang, J.; Yang, Y.-Z.; Chen, Q.-X.; Liu, L.-L.; Sun, L.; Hu, W.-M.; Zeng, J. SSTR2 Is a Prognostic Factor and a Promising Therapeutic Target in Glioma. Am. J. Transl. Res. 2021, 13, 11223–11234. [Google Scholar]
- Kunikowska, J.; Morgenstern, A.; Pełka, K.; Bruchertseifer, F.; Królicki, L. Targeted Alpha Therapy for Glioblastoma. Front. Med. 2022, 9, 1085245. [Google Scholar] [CrossRef]
- Lupp, A.; Ehms, B.; Stumm, R.; Göckeritz, J.; Mawrin, C.; Schulz, S. Reassessment of SST4 Somatostatin Receptor Expression Using SST4-eGFP Knockin Mice and the Novel Rabbit Monoclonal Anti-Human SST4 Antibody 7H49L61. Int. J. Mol. Sci. 2021, 22, 12981. [Google Scholar] [CrossRef]
- Cattaneo, M.G.; Gentilini, D.; Vicentini, L.M. Deregulated Human Glioma Cell Motility: Inhibitory Effect of Somatostatin. Mol. Cell. Endocrinol. 2006, 256, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Mentlein, R.; Eichler, O.; Forstreuter, F.; Held-Feindt, J. Somatostatin Inhibits the Production of Vascular Endothelial Growth Factor in Human Glioma Cells. Int. J. Cancer 2001, 92, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Fayos, A.C.; G-García, M.E.; Pérez-Gómez, J.M.; Peel, A.; Blanco-Acevedo, C.; Solivera, J.; Ibáñez-Costa, A.; Gahete, M.D.; Castaño, J.P.; Luque, R.M. Somatostatin Receptor Splicing Variant sst5TMD4 Overexpression in Glioblastoma Is Associated with Poor Survival, Increased Aggressiveness Features, and Somatostatin Analogs Resistance. Int. J. Mol. Sci. 2022, 23, 1143. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, A.; Chakravarti, S.; Ghosh, A.; Shaw, R.; Bhandary, S.; Bhattacharyya, S.; Sen, P.C.; Ghosh, M.K. Anti-SSTR2 Peptide Based Targeted Delivery of Potent PLGA Encapsulated 3,3′-Diindolylmethane Nanoparticles through Blood Brain Barrier Prevents Glioma Progression. Oncotarget 2017, 8, 65339–65358. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, I.; De, K.; Mukherjee, D.; Dey, G.; Chattopadhyay, S.; Mukherjee, M.; Mandal, M.; Bandyopadhyay, A.K.; Gupta, A.; Ganguly, S.; et al. Paclitaxel-Loaded Solid Lipid Nanoparticles Modified with Tyr-3-Octreotide for Enhanced Anti-Angiogenic and Anti-Glioma Therapy. Acta Biomater. 2016, 38, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Bella, G.D.; Colori, B.; Scanferlato, R. The Over-Expression of GH/GHR in Tumour Tissues with Respect to Healthy Ones Confirms Its Oncogenic Role and the Consequent Oncosuppressor Role of Its Physiological Inhibitor, Somatostatin: A Review of the Literature. Neuro Endocrinol. Lett. 2018, 39, 179–188. [Google Scholar] [PubMed]
- Luo, Z.; Liu, L.; Li, X.; Chen, W.; Lu, Z. Tat-NTS Suppresses the Proliferation, Migration and Invasion of Glioblastoma Cells by Inhibiting Annexin-A1 Nuclear Translocation. Cell. Mol. Neurobiol. 2022, 42, 2715–2725. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Vázquez, A.; San-Segundo, L.; Cerveró-García, P.; Flores-Hernández, R.; Ollauri-Ibáñez, C.; Segura-Collar, B.; Hubert, C.G.; Morrison, G.; Pollard, S.M.; Lathia, J.D.; et al. Amplification and EGFRvIII Predict and Participate in TAT-Cx43266–283 Antitumor Response in Preclinical Glioblastoma Models. Neuro-Oncology 2024, 26, 1230–1246. [Google Scholar] [CrossRef] [PubMed]
- Jaszberenyi, M.; Schally, A.V.; Block, N.L.; Zarandi, M.; Cai, R.-Z.; Vidaurre, I.; Szalontay, L.; Jayakumar, A.R.; Rick, F.G. Suppression of the Proliferation of Human U-87 MG Glioblastoma Cells by New Antagonists of Growth Hormone-Releasing Hormone in Vivo and in Vitro. Target. Oncol. 2013, 8, 281–290. [Google Scholar] [CrossRef]
- Mezey, G.; Treszl, A.; Schally, A.V.; Block, N.L.; Vízkeleti, L.; Juhász, A.; Klekner, Á.; Nagy, J.; Balázs, M.; Halmos, G.; et al. Prognosis in Human Glioblastoma Based on Expression of Ligand Growth Hormone-Releasing Hormone, Pituitary-Type Growth Hormone-Releasing Hormone Receptor, Its Splicing Variant Receptors, EGF Receptor and PTEN Genes. J. Cancer Res. Clin. Oncol. 2014, 140, 1641–1649. [Google Scholar] [CrossRef]
- Pozsgai, E.; Schally, A.V.; Zarandi, M.; Varga, J.L.; Vidaurre, I.; Bellyei, S. The Effect of GHRH Antagonists on Human Glioblastomas and Their Mechanism of Action. Int. J. Cancer 2010, 127, 2313–2322. [Google Scholar] [CrossRef] [PubMed]
- Jaszberenyi, M.; Rick, F.G.; Popovics, P.; Block, N.L.; Zarandi, M.; Cai, R.-Z.; Vidaurre, I.; Szalontay, L.; Jayakumar, A.R.; Schally, A.V. Potentiation of Cytotoxic Chemotherapy by Growth Hormone-Releasing Hormone Agonists. Proc. Natl. Acad. Sci. USA 2014, 111, 781–786. [Google Scholar] [CrossRef]
- Bakos, J.; Strbak, V.; Ratulovska, N.; Bacova, Z. Effect of Oxytocin on Neuroblastoma Cell Viability and Growth. Cell. Mol. Neurobiol. 2012, 32, 891–896. [Google Scholar] [CrossRef]
- Cassoni, P.; Sapino, A.; Stella, A.; Fortunati, N.; Bussolati, G. Presence and Significance of Oxytocin Receptors in Human Neuroblastomas and Glial Tumors. Int. J. Cancer 1998, 77, 695–700. [Google Scholar] [CrossRef]
- Lestanova, Z.; Puerta, F.; Alanazi, M.; Bacova, Z.; Kiss, A.; Castejon, A.M.; Bakos, J. Downregulation of Oxytocin Receptor Decreases the Length of Projections Stimulated by Retinoic Acid in the U-87MG Cells. Neurochem. Res. 2017, 42, 1006–1014. [Google Scholar] [CrossRef]
- D’Amico, A.G.; Scuderi, S.; Saccone, S.; Castorina, A.; Drago, F.; D’Agata, V. Antiproliferative Effects of PACAP and VIP in Serum-Starved Glioma Cells. J. Mol. Neurosci. 2013, 51, 503–513. [Google Scholar] [CrossRef]
- Dufes, C.; Alleaume, C.; Montoni, A.; Olivier, J.-C.; Muller, J.-M. Effects of the Vasoactive Intestinal Peptide (VIP) and Related Peptides on Glioblastoma Cell Growth in Vitro. J. Mol. Neurosci. 2003, 21, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Walters, J.; Gozes, Y.; Fridkin, M.; Brenneman, D.; Gozes, I.; Moody, T.W. A Vasoactive Intestinal Peptide Antagonist Inhibits the Growth of Glioblastoma Cells. J. Mol. Neurosci. 2001, 17, 331–340. [Google Scholar] [CrossRef]
- Maugeri, G.; Grazia D’Amico, A.; Reitano, R.; Magro, G.; Cavallaro, S.; Salomone, S.; D’Agata, V. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front. Pharmacol. 2016, 7, 139. [Google Scholar] [CrossRef]
- Barbarin, A.; Séité, P.; Godet, J.; Bensalma, S.; Muller, J.-M.; Chadéneau, C. Atypical Nuclear Localization of VIP Receptors in Glioma Cell Lines and Patients. Biochem. Biophys. Res. Commun. 2014, 454, 524–530. [Google Scholar] [CrossRef]
- Zhou, J.; Yi, L.; Ouyang, Q.; Xu, L.; Cui, H.; Xu, M. Neurotensin Signaling Regulates Stem-like Traits of Glioblastoma Stem Cells through Activation of IL-8/CXCR1/STAT3 Pathway. Cell. Signal. 2014, 26, 2896–2902. [Google Scholar] [CrossRef] [PubMed]
- Falkenstetter, S.; Leitner, J.; Brunner, S.M.; Rieder, T.N.; Kofler, B.; Weis, S. Galanin System in Human Glioma and Pituitary Adenoma. Front. Endocrinol. 2020, 11, 155. [Google Scholar] [CrossRef]
- Berger, A.; Santic, R.; Almer, D.; Hauser-Kronberger, C.; Huemer, M.; Humpel, C.; Stockhammer, G.; Sperl, W.; Kofler, B. Galanin and Galanin Receptors in Human Gliomas. Acta Neuropathol. 2003, 105, 555–560. [Google Scholar] [CrossRef]
- Ichiyama, T.; Campbell, I.L.; Furukawa, S.; Catania, A.; Lipton, J.M. Autocrine Alpha-Melanocyte-Stimulating Hormone Inhibits NF-kappaB Activation in Human Glioma. J. Neurosci. Res. 1999, 58, 684–689. [Google Scholar] [CrossRef]
- Yue Wong, K.; Rajora, N.; Boccoli, G.; Catania, A.; Lipton, J.M. A Potential Mechanism of Local Anti-Inflammatory Action of Alpha-Melanocyte-Stimulating Hormone within the Brain: Modulation of Tumor Necrosis Factor-Alpha Production by Human Astrocytic Cells. Neuroimmunomodulation 1997, 4, 37–41. [Google Scholar] [CrossRef]
- Li, J.; Du, Y.; Jiang, Z.; Tian, Y.; Qiu, N.; Wang, Y.; Lqbal, M.Z.; Hu, M.; Zou, R.; Luo, L.; et al. Y1 Receptor Ligand-Based Nanomicelle as a Novel Nanoprobe for Glioma-Targeted Imaging and Therapy. Nanoscale 2018, 10, 5845–5851. [Google Scholar] [CrossRef]
- Körner, M.; Reubi, J.C. Neuropeptide Y Receptors in Primary Human Brain Tumors: Overexpression in High-Grade Tumors. J. Neuropathol. Exp. Neurol. 2008, 67, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Grouzmann, E.; Meyer, C.; Bürki, E.; Brunner, H. Neuropeptide Y Y2 Receptor Signalling Mechanisms in the Human Glioblastoma Cell Line LN319. Peptides 2001, 22, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kwon, G.; Shin, S.; Choe, B. Expression of Neuropeptide Y by Glutamatergic Stimulation in Rat C6 Glioma Cells. Neurochem. Int. 2000, 36, 19–26. [Google Scholar] [CrossRef]
- Li, L.; Chen, J.; Ming, Y.; Li, B.; Fu, R.; Duan, D.; Li, Z.; Ni, R.; Wang, X.; Zhou, Y.; et al. The Application of Peptides in Glioma: A Novel Tool for Therapy. Curr. Pharm. Biotechnol. 2022, 23, 620–633. [Google Scholar] [CrossRef]
- Królicki, L.; Kunikowska, J.; Bruchertseifer, F.; Kulinski, R.; Pawalak, D.; Koziara, H.; Rola, R.; Morgenstern, A.; Merlo, A. Locoregional Treatment of Glioblastoma WithTargeted α Therapy: [213Bi]Bi-DOTA-Substance PVersus [225Ac]Ac-DOTA-Substance P-Analysis ofInfluence Parameters. Clin. Nucl. Med. 2023, 48, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, T.; Tabouret, E.; Graillon, T.; Salgues, B.; Chinot, O.; Verger, A.; Guedj, E. Contribution of Nuclear Medicine to the Diagnosis and Management of Primary Brain Tumours. Rev. Neurol. 2023, 179, 394–404. [Google Scholar] [CrossRef]
- Suthiram, J.; Pieters, A.; Mohamed Moosa, Z.; Zeevaart, J.R.; Sathekge, M.M.; Ebenhan, T.; Anderson, R.C.; Newton, C.L. Tachykinin Receptor-Selectivity of the Potential Glioblastoma-Targeted Therapy, DOTA-[Thi8,Met(O2)11]-Substance P. Int. J. Mol. Sci. 2023, 24, 2134. [Google Scholar] [CrossRef]
- Halik, P.K.; Koźmiński, P.; Matalińska, J.; Lipiński, P.F.J.; Misicka, A.; Gniazdowska, E. In Vitro Biological Evaluation of Aprepitant Based 177Lu-Radioconjugates. Pharmaceutics 2022, 14, 607. [Google Scholar] [CrossRef]
- Matalińska, J.; Kosińska, K.; Halik, P.K.; Koźmiński, P.; Lipiński, P.F.J.; Gniazdowska, E.; Misicka, A. Novel NK1R-Targeted 68Ga-/177Lu-Radioconjugates with Potential Application against Glioblastoma Multiforme: Preliminary Exploration of Structure–Activity Relationships. Int. J. Mol. Sci. 2022, 23, 1214. [Google Scholar] [CrossRef]
- Ayala-Sarmiento, A.E.; Martinez-Fong, D.; Segovia, J. The Internalization of Neurotensin by the Low-Affinity Neurotensin Receptors (NTSR2 and vNTSR2) Activates ERK 1/2 in Glioma Cells and Allows Neurotensin-Polyplex Transfection of tGAS1. Cell. Mol. Neurobiol. 2015, 35, 785–795. [Google Scholar] [CrossRef] [PubMed]
- Ying, T.; Lai, Y.; Lu, S.; E, S. Identification and Validation of a Glycolysis-related Taxonomy for Improving Outcomes in Glioma. CNS Neurosci. Ther. 2024, 30, e14601. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, M.S.; Cechim, G.; Braganhol, E.; Santos, D.G.; Meurer, L.; De Castro, C.G.; Brunetto, A.L.; Schwarstmann, G.; Battastini, A.M.O.; Lenz, G.; et al. Anti-Proliferative Effect of the Gastrin-Release Peptide Receptor Antagonist RC-3095 plus Temozolomide in Experimental Glioblastoma Models. J. Neurooncol. 2009, 93, 191–201. [Google Scholar] [CrossRef]
- Nicoletti, N.F.; Sénécal, J.; Da Silva, V.D.; Roxo, M.R.; Ferreira, N.P.; De Morais, R.L.T.; Pesquero, J.B.; Campos, M.M.; Couture, R.; Morrone, F.B. Primary Role for Kinin B1 and B2 Receptors in Glioma Proliferation. Mol. Neurobiol. 2017, 54, 7869–7882. [Google Scholar] [CrossRef]
- Avdieiev, S.; Gera, L.; Havrylyuk, D.; Hodges, R.S.; Lesyk, R.; Ribrag, V.; Vassetzky, Y.; Kavsan, V. Bradykinin Antagonists and Thiazolidinone Derivatives as New Potential Anti-Cancer Compounds. Bioorg. Med. Chem. 2014, 22, 3815–3823. [Google Scholar] [CrossRef]
- Ouyang, Q.; Chen, G.; Zhou, J.; Li, L.; Dong, Z.; Yang, R.; Xu, L.; Cui, H.; Xu, M.; Yi, L. Neurotensin Signaling Stimulates Glioblastoma Cell Proliferation by Upregulating C-Myc and Inhibiting miR-29b-1 and miR-129-3p. Neuro-Oncol. 2016, 18, 216–226. [Google Scholar] [CrossRef]
- KingDraw-Free Chemical Structure Editor (Version V3.0.2.20). Available online: http://www.kingdraw.cn/en/index.html (accessed on 11 July 2024).
- PepDraw. Available online: https://pepdraw.com/ (accessed on 11 July 2024).
- Vasaikar, S.; Tsipras, G.; Landázuri, N.; Costa, H.; Wilhelmi, V.; Scicluna, P.; Cui, H.L.; Mohammad, A.-A.; Davoudi, B.; Shang, M.; et al. Overexpression of Endothelin B Receptor in Glioblastoma: A Prognostic Marker and Therapeutic Target? BMC Cancer 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, S.; Li, Q.; Liu, F.; Liao, W.; Yu, L.; Ouyang, C.; Xia, H.; Liu, C.; Li, M. Increased Neuromedin B Is Associated with a Favorable Prognosis in Glioblastoma. Front. Biosci.-Landmark 2023, 28, 54. [Google Scholar] [CrossRef] [PubMed]
- Doucet, L.; Cailleteau, A.; Vaugier, L.; Gourmelon, C.; Bureau, M.; Salaud, C.; Roualdes, V.; Samarut, E.; Aumont, M.; Zenatri, M.; et al. Association between post-operative hPG80 (circulating progastrin) detectable level and worse prognosis in glioblastoma. ESMO Open 2023, 8, 101626. [Google Scholar] [CrossRef]
- Perdomo-Pantoja, A.; Mejía-Pérez, S.I.; Reynoso-Noverón, N.; Gómez-Flores-Ramos, L.; Soto-Reyes, E.; Sánchez-Correa, T.E.; Guerra-Calderas, L.; Castro-Hernandez, C.; Vidal-Millán, S.; Sánchez-Corona, J.; et al. Angiotensinogen Rs5050 Germline Genetic Variant as Potential Biomarker of Poor Prognosis in Astrocytoma. PLoS ONE 2018, 13, e0206590. [Google Scholar] [CrossRef]
- Urup, T.; Gillberg, L.; Kaastrup, K.; Lü, M.J.S.; Michaelsen, S.R.; Andrée Larsen, V.; Christensen, I.J.; Broholm, H.; Lassen, U.; Grønbæk, K.; et al. Angiotensinogen Promoter Methylation Predicts Bevacizumab Treatment Response of Patients with Recurrent Glioblastoma. Mol. Oncol. 2020, 14, 964–973. [Google Scholar] [CrossRef]
Peptides Favoring Glioma Development | ||
---|---|---|
Peptides | Actions | References |
Adrenomedullin | Favors cell growth Its expression is positively associated with malignancy grade Increases cell invasive capacity/proliferation Favors angiogenesis Counteracts apoptosis | [7,16,17,18] |
Angiotensin II | Cell proliferation/invasion associated with increased angiotensin II type 1 receptor expression | [21] |
Bombesin/GRP | Favors cell proliferation and mitogen-activated protein pathway activation GRP receptors mediate cell proliferation GRP receptor knockdown induces cell senescence | [30,36] |
Bradykinin | Favors cell proliferation Bradykinin 1 receptor mediates cell migration/invasion Bradykinin 1 receptor mediates glioblastoma and mesenchymal stem cell fusion | [39,40,41,42,43,48] |
Cholecystokinin | Promotes cell growth through autocrine mechanisms | [49] |
Endothelin | Endothelin B receptors mediate cell proliferation High endothelin-converting enzyme 1 expression associated with cell development Endothelin-converting enzyme 1: marker for poor prognosis | [52,81] |
Neuromedin B | Increases c-fos gene expression Favors arachidonic acid release and cell growth | [38] |
Neurotensin | Promotes cell proliferation/invasion Controls stem-like traits of glioblastoma stem cells High expression of neurotensin/neurotensin 1 receptor associated with poor prognosis | [53,54,121] |
Substance P | Favors cell proliferation/migration/invasion and angiogenesis | [60,61] |
Peptides Counteracting Glioma Development | ||
Peptides | Actions | References |
Angiotensin (1-7) | Blocks cell growth and counteracts edema formation and blood–brain barrier damage | [69] |
Carnosine | Blocks cell growth Inhibits cell proliferation/migration/invasion Prevents the formation of glioma cell colonies and specifically destroys tumor cells in co-cultures with fibroblasts Blocks cell anaerobic glycolytic metabolism | [71,72,73,74,76] |
Corticotropin-Releasing Factor | Inhibits cell proliferation/invasion | [78] |
Gonadotropin-Releasing Hormone | Gn-RH analogs decrease cell proliferation | [85] |
Luteinizing Hormone-Releasing Hormone | LH-RH analogs promote apoptosis | [88] |
Methionine-enkephalin | Promotes apoptosis Increases microglia cytotoxic activity/phagocytosis capacity against glioblastoma cells | [83,84] |
Pituitary Adenylate Cyclase-Activating Polypeptide | High PACAP receptor expression correlated with cell proliferative/malignant potential Antiproliferative effect Blocks blood vessel formation and decreases vascular endothelial growth factor release | [92,95,97] |
Somatostatin | Suppresses cell migration Inhibits vascular endothelial growth factor synthesis/release from glioma cells Somatostatin 5 receptor overexpression associated with increased cell proliferation/migration, recurrence, poor overall survival, and alteration in signaling pathways involved in tumor progression/aggressiveness | [101,102,103] |
Tat-Cx43266-283 | Antitumor effect | [108] |
Tat-NTS | Inhibits cell proliferation/migration/invasion | [107] |
Peptides Exerting A Dual Action | ||
Peptides | Actions | References |
Growth Hormone-Releasing Hormone | Proliferative effect Antiproliferative action | [109,112] |
Oxytocin | Promotes cell proliferation/viability Suppresses cell proliferation | [113,114] |
Vasoactive Intestinal Peptide | Antiproliferative effect Promotes cell proliferation Blocks cell invasion | [116,117,119] |
Peptidergic System | Signaling Pathway | References |
---|---|---|
AMD | Akt, ERK1/2, Bax, Bcl-2 Calcitonin receptor-like receptor/receptor activity-modifying protein 2 and 3 STAT-3 activation | [15,16,17] |
Angiotensin II | Angiotensin II type 1 receptor, CXCR4, NF-κB SOX9: telmisartan downstream target | [21,22] |
Bradykinin | PI3K, Akt, AP1, c-Jun MEK1, ERK1/2, NF-κB Phosphorylated STAT3/acetylated SP-1 translocation into the nucleus Aquaporin 4 gene expression | [39,41,42,43] |
Endothelin | ERK | [52] |
GH-RH | Mitogen-activated protein kinase 1, Jun | [109] |
GRP | PI3K | [35] |
Neurotensin | Jun, miR-494, SOCS6 NF-κB, mitogen-activated protein kinase Wnt Let-7a-3p/Bcl-w ERK1/2 | [54,55,56,136] |
Somatostatin | Rac, PI3K | [101] |
Tat-NTS | NF-κB Matrix metalloproteinase downregulation | [107] |
VIP | Protein kinase A, Sonic Hedgehog, GLl, PI3K, Akt HIF, EGFR | [94,119] |
Peptide Receptor Antagonists | Targets | Peptidergic Systems | References |
---|---|---|---|
A3E | Angiotensin II type 2 receptor | Angiotensin | [19] |
Aprepitant | Neurokinin-1 receptor | Substance P | [59,61] |
BKM-570 | Bradykinin receptor | Bradykinin | [140] |
BQ788 | Endothelin B receptor | Endothelin | [52] |
EMA401 (Olodanrigan) | Angiotensin II type 2 receptor | Angiotensin | [19] |
HOE-140 (Icatibant acetate; Firazyr) | Bradykinin 2 receptor | Bradykinin | [139] |
JMR-132 | Growth hormone-releasing hormone receptor | Growth hormone-releasing hormone | [111] |
L-733,060 | Neurokinin-1 receptor | Substance P | [60] |
MIA-602 | Growth hormone-releasing hormone receptor | Growth hormone-releasing hormone | [111] |
MIA-604 | Growth hormone-releasing hormone receptor | Growth hormone-releasing hormone | [109] |
MIA-690 | Growth hormone-releasing hormone receptor | Growth hormone-releasing hormone | [109] |
RC-3095 | Gastrin-releasing peptide receptor | Gastrin-releasing peptide | [138] |
SR48692 (Meclinertant) | Neurotensin 1 receptor | Neurotensin | [56] |
SSR240612 | Bradykinin 1 receptor | Bradykinin | [139] |
Telmisartan | Angiotensin II receptor | Angiotensin | [22] |
VIPhyb | Vasoactive intestinal peptide receptor | Vasoactive intestinal peptide | [118] |
Peptide Receptor Agonists | Targets | Peptidergic Systems | References |
[Asn6, Pro34] NPY | Neuropeptide Y 1 receptor | Neuropeptide Y | [126] |
Pasireotide | Somatostatin 5 receptor | Somatostatin | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez, M.L.; Mangas, A.; Coveñas, R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. Int. J. Mol. Sci. 2024, 25, 7990. https://doi.org/10.3390/ijms25147990
Sánchez ML, Mangas A, Coveñas R. Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. International Journal of Molecular Sciences. 2024; 25(14):7990. https://doi.org/10.3390/ijms25147990
Chicago/Turabian StyleSánchez, Manuel Lisardo, Arturo Mangas, and Rafael Coveñas. 2024. "Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides" International Journal of Molecular Sciences 25, no. 14: 7990. https://doi.org/10.3390/ijms25147990
APA StyleSánchez, M. L., Mangas, A., & Coveñas, R. (2024). Glioma and Peptidergic Systems: Oncogenic and Anticancer Peptides. International Journal of Molecular Sciences, 25(14), 7990. https://doi.org/10.3390/ijms25147990