Cytokines, Chaperones and Neuroinflammatory Responses in Heroin-Related Death: What Can We Learn from Different Patterns of Cellular Expression?
<p>IL-15 showed a wide positive reaction in neurons, expressed by red dots in the cytoplasm [head-arrows in (<b>A)</b>]; associated to vascular (<b>B</b>); and oligodendrocyte positivity (<b>C</b>). CTR negative control case.</p> ">
<p>Differential immunohistochemical reaction of IL-6 in group of heroin-related death and control group showed a strong and diffusely neuronal and oligodendrocyte (<b>A</b>,<b>B</b>) positivity (in <b>C</b> confocal laser microscopy with neuronal reaction in cyan color). CTR negative control case.</p> ">
<p>TNF-α was expressed in the heroin-related death group: note the intense neuronal and glial reactions (<b>A</b>–<b>C</b>), and the negative control group (CTR).</p> ">
<p>The reaction with CD68 (MAC387) showed a constant and strong positivity in brain macrophages (<b>A</b>,<b>B</b>); Evident microglia fluorescence by use of the confocal microscope (<b>C</b>); Negative control case (CTR).</p> ">
<p>COX-2 appeared positive in glial cells (<b>A</b>) and was strongly expressed in neurons (<b>B</b>,<b>C</b>) in heroin-related death cases (confocal laser microscopy with neuronal reaction in green color). COX-2 was weakly expressed by vascular endothelium in control cases (CTR).</p> ">
<p>Differential immunohistochemical reaction of HSP-70: a great neuronal (<b>A</b>) involvement of HSP-70 expression was observed. The reaction was more intense in the cytoplasm of the neurons and included infrequent HSP-70 protein-positive inclusions in astrocytic fluorescence, well evidenced by use of the confocal microscope (<b>B</b>); and (<b>C</b>) The positive reaction was well appreciated also by using the bright field. Negative control case (CTR).</p> ">
<p>ORP-150 showing a constant microglial (<b>A</b>) and neuronal positivity (<b>B</b>); in scattered but widespread foci (cyan reaction by confocal laser microscopy in <b>C</b>); and being completely negative in the glial cells of the control group (CTR).</p> ">
<p>Western blot experiments with TNF-α antibodies using cytoplasmic and nuclear extracts from frozen brain of the different groups. On the left side representative blot for each group (<b>upper</b>) and TNF-α quantitative expression (<b>lower</b> and on the right). Marker’s lines on the right side of the blot lines.</p> ">
<p>IL-6 representative blot and quantitative expression. On the right side representative blot (<b>upper</b>) and quantitative expression (<b>lower</b>). Marker’s lines on the right side of the blot lines.</p> ">
<p>IL-6 representative blot and quantitative expression. On the right side representative blot (<b>upper</b>) and quantitative expression (<b>lower</b>). Marker’s lines on the right side of the blot lines.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Immmunohistochemistry Results
2.2. Western Blotting Results
3. Discussion
4. Experimental Section
4.1. Western Blot Analysis
4.2. Statistical Analysis
5. Conclusions
Antibody | Group 1 heroin related-death | Group 2 controls | Statistical value group 1 vs. group 2 |
---|---|---|---|
IL-1β | − | − | NS |
IL-15 | ++++ | − | *** |
CD15 | − | − | NS |
MAC387 (CD68) | +++ | − | ** |
IL-8 | − | − | NS |
IL-10 | + | − | NS |
TNF-α | ++++ | − | *** |
IL-6 | ++++ | − | *** |
COX-2 | ++++ | − | *** |
HSP-70 | +++ | − | ** |
ORP-150 | +++ | − | ** |
Acknowledgments
Conflicts of Interest
References
- Milroy, C.M.; Parai, J.L. The histopathology of drugs of abuse. Histopathology 2011, 59, 579–593. [Google Scholar]
- Büttner, A. Review: The neuropathology of drug abuse. Neuropathol. Appl. Neurobiol 2011, 37, 118–134. [Google Scholar]
- Pacifici, R.; Di Carlo, S.; Bacosi, A.; Pichini, S.; Zuccaro, P. Pharmacokinetics and cytokine production in heroin and morphine-treated mice. Int. J. Immunopharmacol 2000, 22, 603–614. [Google Scholar]
- Büttner, A.; Weis, S. Neuropathological alterations in drug abusers: The involvement of neurons, glial, and vascular systems. Forensic Sci. Med. Pathol 2006, 2, 115–126. [Google Scholar]
- Büttner, A.; Mall, G.; Penning, R.; Weis, S. The neuropathology of heroin abuse. Forensic Sci. Int 2000, 113, 435–422. [Google Scholar]
- Wang, X.; Loram, L.C.; Ramos, K.; de Jesus, A.J.; Thomas, J.; Cheng, K.; Reddy, A.; Somogyi, A.A.; Hutchinson, M.R.; Watkins, L.R.; et al. Morphine activates neuroinflammation in a manner parallel to endotoxin. Proc. Natl. Acad. Sci. USA 2012, 109, 6325–6330. [Google Scholar]
- Loram, L.C.; Grace, P.M.; Strand, K.A.; Taylor, F.R.; Ellis, A.; Berkelhammer, D.; Bowlin, M.; Skarda, B.; Maier, S.F.; Watkins, L.R. Prior exposure to repeated morphine potentiates mechanical allodynia induced by peripheral inflammation and neuropathy. Brain Behav. Immun 2012, 26, 1256–1264. [Google Scholar]
- Peterson, P.K.; Molitor, T.W.; Chao, C.C. The opioid-cytokine connection. J. Neuroimmunol 1998, 83, 63–69. [Google Scholar]
- Hutchinson, M.R.; Coats, B.D.; Lewis, S.S.; Zhang, Y.; Sprunger, D.B.; Rezvani, N.; Baker, E.M.; Jekich, B.M.; Wieseler, J.L.; Somogyi, A.A.; et al. Proinflammatory cytokines oppose opioid induced acute and chronic analgesia. Brain Behav. Immun 2008, 22, 1178–1189. [Google Scholar]
- Fitting, S.; Zou, S.; Chen, W.; Vo, P.; Hauser, K.F.; Knapp, P.E. Regional heterogeneity and diversity in cytokine and chemokine production by astroglia: Differential responses to HIV-1 Tat, gp120 and morphine revealed by multiplex analysis. J. Proteome Res 2010, 9, 1795–1804. [Google Scholar]
- Riezzo, I.; Neri, M.; de Stefano, F.; Fulcheri, E.; Ventura, F.; Pomara, C.; Rabozzi, R.; Turillazzi, E.; Fineschi, V. The timing of perinatal hypoxia/ischemia events in term neonates: A retrospective autopsy study. HSPs, ORP-150 and COX-2 are reliable markers to classify acute, perinatal events. Diagn. Pathol 2010. [Google Scholar]
- Allan, S.M.; Rothwell, N.J. Inflammation in central nervous system injury. Philos. Trans. R. Soc. Lond. B. Biol. Sci 2003, 358, 1669–1677. [Google Scholar]
- Price, C.J.; Warburton, E.A.; Menon, D.K. Human cellular inflammation in the pathology of acute cerebral ischaemia. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1476–1484. [Google Scholar]
- Ceulemans, A.G.; Zgavc, T.; Kooijman, R.; Hachimi-Idrissi, S.; Sarre, S.; Michotte, Y. The dual role of the neuroinflammatory response after ischemic stroke: Modulatory effects of hypothermia. J. Neuroinflamm 2010, 7. [Google Scholar] [CrossRef]
- Schwarz, J.M.; Hutchinson, M.R.; Bilbo, S.D. Early-life experience decreases drug-induced reinstatement of morphine CPP in adulthood via microglial-specific epigenic programming of anti-inflammatorym IL-10 expression. J. Neurosci 2011, 31, 17835–17847. [Google Scholar]
- Pola, R.; Flex, A.; Gaetani, E.; Flore, R.; Serricchio, M.; Pola, P. Synergistic effect of -174 G/C polymorphism of the interleukin-6 gene promoter and 469 E/K polymorphismof the intercellular adhesion molecule-1 gene in Italian patients with history of ischemic stroke. Stroke 2003, 34, 881–885. [Google Scholar]
- Neri, M.; Cantatore, S.; Pomara, C.; Riezzo, I.; Bello, S.; Turillazzi, E.; Fineschi, V. Immunohistochemical expression of proinflammatory cytokines IL-1β, IL-6, TNF-α and involvement of COX-2, quantitatively confirmed by Western blot analysis, in Wernicke’s encephalopathy. Pathol. Res. Pract 2011, 207, 652–658. [Google Scholar]
- Szelényi, J. Cytokines and the central nervous system. Brain Res. Bull 2001, 54, 329–338. [Google Scholar]
- Szczytkowski, J.L.; Lysle, D.T. Dopamine D1 receptors within the basolateral amygdala mediate heroin-induced conditioned immunomodulation. J. Neuroimmunol 2010, 226, 38–47. [Google Scholar]
- Ikematsu, K.; Tsuda, R.; Kondo, T.; Kondo, H.; Ozawa, K.; Ogawa, S.; Nakasono, I. The expression of “150-kDa oxygen regulated protein (ORP-150)” in human brain and its relationship with duration time until death. Leg. Med. (Tokyo) 2004, 6, 97–101. [Google Scholar]
- Truettnera, J.S.; Hu, K.; Liu, C.L.; Dietrich, W.D.; Hu, B. Subcellular stress response and induction of molecular chaperones and folding proteins after transient global ischemia in rats. Brain Res 2009, 1249, 9–18. [Google Scholar]
- Tamatani, M. ORP150 protects against hypoxia/ischemia-induced neuronal death. Nat. Med 2001, 7, 317–323. [Google Scholar]
- Tomimoto, H.; Shibata, M.; Ihara, M.; Akiguchi, I.; Ohtani, R.; Budka, H. A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol. (Berl.) 2002, 104, 601–607. [Google Scholar]
- Oehmichen, M.; Meißner, C.; Reiter, A.; Birkholz, M. Neuropathology in non-human immunodeficiency virus-infected drug addicts: Hypoxic brain damage after chronic intravenous drug abuse. Acta Neuropathol 1996, 91, 642–646. [Google Scholar]
- Andersen, S.N.; Skullerud, K. Hypoxic/ischaemic brain damage, especially pallidal lesions, in heroin addicts. Forensic Sci. Int 1999, 102, 51–59. [Google Scholar]
- Weber, M.; Scherf, N.; Kahl, T.; Braumann, U.D.; Scheibe, P.; Kuska, J.P.; Bayer, R.; Büttner, A.; Franke, H. Quantitative analysis of astrogliosis in drug-dependent humans. Brain Res 2013, 1500, 72–87. [Google Scholar]
- Bernstein, H.G.; Stricker, R.; Dobrowolny, H.; Steiner, J.; Bogerts, B.; Trübner, K.; Reiser, G. Nardilysin in human brain diseases: Both friend and foe. Amino Acids 2013, 45, 269–278. [Google Scholar]
- Bernstein, H.G.; Trübner, K.; Krebs, P.; Dobrowolny, H.; Bielau, H.; Steiner, J.; Bogerts, B. Increased densities of nitric oxide synthase expressing neurons in the temporal cortex and the hypothalamic paraventricular nucleus of polytoxicomanic heroin overdose victims: Possible implications for heroin neurotoxicity. Acta Histochem 2013. [Google Scholar] [CrossRef]
- Tian, X.; Hua, F.; Sandhu, H.K.; Chao, D.; Balboni, G.; Salvadori, S.; He, X.; Xia, Y. Effect of δ-opioid receptor activation on BDNF-TrkB vs. TNF-α in the mouse cortex exposed to prolonged hypoxia. Int. J. Mol. Sci 2013, 14, 15959–15976. [Google Scholar]
- Riezzo, I.; Cerretani, D.; Fiore, C.; Bello, S.; Centini, F.; D’Errico, S.; Fiaschi, A.I.; Giorgi, G.; Neri, M.; Pomara, C.; et al. Enzymatic–nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J. Neurosci. Res 2010, 88, 905–916. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Neri, M.; Panata, L.; Bacci, M.; Fiore, C.; Riezzo, I.; Turillazzi, E.; Fineschi, V. Cytokines, Chaperones and Neuroinflammatory Responses in Heroin-Related Death: What Can We Learn from Different Patterns of Cellular Expression? Int. J. Mol. Sci. 2013, 14, 19831-19845. https://doi.org/10.3390/ijms141019831
Neri M, Panata L, Bacci M, Fiore C, Riezzo I, Turillazzi E, Fineschi V. Cytokines, Chaperones and Neuroinflammatory Responses in Heroin-Related Death: What Can We Learn from Different Patterns of Cellular Expression? International Journal of Molecular Sciences. 2013; 14(10):19831-19845. https://doi.org/10.3390/ijms141019831
Chicago/Turabian StyleNeri, Margherita, Laura Panata, Mauro Bacci, Carmela Fiore, Irene Riezzo, Emanuela Turillazzi, and Vittorio Fineschi. 2013. "Cytokines, Chaperones and Neuroinflammatory Responses in Heroin-Related Death: What Can We Learn from Different Patterns of Cellular Expression?" International Journal of Molecular Sciences 14, no. 10: 19831-19845. https://doi.org/10.3390/ijms141019831