Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length
<p>(<b>a</b>) Photoluminescence of ASnBr<sub>4</sub> as a function of time in ambient air at 100 °C for (<b>b</b>) A = HDA, (<b>c</b>) A = ODA, and (<b>d</b>) A = DDA.</p> "> Figure 2
<p>Le Bail refinement of (<b>a</b>) HDA-based perovskite, (<b>b</b>) ODA-based perovskite, (<b>c</b>) DDA-based perovskite. Experimental diffraction patterns are shown as black lines while the calculated patterns for are represented by blue lines. Diffraction lines corresponding to the 2D phase are marked with green vertical lines while the reflections of the 1D phase are marked with dark red vertical bars. (<b>d</b>) Structures of the 2D HDASnBr<sub>4</sub> phase and 1D HDA<sub>3</sub>SnBr<sub>8</sub>·(H<sub>2</sub>O) phase, Sn-octahedra are given in teal, bromides are shown as orange balls while carbons, nitrogens, oxygens, hydrogens are gray, light blue, red, and white balls, respectively; (<b>e</b>) enlarged part of the XRD patterns showing the most prominent diffraction lines for as-prepared HDA, ODA, and DDA samples. Diffraction lines corresponding to the 2D phase are colored in green while the reflections of the 1D phase are colored in dark red.</p> "> Figure 3
<p>XRD patterns of thermally treated samples with different spacers: (<b>a</b>) ODA, (<b>b</b>) DDA, (<b>c</b>) HDA; unidentified phase is denoted by *, (<b>d</b>) enlarged part of XRD pattern for HDA sample, (<b>e</b>) Le Bail refinement of diffraction lines at ~8.9°2θ. The diffraction line corresponding to the 2D phase is colored in green while the reflection of the 1D phase is colored in dark red.</p> "> Figure 4
<p>Thermogravimetric analysis plot of ASnBr<sub>4</sub> perovskites for different spacers A (HDA, ODA, and DDA).</p> "> Figure 5
<p>(<b>a</b>) PL spectra of HDASnBr<sub>4</sub> film with different blue-emitting polymer formulations. TFB10 and TFB20 denote 10 and 20 mg of TFB dissolved in 1 mL chlorobenzene, and BP@TFB indicates 10 mg of BP dissolved in TFB solution. (<b>b</b>) CIE coordinates chart for HDASnBr<sub>4</sub>+ BP@TFB corresponding to (0.37, 0.34). (<b>c</b>) PL spectrum of HDASnBr<sub>4</sub> BP mixture with a ratio 1:0.50 (inset shows the corresponding photo under UV illumination) and (<b>d</b>) corresponding CIE coordinates (0.34, 0.32).</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Techniques
3.2. Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xing, Y.; He, H.; Cui, Z.; Fu, Z.; Qin, S.; Zhang, W.; Mei, S.; Guo, R. Recent Advances in Optical Properties and Light-Emitting Diode Applications for 2D Tin Halide Perovskites. Adv. Opt. Mater. 2024, 12, 2302679. [Google Scholar] [CrossRef]
- Sanchez-Diaz, J.; Rodriguez-Pereira, J.; Das Adhikari, S.; Mora-Seró, I. Synthesis of Hybrid Tin-Based Perovskite Microcrystals for LED Applications. Adv. Sci. 2024, 11, 2403835. [Google Scholar] [CrossRef]
- Huang, W.; Hou, L.; Zhu, Q.; Zhu, Y.; Shen, J. Surface Ligand Engineering to Modulate the Synthesis of DJ-Type 2D Sn-Based Perovskites for Light-Emitting Diodes. J. Phys. Chem. C 2024, 128, 12525–12533. [Google Scholar] [CrossRef]
- Xu, L.-J.; Lin, H.; Lee, S.; Zhou, C.; Worku, M.; Chaaban, M.; He, Q.; Plaviak, A.; Lin, X.; Chen, B.; et al. 0D and 2D: The Cases of Phenylethylammonium Tin Bromide Hybrids. Chem. Mater. 2020, 32, 4692–4698. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, H.; Chen, X.; Zheng, Y. o-Phenylenediamine Doped Tin-Based Two-Dimensional Perovskite for Light-Emitting Device Applications. J. Phys. Chem. C 2023, 127, 23827–23834. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Xue, R.; Li, S.; Sun, M.; Li, Z. Stable Two-Dimensional Tin-Based Perovskites for Warm-White Light Emitters. Opt. Mater. 2023, 146, 114535. [Google Scholar] [CrossRef]
- Sun, W.T.; Xing, Z.; Sergeev, A.; He, Y.; Ng, A.M.C.; Wong, K.S.; Molčanov, L.; Popović, J.; Djurišić, A.B. Effects of Ambient Exposure on Photoluminescence of Dion–Jacobson Tin-Based Halide Perovskites. J. Mater. Chem. C 2023, 11, 2737–2747. [Google Scholar] [CrossRef]
- Mo, Q.; Shi, Y.; Cai, W.; Zhao, S.; Ying, Y.; Zang, Z. Opportunities and Challenges of Low-Dimensional Hybrid Metal Halides in White Light-Emitting Diodes. J. Phys. D Appl. Phys. 2022, 55, 333003. [Google Scholar] [CrossRef]
- Lv, J.-N.; Zhang, J.; Liu, Y.-M.; Zhang, S.-Y.; Deng, X.-Y.; Xu, M.; Lei, X.-W.; Chen, Z.-W.; Yue, C.-Y. Zero-Dimensional Hybrid Tin Halides with Stable Broadband Light Emissions. Dalton Trans. 2024, 53, 4698–4704. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Deng, Z.; Johnston, A.; Luo, J.; Chen, H.; Dong, Y.; Sabatini, R.; Sargent, E.H. Precursor Tailoring Enables Alkylammonium Tin Halide Perovskite Phosphors for Solid-State Lighting. Adv. Funct. Mater. 2022, 32, 2111346. [Google Scholar] [CrossRef]
- Fu, P.; Huang, M.; Shang, Y.; Yu, N.; Zhou, H.-L.; Zhang, Y.-B.; Chen, S.; Gong, J.; Ning, Z. Organic-Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission. ACS Appl. Mater. Interfaces 2018, 10, 34363–34369. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.-H.; Tekelenburg, E.K.; Xue, H.; Kahmann, S.; Chen, L.; Adjokatse, S.; Brocks, G.; Tao, S.; Loi, M.A. Unraveling the Broadband Emission in Mixed Tin-Lead Layered Perovskites. Adv. Opt. Mater. 2023, 11, 2202038. [Google Scholar] [CrossRef]
- Zhu, P.; Thapa, S.; Zhu, H.; Wheat, S.; Yue, Y.; Venugopal, D. Composition Engineering of Lead-Free Double Perovskites Towards Efficient Warm White Light Emission for Health and Well-Being. J. Alloys Compd. 2023, 960, 170836. [Google Scholar] [CrossRef]
- Worku, M.; Xu, L.-J.; Chaaban, M.; Ben-Akacha, A.; Ma, B. Optically Pumped White Light-Emitting Diodes Based on Metal Halide Perovskites and Perovskite-Related Materials. APL Mater. 2020, 8, 010902. [Google Scholar] [CrossRef]
- Yu, T.; Mao, X.; Xu, X.; Wang, Z.; Zhang, R. Ultrafast Dynamics of a Highly-Emissive Zero-Dimensional Organic Tin Bromide Perovskite. Chem. Phys. Lett. 2021, 769, 138411. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, M.; Dai, F.; Zhao, L.; Liu, S.; Zhao, H.; Zhou, H.; Teng, L.; Xu, W.; Wang, L.; et al. An Organic—Inorganic Tin Halide Perovskite with Over 2000-Hour Emission Stability. Adv. Opt. Mater. 2023, 11, 2202475. [Google Scholar] [CrossRef]
- Zhou, C.; Tian, Y.; Yuan, Z.; Lin, H.; Chen, B.; Clark, R.; Dilbeck, T.; Zhou, Y.; Hurley, J.; Neu, J.; et al. Highly Efficient Broadband Yellow Phosphor Based on Zero-Dimensional Tin Mixed-Halide Perovskite. ACS Appl. Mater. Interfaces 2017, 9, 44579–44583. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, F.; Ma, J.; Ma, Z.; Chen, X.; Wu, D.; Li, X.; Shi, Z.; Shan, C. Toward Eco-Friendly and Stable Halide Perovskite-Inspired Materials for Light-Emitting Devices Applications by Dimension Classification: Recent Advances and Opportunities. EcoMat 2022, 4, e12160. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, C.; Feng, X.; Dong, N.; Chen, H.; Chen, X.; Zhang, L.; Lin, J.; Wang, J. Regulation of the Luminescence Mechanism of Two-Dimensional Tin Halide Perovskites. Nat. Commun. 2022, 13, 60. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, K.; Shao, W.; Shen, W.; Li, M.; Zhou, L.; He, R. Revealing the Structure–Luminescence Relationship in Robust Sn(IV)-Based Metal Halides by Sb3+ Doping. Inorg. Chem. 2024, 63, 5158–5166. [Google Scholar] [CrossRef]
- Wang, S.; Kershaw, S.V.; Rogach, A.L. Bright and Stable Dion-Jacobson Tin Bromide Perovskite Microcrystals Realized by Primary Alcohol Dopants. Chem. Mater. 2021, 33, 5413–5421. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, B.; Mei, S.; Zhu, Y.; Hu, R.; Zou, J. Highly Luminescent Broadband Phosphors Based on Acid Solvent Coordinated Two-Dimensional Layered Tin-Based Perovskites. J. Mater. Chem. C 2022, 10, 3856–3862. [Google Scholar] [CrossRef]
- Wang, S.; Popović, J.; Burazer, S.; Portniagin, A.; Liu, F.; Low, K.-H.; Duan, Z.; Li, Y.; Xiong, Y.; Zhu, Y.; et al. Strongly Luminescent Dion—Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane. Adv. Funct. Mater. 2021, 31, 2102182. [Google Scholar] [CrossRef]
- Qi, J.; Wang, S.; Portniagin, A.; Kershaw, S.V.; Rogach, A.L. Room Temperature Fabrication of Stable, Strongly Luminescent Dion–Jacobson Tin Bromide Perovskite. Nanomaterials 2021, 11, 2738. [Google Scholar] [CrossRef] [PubMed]
- Hossain, T.; Atapattu, H.R.; Pruett, H.; Rahman, M.T.; Pedersen, K.R.; Huckaba, A.J.; Parkin, S.R.; Graham, K.R. Effects of A-Site Cation Structure on the Stability of 2D Tin HalidePerovskites. Chem. Mater. 2024, 36, 11004–11014. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, C.; Zhang, Y.; Zhang, X.; Wang, S.; Lu, M.; Cui, H.; Kershaw, S.V.; Yu, W.W.; Rogach, A.L. Bright Orange Electroluminescence from Lead-Free Two-Dimensional Perovskites. ACS Energy Lett. 2019, 4, 242.27. [Google Scholar] [CrossRef]
- Hou, L.; Zhu, Y.; Zhu, J.; Li, C. Tuning Optical Properties of Lead-Free 2D Tin-Based Perovskites with Carbon Chain Spacers. J. Phys. Chem. C 2019, 123, 31279. [Google Scholar] [CrossRef]
- Mousdis, G.A.; Papavassiliou, G.C.; Raptopoulou, C.P.; Terzis, A. Preparation and characterization of [H3N(CH2)6NH3]PbI4 and similar compounds with a layered perovskite structure. J. Mater. Chem. 2000, 10, 515. [Google Scholar] [CrossRef]
- Pascual, J.; Di Girolamo, D.; Flatken, M.A.; Aldamasy, M.H.; Li, G.; Li, M.; Abate, A. Lights and Shadows of DMSO as Solvent for Tin Halide Perovskites. Chem. Eur. J. 2022, 28, e202103919. [Google Scholar] [CrossRef]
- Wang, T.; Yan, F. Reducing agents for improving stability of Sn-based perovskite solar cells. Chem. Asian J. 2020, 15, 1524. [Google Scholar] [CrossRef] [PubMed]
- Ma, B.; Chen, J.; Wang, M.; Xu, X.; Qian, J.; Lu, Y.; Zhang, W.; Xia, P.; Qin, M.; Zhu, W.; et al. Passivating Charged Defects with 1,6-Hexamethylenediamine To Realize Efficient and Stable Tin-Based Perovskite Solar Cells. J. Phys. Chem. C 2020, 124, 16289. [Google Scholar] [CrossRef]
- Machado, J.F.; Hieulle, J.; Vanderhaegen, A.; Redinger, A. Light-induced degradation of methylammonium tin iodide absorber layers. J. Mater. Chem. A 2025, 13, 517. [Google Scholar] [CrossRef]
- Zheng, Y.; Niu, T.; Qiu, J.; Chao, L.; Li, B.; Yang, Y.; Li, Q.; Lin, C.; Gao, X.; Zhang, C.; et al. Oriented and Uniform Distribution of Dion–Jacobson Phase Perovskites Controlled by Quantum Well Barrier Thickness. Sol. RRL 2019, 3, 1900090. [Google Scholar] [CrossRef]
- Li, C.; Yang, J.; Su, F.; Tan, J.; Luo, Y.; Ye, S. Conformational disorder of organic cations tunes the charge carrier mobility in two-dimensional organic-inorganic perovskites. Nat. Commun. 2020, 11, 5481. [Google Scholar] [CrossRef]
- Lai, J.; Tan, J.; Zhu, R.; Lv, W.; Ye, S. Conformational Disordering of Organic Cations during Moisture-Induced Structural Collapse in Organic−Inorganic Hybrid Perovskites. ACS Appl. Energy Mater. 2024, 7, 10521–10527. [Google Scholar] [CrossRef]
- de Mello, J.C.; Wittmann, H.F.; Friend, R.H. An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 1997, 3, 230–232. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.U.; Sun, W.T.; Sergeev, A.A.; Rehman, A.U.; Wong, K.S.; Djurišić, A.B.; Popović, J. Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length. Molecules 2025, 30, 703. https://doi.org/10.3390/molecules30030703
Ali MU, Sun WT, Sergeev AA, Rehman AU, Wong KS, Djurišić AB, Popović J. Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length. Molecules. 2025; 30(3):703. https://doi.org/10.3390/molecules30030703
Chicago/Turabian StyleAli, Muhammad Umair, Wen Ting Sun, Aleksandr A. Sergeev, Atta Ur Rehman, Kam Sing Wong, Aleksandra B. Djurišić, and Jasminka Popović. 2025. "Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length" Molecules 30, no. 3: 703. https://doi.org/10.3390/molecules30030703
APA StyleAli, M. U., Sun, W. T., Sergeev, A. A., Rehman, A. U., Wong, K. S., Djurišić, A. B., & Popović, J. (2025). Photoluminescence and Stability of Dion–Jacobson Tin-Based Halide Perovskites with Different Spacer Cation Chain Length. Molecules, 30(3), 703. https://doi.org/10.3390/molecules30030703