Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors
<p><span class="html-italic">Ruta montana</span> bioreactor culture (LS NAA/BAP 0.1/0.1 mg/L, 5-week growth cycle).</p> "> Figure 2
<p>Free radical scavenging activity (DPPH assay) (<b>A</b>), reducing power (<b>B</b>), and ferrous ion chelating activity (<b>C</b>) of methanol extracts obtained from biomass of <span class="html-italic">R. montana</span> bioreactor cultures 2 grown on LS medium variant supplemented with different concentrations of NAA/BAP mg/L 293 (0.5/0.5, 0.1/0.5, 1.0/1.0, 0.1/0.1), after 5-week growth cycle. Reference standard: BHT (<b>A</b>,<b>B</b>), EDTA (<b>C</b>). Values are expressed as the mean ± SD (<span class="html-italic">n</span> = 3). Statistically significant differences between different variant are indicated as **** <span class="html-italic">p</span> < 0.0001.</p> "> Figure 3
<p>The effect of methanol extracts obtained from the biomass of <span class="html-italic">R. montana</span> bioreactor cultures grown on LS medium variant supplemented with different concentrations of NAA/BAP mg/L (0.1/0.1, 0.1/0.5, 0.5/0.5, 0.5/1.0, 1.0/1.0), 5-week growth cycle, on <span class="html-italic">S. aureus</span> strains biofilm formation reduction. The reduction percentage of biofilm formation was calculated using the following formula: [(OD<sub>492</sub> nm with extract/OD <sub>492</sub> nm without extract) × 100]. Statistically significant differences are indicated as * <span class="html-italic">p</span> < 0.05 vs. each control group.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Biomass Growth
2.2. Phytochemical Investigation
2.2.1. HPLC Analysis
2.2.2. Total Phenolic, Flavonoid, and Condensed Tannin Content
2.3. Antioxidant Activity
2.4. Antibacterial Screening
2.5. Effect on Biofilm Formation
3. Materials and Methods
3.1. In Vitro Cultures
3.2. Extraction
3.3. Phytochemical Investigation
3.3.1. Total Phenolic, Flavonoid, and Condensed Tannin Content
3.3.2. HPLC Analyses
3.4. Antioxidant Activity
3.4.1. DPPH Assay
3.4.2. Reducing Power Assay
3.4.3. Ferrous Ion (Fe2+) Chelating Activity Assay
3.5. Antibacterial Bioassays
3.5.1. Bacterial Strains
3.5.2. Antibacterial Screening
3.5.3. Effect on Biofilm Formation
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akalin, E.; Ertug, F. An Anatomical and Ethnobotanical Study on Ruta Species in Turkey. J. Pharm. Istanb. Univ. 2013, 35, 121–132. [Google Scholar]
- Coimbra, A.T.; Ferreira, S.; Duarte, A.P. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 2020, 260, 113076. [Google Scholar] [CrossRef] [PubMed]
- Mohammedi, H.; Mecherara-Idjeri, S.; Hassani, A. Variability in essential oil composition, antioxidant and antimicrobial activities of Ruta montana L. collected from different geographical regions in Algeria. J. Essent. Oil Res. 2019, 32, 23–36. [Google Scholar] [CrossRef]
- Nahar, L.; El-Seedi, H.R.; Khalifa, S.A.M.; Mohammadhosseini, M.; Sarker, S.D. Ruta Essential Oils: Composition and Bioactivities. Molecules 2021, 26, 4766. [Google Scholar] [CrossRef]
- Hammami, I.; Smaoui, S.; Hsouna, A.B.; Hamdi, N.; Triki, M.A. Ruta montana L. leaf essential oil and extracts: Characterization of bioactive compounds and suppression of crown gall disease. EXCLI J. 2015, 14, 83–94. [Google Scholar]
- Benkhaira, N.; Koraichi, S.I.; Fikri-Benbrahim, K. Ruta montana (L.) L.: An insight into its medicinal value, phytochemistry, biological properties, and toxicity. J. Herbmed Pharmacol. 2022, 11, 305–319. [Google Scholar] [CrossRef]
- Fekhar, N.; Boutoumi, H.; Krea, M.; Moulay, S.; Asma, D.; Benmaamar, Z. Thionation of essential oils from Algerian Artemisia herba-alba L. and Ruta montana L. Impact on their antimicrobial and insecticidal activities. Chem. J. Mold. 2017, 12, 50–57. [Google Scholar] [CrossRef]
- Daoudi, A.; Hrouk, H.; Belaidi, R.; Slimani, R.; Ibijbijen, J.; Nassiri, L. Valorisation de Ruta montana et Ruta chalepensis: Etude ethnobotanique, Screening phytochimique et pouvoir antibactérien. Valorization of Ruta montana and Ruta chalepensis: Ethnobotanical study, phytochemical screening and Antibacterial activity. J. Mater. Environ. Sci. 2015, 7, 926–935. [Google Scholar]
- Kabouche, Z.; Benkiki, N.; Seguin, E.; Bruneau, C. A new dicoumarinyl ether and two rare furocoumarins from Ruta montana. Fitoterapia 2003, 74, 194–196. [Google Scholar] [CrossRef]
- Barbouchi, M.; Benzidia, B.; Choukrad, M. Chemical variability in essential oils isolated from roots, stems, leaves and flowers of three Ruta species growing in Morocco. J. King Saud Univ.—Sci. 2021, 33, 101634. [Google Scholar] [CrossRef]
- Roelandts, R. Photo(chemo) therapy for vitiligo. Photodermatol. Photoimmunol. Photomed. 2003, 19, 261–277. [Google Scholar] [CrossRef]
- Wolf, P. Psoralen-ultraviolet A endures as one of the most powerful treatments in dermatology: Reinforcement of this ‘triple-product therapy’ by the 2016 British guidelines. Br. J. Dermatol. 2016, 174, 11–14. [Google Scholar] [CrossRef] [Green Version]
- Farid, O.; Hebi, M.; Ajebli, M.; El Hidani, A.; Eddouks, M. Antidiabetic effect of Ruta montana L. in streptozotocin-induced diabetic rats. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 275–282. [Google Scholar] [CrossRef]
- El-Ouady, F.; Eddouks, M. Ruta Montana Evokes Antihypertensive Activity Through an Increase of Prostaglandins Release in L-NAME-Induced Hypertensive Rats. Endocr. Metab. Immune Disord.-Drug Targets 2021, 21, 305–314. [Google Scholar] [CrossRef]
- Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 2009, 3, 1222–1239. [Google Scholar]
- Benelli, C.; De Carlo, A. In vitro multiplication and growth improvement of Olea europaea L. cv Canino with temporary immersion system (PlanformTM). 3 Biotech 2018, 8, 317. [Google Scholar]
- Szopa, A.; Kokotkiewicz, A.; Luczkiewicz, M.; Ekiert, H. Schisandra lignans production regulated by different bioreactor type. J. Biotechnol. 2017, 247, 11–17. [Google Scholar] [CrossRef]
- Skrzypczak-Pietraszek, E.; Urbańska, A.; Żmudzki, P.; Pietraszek, J. Elicitation with methyl jasmonate combined with cultivation in the Plantform™ temporary immersion bioreactor highly increases the accumulation of selected centellosides and phenolics in Centella asiatica (L.) Urban shoot culture. Eng. Life Sci. 2019, 19, 931–943. [Google Scholar] [CrossRef] [Green Version]
- Kwiecień, I.; Miceli, N.; D’Arrigo, M.; Marino, A.; Ekiert, H. Antioxidant Potential and Enhancement of Bioactive Metabolite Production in In Vitro Cultures of Scutellaria lateriflora L. by Biotechnological Methods. Molecules 2022, 27, 1140. [Google Scholar] [CrossRef]
- Ekiert, H.; Chołoniewska, M.; Gomółka, E. Accumulation of furanocoumarins in Ruta graveolens L. shoot culture. Biotechnol. Lett. 2001, 23, 543–545. [Google Scholar] [CrossRef]
- Ekiert, H.; Piekoszewska, A.; Muszyńska, B.; Baczyńska, S. Accumulation of p-coumaric acid and other bioactive phenolic acids in in vitro culture of Ruta graveolens ssp. divaricata (Tenore) Gams. MIR 2014, 26, 24–30. [Google Scholar]
- Szewczyk, A.; Marino, A.; Molinari, J.; Ekiert, H.; Miceli, N. Phytochemical Characterization, and Antioxidant and Antimicrobial Properties of Agitated Cultures of Three Rue Species: Ruta chalepensis, Ruta corsica, and Ruta graveolens. Antioxidants 2022, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Milesi, S.; Massot, B.; Gontier, E.; Bourgaud, F.; Guckert, A. Ruta graveolens L.: A promising species for the production of furanocoumarins. Plant Sci. 2001, 161, 189–199. [Google Scholar] [CrossRef]
- Adamska-Szewczyk, A.; Głowniak, K.; Baj, T. Furochinoline alkaloids in plants from Rutaceae family—A review. Curr. Issues Pharm. Med. Sci. 2016, 29, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Ekiert, H.; Gomółka, E. Effect of light on contents of coumarin compounds in shoots of Ruta graveolens L. cultivated in vitro. Acta Soc. Bot. Pol. 1999, 68, 197–200. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Kumirska, J. Identification of Ruta graveolens L. metabolites accumulated in the presence of abiotic elicitors. Biotechnol. Prog. 2008, 24, 128–133. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Paszkiewicz, M.; Maliński, E.; Kumirska, J.; Siedlecka, E.M.; Łojkowska, E.; Stepnowski, P. Applicationof chitin and chitosan as elicitors of coumarins and furoquinolone alkaloids in Ruta graveolens L. (common rue). Biotechnol. Appl. Biochem. 2008, 51, 91–96. [Google Scholar] [CrossRef]
- Orlita, A.; Sidwa-Gorycka, M.; Malinski, E. Effective biotic elicitation of Ruta graveolens L. shoot cultures by lysates from Pectobacterium atrosepticum and Bacillus sp. Biotechnol. Lett. 2007, 30, 541–545. [Google Scholar] [CrossRef]
- Merghem, M.; Dahamna, D. In-Vitro Antioxidant Activity and Total Phenolic Content of Ruta montana L. Extracts. J. Drug Deliv. Ther. 2020, 10, 69–75. [Google Scholar] [CrossRef]
- Drioiche, A.; Amine, S.; Boutahiri, S.; Saidi, S.; Ailli, A.; Rhafouri, R.; Mahjoubi, M.; El Hilali, F.; Mouradi, A.; Eto, B.; et al. Antioxidant and Antimicrobial Activity of Essential Oils and Phenolic Extracts from the Aerial Parts of Ruta montana L. of the Middle Atlas Mountains-Morocco. J. Essent. Oil Bear. Plants 2020, 23, 902–917. [Google Scholar] [CrossRef]
- Ekiert, H.; Szewczyk, A.; Kuś, A. Free phenolic acids in Ruta graveolens L. in vitro culture. Pharmazie 2009, 64, 694–696. [Google Scholar]
- Szopa, A.; Ekiert, H.; Szewczyk, A.; Fugas, E. Production of bioactive phenolic acids and furanocoumarins in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams. under different light conditions. Plant Cell Tissue Organ Cult. 2012, 110, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, A.; Paździora, W.; Ekiert, H. The Influence of Exogenous Phenylalanine on the Accumulation of Secondary Metabolites in Agitated Shoot Cultures of Ruta graveolens L. Molecules 2023, 28, 727. [Google Scholar] [CrossRef]
- Yang, S.; Lian, G. ROS and diseases: Role in metabolism and energy supply. Mol. Cell. Biochem. 2020, 467, 1–12, Erratum in: Mol. Cell. Biochem. 2020, 467, 13. [Google Scholar] [CrossRef]
- Senol, F.S.; Woźniak, K.S.; Khan, M.T.H.; Orhan, I.E.; Sener, B.; Głowniak, K. An in vitro and in silico approach to cholinesterase inhibitory and antioxidant effects of the methanol extract, furanocoumarin fraction, and major coumarins of Angelica officinalis L. fruits. Phytochem. Lett. 2011, 4, 462–467. [Google Scholar] [CrossRef]
- Simunkova, M.; Alwasel, S.H.; Alhazza, I.M.; Jomova, K.; Kollar, V.; Rusko, M.; Valko, M. Management of oxidative stress and other pathologies in Alzheimer’s disease. Arch. Toxicol. 2019, 93, 2491–2513. [Google Scholar] [CrossRef] [Green Version]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [Green Version]
- Listerand, J.L.; Horswill, A.R. Staphylococcus aureus biofilms: Recent developments in biofilm dispersal. Front. Cell. Infect. Microbiol. 2014, 4, 178. [Google Scholar] [CrossRef] [Green Version]
- Magana, M.; Sereti, C.; Ioannidis, A.; Mitchell, C.A.; Ball, A.R.; Magiorkinis, E.; Chatzipanagiotou, S.; Hamblin, M.R.; Hadjifrangiskou, M.; Tegos, G.P. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin. Microbiol. Rev. 2018, 31, e00084-16. [Google Scholar] [CrossRef] [Green Version]
- Mahizan, N.A.; Yang, S.K.; Moo, C.L.; Song, A.A.; Chong, C.M.; Chong, C.W.; Abushelaibi, A.; Lim, S.E.; Lai, K.S. Terpene Derivatives as a Potential Agent against Antimicrobial Resistance (AMR) Pathogens. Molecules 2019, 24, 2631. [Google Scholar] [CrossRef] [Green Version]
- Ozçelik, B.; Kusmenoglu, S.; Turkoz, S.; Abbasoglu, U. Antimicrobial Activities of Plants from the Apicaceae. Pharm. Biol. 2004, 42, 526–528. [Google Scholar] [CrossRef] [Green Version]
- Kuete, V.; Metuno, R.; Ngameni, B.; Tsafack, A.M.; Ngandeu, F.; Fotso, G.W. Antimicrobial activity of the methanolic extracts and compounds from Treculia obovoidea (Moraceae). J. Ethnopharmacol. 2007, 112, 531–536. [Google Scholar] [CrossRef] [PubMed]
- Othman, L.; Sleiman, A.; Abdel-Massih, R.M. Antimicrobial Activity of Polyphenols and Alkaloids in Middle Eastern Plants. Front. Microbiol. 2019, 10, 911. [Google Scholar] [CrossRef] [PubMed]
- Murugan, N.; Srinivasan, R.; Murugan, A.; Kim, M.; Natarajan, D. Glycosmis pentaphylla (Rutaceae): A Natural Candidate for the Isolation of Potential Bioactive Arborine and Skimmianine Compounds for Controlling Multidrug-Resistant Staphylococcus aureus. Front. Public Health 2020, 8, 176. [Google Scholar] [CrossRef]
- Feng, D.; Zhang, A.; Yang, Y.; Yang, P. Coumarin-containing hybrids and their antibacterial activities. Arch. Pharm. 2020, 353, 1900380. [Google Scholar] [CrossRef]
- Wu, M.; Brown, A.C. Applications of Catechins in the Treatment of Bacterial Infections. Pathogens 2021, 10, 546. [Google Scholar] [CrossRef]
- Lemos, M.; Wang, S.; Alia, A.; Simõesb, M.; Wilson, D.I. A fluid dynamic gauging device for measuring biofilm thickness on cylindrical surfaces. Biochem. Eng. J. 2016, 106, 48–60. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Parihar, D.K. Antibacterial, biofilm dispersal and antibiofilm potential of alkaloids and flavonoids of Curcuma. Biocatal. Agric. Biotechnol. 2018, 16, 677–682. [Google Scholar] [CrossRef]
- da Cunha, M.G.; de Cássia, O.; Sardi, J.; Freires, I.A.; Franchin, M.; Rosalen, P.L. Antimicrobial, anti-adherence and antibiofilm activity against Staphylococcus aureus of a 4-phenyl coumarin derivative isolated from Brazilian geopropolis. Microb. Pathog. 2020, 139, 103855. [Google Scholar] [CrossRef]
- Blanco, A.R.; Sudano-Roccaro, A.; Spoto, G.C.; Nostro, A.; Rusciano, D. Epigallocatechin Gallate Inhibits Biofilm Formation by Ocular Staphylococcal Isolates. Antimicrob. Agents Chemother. 2005, 49, 4339–4343. [Google Scholar] [CrossRef] [Green Version]
- Linsmaier, E.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant. 1965, 18, 100–127. [Google Scholar] [CrossRef]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef]
- Chang, C.C.; Yang, M.H.; Wen, H.M.; Chern, J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar]
- Julkunen-Titto, R. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agric. Food Chem. 1985, 33, 213–217. [Google Scholar] [CrossRef]
- Sułkowska-Ziaja, K.; Maślanka, A.; Szewczyk, A.; Muszyńska, B. Physiologically active compounds in four species of Phellinus. Nat. Prod. Commun. 2017, 12, 363–366. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, M.; Morishita, H.; Iwahashi, H.; Shitzuo, T.; Yoshiaki, S.; Kimura, M.; Kido, R. Inhibitory effects of chlorogenic acid on linoleic acid peroxidation and haemolysis. Phytochemistry 1994, 36, 579–583. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Marino, A.; Nostro, A.; Mandras, N.; Roana, J.; Ginestra, G.; Miceli, N.; Taviano, M.F.; Gelmini, F.; Beretta, G.; Tullio, V. Evaluation of antimicrobial activity of the hydrolate of Coridothymus capitatus (L.) Reichenb. fil. (Lamiaceae) alone and in combination with antimicrobial agents. BMC Complement. Med. Ther. 2020, 20, 89. [Google Scholar] [CrossRef]
- Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; CLSI: Wayne, PA, USA, 2018.
- Cramton, S.E.; Gerke, C.; Schnell, N.F.; Nichols, W.W.; Götz, F. The intercellular adhesion (ica) locus in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 1999, 67, 5427–5433. [Google Scholar] [CrossRef] [Green Version]
Growth Cycle | LS Medium Variant NAA/BAP (mg/L) | ||||
---|---|---|---|---|---|
LS 0.1/0.1 | LS 0.1/0.5 | LS 0.5/0.5 | LS 0.5/1.0 | LS 1.0/1.0 | |
5 weeks | 7.734 ± 0.31 ab | 7.775 ± 0.36 ab | 8.030 ± 0.47 b | 8.042 ± 0.31 b | 7.738 ± 0.59 ab |
6 weeks | 7.247 ± 0.86 a | 7.916 ± 0.02 ab | 7.265 ± 0.18 a | 7.787 ± 0.25 ab | 7.946 ± 0.21 ab |
LS Medium Variant | Growth Cycle | ||
---|---|---|---|
Accumulated Compounds | NAA/BAP (mg/L) | 5 Weeks | 6 Weeks |
Bergapten | 0.1/0.1 | 435.32 ± 50.26 bcd | 403.75 ± 35.98 abcd |
0.1/0.5 | 375.70 ± 27.51 a | 364.99 ± 17.31 a | |
0.5/0.5 | 440.91 ± 21.31 cd | 395.18 ± 34.86 abcd | |
0.5/1.0 | 386.32 ± 30.63 ab | 378.85 ± 21.30 a | |
1.0/1.0 | 445.99 ± 18.08 d | 388.82 ± 42.73 abc | |
Isoimperatorin | 0.1/0.1 | 104.01 ± 9.72 de | 86.44 ± 3.95 c |
0.1/0.5 | 79.11 ± 5.75 c | 56.35 ± 14.32 b | |
0.5/0.5 | 87.65 ± 7.76 cd | 35.23 ± 2.37 a | |
0.5/1.0 | 84.00 ± 9.72 c | 82.81 ± 18.34 c | |
1.0/1.0 | 105.78 ± 7.29 e | 82.33 ± 8.48 c | |
Isopimpinellin | 0.1/0.1 | 81.09 ± 8.77 a | 79.50 ± 7.52 a |
0.1/0.5 | 100.75 ± 13.77 ab | 148.58 ± 6.99 c | |
0.5/0.5 | 92.89 ± 0.61 ab | 154.44 ± 20.64 c | |
0.5/1.0 | 90.25 ± 14.70 ab | 168.38 ± 12.19 c | |
1.0/1.0 | 113.97 ± 16.58 b | 223.21 ± 36.68 d | |
Psoralen | 0.1/0.1 | 340.07 ± 14.03 e | 236.59 ± 40.05 d |
0.1/0.5 | 182.13 ± 15.72 bc | 185.22 ± 22.54 c | |
0.5/0.5 | 150.21 ± 11.24 a | 181.77 ± 9.57 bc | |
0.5/1.0 | 152.67 ± 6.37 ab | 169.00 ± 12.13 abc | |
1.0/1.0 | 168.45 ± 14.68 abc | 150.23 ± 1.91 a | |
Xanthotoxin | 0.1/0.1 | 863.78 ± 57.12 f | 772.92 ± 45.05 cde |
0.1/0.5 | 682.89 ± 26.80 ab | 825.65 ± 64.82 def | |
0.5/0.5 | 885.92 ± 34.83 f | 846.06 ± 18.84 ef | |
0.5/1.0 | 731.96 ± 50.07 abc | 771.51 ± 47.02 cde | |
1.0/1.0 | 748.75 ± 38.92 bcd | 665.85 ± 57.15 a | |
Total coumarins | 0.1/0.1 | 1824.26 ± 98.07 d | 1579.20 ± 50.29 bc |
0.1/0.5 | 1420.58 ± 35.81 a | 1580.80 ± 68.30 bc | |
0.5/0.5 | 1657.57 ± 45.79 c | 1612.67 ± 49.17 bc | |
0.5/1.0 | 1445.20 ± 86.25 ab | 1570.55 ± 18.55 bc | |
1.0/1.0 | 1582.94 ± 33.95 bc | 1510.44 ± 104.38 ab | |
γ-Fagarine | 0.1/0.1 | 305.42 ± 19.28 e | 215.82 ± 12.41 d |
0.1/0.5 | 172.27 ± 36.64 c | 159.87 ± 15.20 bc | |
0.5/0.5 | 146.64 ± 6.45 abc | 151.05 ± 13.10 abc | |
0.5/1.0 | 133.85 ± 8.53 ab | 128.08 ± 18.70 a | |
1.0/1.0 | 133.61 ± 13.47 ab | 130.70 ± 13.75 ab | |
Isopentenyloxy-γ-fagarine | 0.1/0.1 | 30.79 ± 3.61 d | 39.42 ± 3.45 e |
0.1/0.5 | 18.59 ± 2.40 a | 30.66 ± 1.57 cd | |
0.5/0.5 | 26.17 ± 2.02 bc | 42.20 ± 4.30 e | |
0.5/1.0 | 21.93 ± 1.64 ab | 32.88 ± 0.72 d | |
1.0/1.0 | 25.90 ± 2.26 b | 22.34 ± 3.02 ab | |
Skimmianine | 0.1/0.1 | 225.46 ± 14.16 fg | 126.58 ± 12.12 c |
0.1/0.5 | 197.64 ± 18.26 ef | 89.38 ± 6.45 b | |
0.5/0.5 | 195.22 ± 23.06 ef | 51.95 ± 14.28 a | |
0.5/1.0 | 233.73 ± 27.88 g | 199.69 ± 30.19 ef | |
1.0/1.0 | 179.84 ± 24.17 de | 158.27 ± 4.47 cd | |
Total alkaloids | 0.1/0.1 | 561.66 ± 29.70 f | 381.82 ± 15.50 e |
0.1/0.5 | 388.50 ± 25.29 e | 279.91 ± 22.69 ab | |
0.5/0.5 | 368.04 ± 31.01 de | 245.20 ± 2.97 a | |
0.5/1.0 | 389.51 ± 22.39 e | 360.66 ± 21.15 de | |
1.0/1.0 | 339.35 ± 17.92 cd | 311.31 ± 12.33 bc | |
Catechin | 0.1/0.1 | 89.62 ±0.97 f | 50.80 ±6.41 bc |
0.1/0.5 | 76.12 ±11.16 e | 59.25 ±3.91 cd | |
0.5/0.5 | 59.70 ±5.98 d | 46.38 ±3.68 b | |
0.5/1.0 | 61.16 ±2.69 d | 22.01 ±1.83 a | |
1.0/1.0 | 73.56 ±3.51 e | 60.82 ±1.91 d |
LS Medium Variant NAA/BAP (mg/L) | Total Polyphenols (mg GAE/g) | Total Flavonoids (mg QE/g) | Condensed Tannins (mg CE/g) | DPPH IC50 (mg/mL) | Reducing Power ASE/mL | Fe2+ Chelating Activity IC50 (mg/mL) |
---|---|---|---|---|---|---|
0.1/0.1 | 26.94 ± 0.67 a | 24.60 ± 0.58 b | 10.97 ± 0.5 c | >2 mg/mL | 28.95 ± 2.37 b | 0.90 ± 0.03 a |
0.1/0.5 | 41.61 ± 0.77 e | 45.65 ± 0.33 e | 9.42 ± 0.57 b | >2 mg/mL | 26.62 ± 3.25 b | 2.47 ± 0.01 c |
0.5/0.5 | 29.64 ± 0.76 b | 16.96 ± 0.01 a | 4.68 ± 0.32 a | >2 mg/mL | 19.54 ± 0.64 a | 0.94 a ± 0.02 a |
0.5/1.0 | 31.10 ± 0.88 c | 28.44 ± 0.20 c | 5.40 ± 0.2 a | >2 mg/mL | 39.75 ± 0.50 c | 0.93 ± 0.03 a |
1.0/1.0 | 34.32 ± 0.22 d | 33.00 ± 0.70 d | 6.21 ± 0.44 a | >2 mg/mL | 18.28 ± 4.30 a | 1.68 ± 0.02 b |
Reference standard | BHT 0.07 ± 0.01 | BHT 1.44 ± 0.02 d | EDTA 0.01 ± 0.001 d |
LS Medium Variant NAA/BAP | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Strains | 0.1./0.1 | 0.1/0.5 | 0.5/0.5 | 0.5/1.0 | 1.0/1.0 | |||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
S. aureus ATCC 6538 | 125 | 500 | 1000 | n.a | 500 | 1000 | n.a. | n.a. | 1000 | 1000 |
S. aureus ATCC 43300 | 125 | 250 | 125 | n.a | 125 | n.a. | n.a. | n.a. | 500 | 1000 |
S. aureus 815 | 500 | n.a. | 1000 | n.a | 1000 | n.a. | 500 | 1000 | n.a. | n.a. |
S. aureus 74CCH | 125 | 250 | 1000 | n.a | 500 | n.a. | 125 | n.a. | 500 | n.a. |
S. epidermidis ATCC 35984 | 500 | 500 | 500 | n.a | 250 | n.a. | 250 | n.a. | 1000 | n.a. |
E. coli ATCC 10536 | 500 | 1000 | n.a. | n.a | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. |
Growth Regulator | LS Medium Variant NAA/BAP (mg/L) | ||||
---|---|---|---|---|---|
0.1/0.1 | 0.1/0.5 | 0.5/0.5 | 0.5/1.0 | 1.0/1.0 | |
NAA | 0.1 | 0.1 | 0.5 | 0.5 | 1.0 |
BAP | 0.1 | 0.5 | 0.5 | 1.0 | 1.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szewczyk, A.; Marino, A.; Taviano, M.F.; Cambria, L.; Davì, F.; Trepa, M.; Grabowski, M.; Miceli, N. Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. Int. J. Mol. Sci. 2023, 24, 7045. https://doi.org/10.3390/ijms24087045
Szewczyk A, Marino A, Taviano MF, Cambria L, Davì F, Trepa M, Grabowski M, Miceli N. Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. International Journal of Molecular Sciences. 2023; 24(8):7045. https://doi.org/10.3390/ijms24087045
Chicago/Turabian StyleSzewczyk, Agnieszka, Andreana Marino, Maria Fernanda Taviano, Lucia Cambria, Federica Davì, Monika Trepa, Mariusz Grabowski, and Natalizia Miceli. 2023. "Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors" International Journal of Molecular Sciences 24, no. 8: 7045. https://doi.org/10.3390/ijms24087045
APA StyleSzewczyk, A., Marino, A., Taviano, M. F., Cambria, L., Davì, F., Trepa, M., Grabowski, M., & Miceli, N. (2023). Studies on the Accumulation of Secondary Metabolites and Evaluation of Biological Activity of In Vitro Cultures of Ruta montana L. in Temporary Immersion Bioreactors. International Journal of Molecular Sciences, 24(8), 7045. https://doi.org/10.3390/ijms24087045