Using Quinolin-4-Ones as Convenient Common Precursors for a Metal-Free Total Synthesis of Both Dubamine and Graveoline Alkaloids and Diverse Structural Analogues
<p>Structures of alkaloids Graveoline <b>1</b> and Dubamine <b>2</b> and the antibacterial compounds <b>3</b> and <b>4</b>.</p> "> Scheme 1
<p>Some representative synthetic approaches for obtaining Graveoline <b>1</b>.</p> "> Scheme 2
<p>Some representative synthetic approaches for obtaining Dubamine <b>2</b> and its derivatives.</p> "> Scheme 3
<p>Proposed synthetic sketch of the synthesis of alkaloids Graveoline <b>1</b> and Dubamine <b>2</b> and their structural analogues <b>23</b> and <b>24</b>, respectively.</p> "> Scheme 4
<p>Total synthesis of Graveoline <b>1</b>, Dubamine <b>2</b> and their corresponding quinolinic-analogues (<b>23</b>,<b>24</b>)<b>h</b> from dihydroquinolin-4-ones <b>22h</b>,<b>i</b> through the two-step synthetic approaches developed in this research work.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
- (E)-1-(2-Aminophenyl)-3-(4-bromophenyl)prop-2-en-1-one 21a: Yellow solid, 89% yield. M.p. 84–86 °C. FTIR (KBr): ν = [3398, 3300] (NH2), 3037, 2902, 1649 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.54 (td, J = 7.9, J = 0.8 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 7.30 (td, J = 8.2, J = 1.2 Hz, 1H), 7.42 (bs, 2H, NH2), 7.59–7.69 (m, 3H, Ar-H × 2 and =CH), 7.83 (d, J = 8.4 Hz, 2H), 8.00 (d, J = 15.5 Hz, 1H, =CH), 8.09 (d, J = 7.5 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 115.0, 117.4, 117.9 (Cq), 123.9 (Cq), 124.7, 130.7 (Cq), 131.0, 132.0, 132.3, 135.0, 141.0, 152.6 (Cq), 190.8 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 303/301 (10.0/10.3) [M+], 302/300 (15.9/15.22), 146 (100).
- (E)-1-(2-Aminophenyl)-3-(4-chlorophenyl)prop-2-en-1-one 21b: Yellow solid, 97% yield. M.p. 94–96 °C. FTIR (KBr): ν = [3324, 3328] (NH2), 2990, 2882, 1646 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.61 (td, J = 8.4, J = 1.0 Hz, 1H), 6.82 (dd, J = 8.4, J = 1.2 Hz, 1H), 7.30 (td, J = 8.4, J = 1.4 Hz, 1H), 7.42 (bs, 2H, NH2), 7.54 (d, J = 8.4, 2H), 7.63 (d, J = 15.5 Hz, 1H, =CH), 7.91 (d, J = 8.5 Hz, 2H), 7.99 (d, J = 15.5 Hz, 1H, =CH), 8.10 (dd, J = 8.4, J = 1.2 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 114.9, 117.4, 117.9 (Cq), 124.7, 129.4, 130.8, 132.0, 134.5 (Cq), 134.9, 135.0 (Cq), 140.9, 152.6 (Cq), 190.8 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 259/257 (6.8/20.4) [M+], 258/256 (12.9/31.4), 146 (100).
- (E)-1-(2-Aminophenyl)-3-(4-methoxyphenyl)prop-2-en-1-one 21c: Yellow solid, 60% yield. M.p. 70–72 °C. FTIR (KBr): ν = [3327, 3340] (NH2), 2989, 2982, 1649 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 3.83 (s, 3H, OCH3), 6.60 (t, J = 7.7 Hz, 1H), 6.81 (d, J = 8.2 Hz, 1H), 7.01 (d, J = 8.2 Hz, 2H), 7.29 (t, J = 8.0 Hz, 1H), 7.34 (bs, 2H, NH2), 7.58 (d, J = 15.5 Hz, 1H, =CH), 7.82–7.85 (m, 3H, Ar-H × 2 and =CH), 8.08 (d, J = 8.2 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 55.8 (OCH3), 114.5 114.9, 117.4, 118.2, 121.3 (Cq), 128.2, 130.9 (Cq), 131.7, 134.5, 142.4, 152.4 (Cq), 161.4 (Cq), 191.0 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 253 (32) [M+], 252 (69), 146 (100).
- (E)-1-(2-Aminophenyl)-3-(p-tolyl)prop-2-en-1-one 21d: Yellow solid, 82% yield. M.p. 96–97 °C. FTIR (KBr): ν = [3327, 3330] (NH2), 2989, 2982, 1649 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.35 (s, 3H, CH3), 6.60 (td, J = 8.1, J = 1.0 Hz, 1H), 6.81 (dd, J = 8.4, J = 0.8 Hz, 1H), 7.24–7.32 (m, 3H), 7.39 (bs, 2H, NH2), 7.63 (d, J = 15.5 Hz, 1H, =CH), 7.77 (d, J = 8.0 Hz, 2H), 7.91 (d, J = 15.5 Hz, 1H, =CH), 8.08 (dd, J = 8.2, J = 1.2 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 21.6 (CH3), 114.9, 117.4, 118.1 (Cq), 122.8, 129.1, 130.0 (Cq), 131.8, 132.8, 134.7, 140.5 (Cq), 142.5, 152.5 (Cq), 190.1 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 237 (28) [M+], 237 (47),146 (100).
- (E)-1-(2-Aminophenyl)-3-phenylprop-2-en-1-one 21e: Yellow solid, 64% yield. M.p. 174–177 °C. FTIR (KBr): ν = [3290, 3220] (NH2), 2989, 2982, 1649 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.63 (t, J = 7.4 Hz, 1H), 6.83 (d, J = 8.3 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.38–7.50 (m, 5H, Ar-H × 3 and NH2), 7.66 (d, J = 15.5 Hz, 1H, =CH), 7.86 (d, J = 6.8 Hz, 2H), 7.96 (d, J = 15.5 Hz, 1H, =CH), 8.10 (d, J = 8.0 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 115.0, 117.4, 118.0 (Cq), 123.9, 129.1, 129.4, 130.6, 131.9, 134.8, 135.5 (Cq), 142.4, 152.5 (Cq), 191.1 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 223 (24) [M+], 222 (35), 146 (100).
- (E)-1-(2-Aminophenyl)-3-(3,4,5-trimethoxyphenyl)prop-2-en-1-one 21f: Yellow solid, 86% yield. M.p. 120–122 °C. FTIR (KBr): ν = [3327, 3340] (NH2), 2989, 2982, 1649 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 3.73 (s, 3H, OCH3), 3.88 (s, 6H, OCH3), 6.62 (t, J = 7.8 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 7.20 (s, 2H), 7.30 (t, J = 8.0 Hz, 1H), 7.40 (bs, 2H, NH2), 7.61 (d, J = 15.5 Hz, 1H, =CH), 7.92 (d, J = 15.5 Hz, 1H, =CH), 8.13 (d, J = 8.1 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 56.6 (OCH3), 60.6 (OCH3), 106.7, 114.9, 117.4, 118.1 (Cq), 123.1 (Cq), 131.1 (Cq), 132.0, 134.7, 139.8 (Cq), 142.9, 152.5 (Cq), 153.6 (Cq), 191.0 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 313 (84) [M+], 312 (100), 146 (88).
- (E)-1-(2-Aminophenyl)-3-(3,4-dichlorophenyl)prop-2-en-1-one 21g: Yellow solid, 98% yield. M.p. 126–128 °C. FTIR (KBr): ν = [3327, 3345] (NH2), 2990, 2995, 1657 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.63 (t, J = 7.9 Hz, 1H), 6.82 (d, J = 8.3 Hz, 1H), 7.31 (t, J = 8.2 Hz, 1H), 7.44 (bs, 2H, NH2), 7.60 (d, J = 15.4 Hz, 1H, =CH), 7.71 (d, J = 8.4 Hz, 1H), 7.86 (dd, J = 8.4, J = 1.9 Hz, 1H), 8.08 (d, J = 15.5 Hz, 1H, =CH), 8.14 (d, J = 8.1 Hz, 1H), 8.27 (d, J = 1.8 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 114.9, 117.4, 117.8 (Cq), 126.1, 129.4, 130.4, 131.4, 132.1, 132.6 (Cq), 135.0, 136.4 (Cq), 136.5 (Cq), 139.6, 152.6 (Cq), 190.1 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 295/293/291 (1.4/7.9/12) [M+], 294/292/290 (2.8/11/15), 146 (100).
- (E)-1-(6-Aminobenzo[d][1,3]dioxol-5-yl)-3-(benzo[d][1,3]dioxol-5-yl)prop-2-en-1-one 21h: Yellow solid, 70% yield. M.p. 148–151 °C. FTIR (KBr): ν = [3327, 3330] (NH2), 2989, 2982, 1649 (C=O), 1604 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 5.95 (s, 2H, OCH2O), 5.99 (s, 2H, OCH2O), 6.32 (s, 1H), 6.96 (d, J = 8.0 Hz, 1H), 7.19 (s, 1H), 7.25 (dd, J = 8.1, J = 1.3 Hz, 1H), 7.36 (bs, 2H, NH2), 7.52 (d, J = 15.5 Hz, 1H, =CH), 7.69 (s, 1H), 7.74 (d, J = 15.5 Hz, 1H, =CH) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 101.6 (OCH2O), 102.0 (OCH2O), 107.3, 108.6, 108.9, 109.3, 110.5 (Cq), 122.2, 125.6, 130.4 (Cq), 138.3 (Cq), 141.9, 148.5 (Cq), 149.3 (Cq), 152.1 (Cq), 153.3 (Cq), 188.2 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 311 (4.5) [M+], 310 (4.7), 164 (100).
- (E)-1-(2-Aminophenyl)-3-(benzo[d][1,3]dioxol-5-yl)prop-2-en-1-one 21i: Yellow solid, 80% yield. M.p. 117–118 °C. FTIR (KBr): ν = [3425, 3309] (NH2), 3070, 2904, 1633 (C=O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.11 (s, OCH2O, 2H), 6.60 (td, J = 8.0, J = 1.0 Hz, 1H), 6.81 (dd, J = 8.4, J = 1.0 Hz, 1H), 6.98 (d, J = 8.0 Hz, 1H), 7.26–7.30 (m, 2H), 7.38 (bs, 2H, NH2), 7.59 (d, J = 15.4 Hz, 1H, =CH), 7.63 (d, J = 1.6 Hz, 1H), 7.84 (d, J = 15.0 Hz, 1H, =CH), 8.11 (dd, J = 8.2, J = 1.1 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 102.0 (OCH2O), 107.4, 108.9, 114.9, 117.3, 118.2 (Cq), 121.8, 125.8, 130.1 (Cq), 131.9, 134.6, 142.5, 148.6 (Cq), 149.6 (Cq), 152.5 (Cq), 191.0 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 267 (31) [M+], 266 (51), 146 (100).
- 2-(4-Bromophenyl)-2,3-dihydroquinolin-4(1H)-one 22a: Yellow solid, 94% yield. M.p. 165–167 °C. FTIR (KBr): ν = 3306 (NH), 1647 (C=O), 1600 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.70 (dd, J = 16.1, J = 4.0 Hz, 1H, Ha-3), 2.81 (dd, J = 16.1, J = 11.7 Hz, 1H, Hb-3), 4.78 (dd, J = 11.6, J = 4.4 Hz, 1H, H-2), 6.66 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 7.14 (bs, 1H, NH), 7.34 (td, J = 7.7, J = 4.0 Hz, 1H), 7.46 (d, J = 8.4 Hz, 2H), 7.59–7.62 (m, 3H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.5 (C-3), 56.0 (C-2), 116.8, 117.2, 118.2 (Cq), 121.2 (Cq), 126.8, 129.6, 131.9, 135.7, 141.6 (Cq), 152.7 (Cq), 192.7 (C=O) ppm. MS (70 eV): m/z (%) = 303/301 (41.4/41.6) [M+], 302/300 (22.5/16.2), 146 (100), 119 (37).
- 2-(4-Chlorophenyl)-2,3-dihydroquinolin-4(1H)-one 22b: Yellow solid, 92% yield. M.p. 179–181 °C. FTIR (KBr): ν = 3302 (NH), 1647 (C=O), 1600 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.69 (dd, J = 16.1, J = 4.3 Hz, 1H, Ha-3), 2.83 (dd, J = 16.1, J = 11.8 Hz, 1H, Hb-3), 4.79 (dd, J = 11.8, J = 4.4 Hz, 1H, H-2), 6.66 (td, J = 7.5, J = 4.0 Hz, 1H), 6.90 (d, J = 8.4 Hz, 1H), 7.15 (bs, 1H, NH), 7.34 (td, J = 7.7, J = 4.0 Hz, 1H), 7.46 (d, J = 8.6 Hz, 2H), 7.53 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 7.9 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.6 (C-3), 56.0 (C-2), 116.8, 117.1, 118.2 (Cq), 126.8, 129.0, 129.2, 132.7 (Cq), 135.6, 141.2 (Cq), 152.8 (Cq), 192.7 (C=O) ppm. MS (70 eV): m/z (%) = 259/257 (28.2/83) [M+], 258/256 (26/39), 146 (100), 119 (41).
- 2-(4-Methoxyphenyl)-2,3-dihydroquinolin-4(1H)-one 22c: Yellow solid, 67% yield. M.p. 131–132 °C. FTIR (KBr): ν = 3329 (NH), 1606 (C=O, C=C), 1242 (C-O-C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.63 (dd, J = 16.0, J = 4.0 Hz, 1H, Ha-3), 2.82 (dd, J = 16.0, J = 12.3 Hz, 1H, Hb-3), 3.77 (s, 3H, OCH3), 4.75 (dd, J = 12.2, J = 3.80 Hz, 1H, H-2), 6.65 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 6.96 (d, J = 8.6 Hz, 2H), 7.06 (bs, 1H, NH), 7.32 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 8.6 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.9 (C-3), 55.6 (OCH3), 56.2 (C-2), 114.4, 116.8, 116.9, 118.2 (Cq), 126.8, 128.5, 134.1 (Cq), 135.5, 153.0 (Cq), 159.3 (Cq), 193.1 (C=O) ppm. MS (70 eV): m/z (%) = 253 (95) [M+], 252 (78), 146 (100), 119 (31).
- 2-(p-Tolyl)-2,3-dihydroquinolin-4(1H)-one 22d: Yellow solid, 65% yield. M.p. 153–155 °C. FTIR (KBr): ν = 3309 (NH), 1649 (C=O), 1600 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.63 (dd, J = 16.0, J = 3.5 Hz, 1H, Ha-3), 2.82 (dd, J = 16.0, J = 12.3 Hz, 1H, Hb-3), 3.39 (s, 3H, CH3), 4.72 (dd, J = 12.1, J = 3.7 Hz, 1H, H-2), 6.64 (t, J = 7.4 Hz, 1H), 6.90 (d, J = 8.3 Hz, 1H), 7.13 (bs, 1H, NH), 7.20 (d, J = 7.8 Hz, 2H), 7.33 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 7.9 Hz, 2H), 7.61 (d, J = 7.6 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 21.2 (CH3), 45.9 (C-3), 56.5 (C-2), 116.8, 116.9, 118.1 (Cq), 126.8, 127.2, 129.6, 135.6, 137.4 (Cq), 139.1 (Cq), 153.0 (Cq), 193.0 (C=O) ppm. MS (70 eV): m/z (%) = 237 (100) [M+], 236 (55), 146 (83), 119 (33).
- 2-Phenyl-2,3-dihydroquinolin-4(1H)-one 22e: Yellow solid, 72% yield. M.p. 156–158 °C. FTIR (KBr): ν = 3334 (NH), 1654 (C=O), 1600 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.67 (d, J = 15.9 Hz, 1H, Ha-3), 2.85 (t, J = 14.1 Hz, 1H, Hb-3), 4.77 (d, J = 12.0 Hz, 1H, H-2), 6.65 (t, J = 8.0 Hz, 1H), 6.91 (d, J = 8.2 Hz, 1H), 7.18 (bs, 1H, NH), 7.28–7.44 (m, 4H), 7.51 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.7 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.8 (C-3), 56.8 (C-2), 116.8, 117.0, 118.2 (Cq), 126.8, 127.4, 128.2, 129.0, 135.6, 142.2 (Cq), 152.9 (Cq), 192.9 (C=O) ppm. MS (70 eV): m/z (%) = 223 (100) [M+], 222 (43), 146 (95), 119 (29).
- 2-(3,4,5-Trimethoxyphenyl)-2,3-dihydroquinolin-4(1H)-one 22f: Yellow solid, 90% yield. M.p. 142–144 °C. FTIR (KBr): ν = 3336 (NH), 1660 (C=O), 1595 (C=C), 1236 (C-O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.63 (d, J = 16.0 Hz, 1H, Ha-3), 2.91 (bt, J = 14.7 Hz, 1H, Hb-3), 3.67 (s, 3H, OCH3), 3.80 (s, 6H, OCH3), 4.68 (dd, J = 13.1, J = 3.2 Hz, 1H, H-2), 6.66 (t, J = 7.4 Hz, 1H), 6.85 (s, 2H), 6.91 (d, J = 8.2 Hz, 1H), 7.06 (bs, 1H, NH), 7.33 (td, J = 7.7, J = 4.0 Hz, 1H), 7.63 (d, J = 7.9 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 46.0 (C-3), 56.4 (OCH3), 57.3 (C-2), 60.5 (OCH3), 104.8, 116.8, 117.1, 118.2 (Cq), 126.8, 135.5, 137.4 (Cq), 137.7 (Cq), 153.0 (Cq), 153.3 (Cq), 193.1 (C=O) ppm. MS (70 eV): m/z (%) = 313 (31) [M+], 312 (14), 146 (29), 83 (100), 119 (6).
- 2-(3,4-Dichlorophenyl)-2,3-dihydroquinolin-4(1H)-one 22g: Yellow solid, 92% yield. M.p. 122–123 °C. FTIR (KBr): ν = 3334 (NH), 1654 (C=O), 1600 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.72 (dd, J = 16.1, J = 3.9 Hz, 1H, Ha-3), 2.86 (dd, J = 16.1, J = 11.8 Hz, 1H, Hb-3), 4.82 (dd, J = 11.7, J = 4.3 Hz, 1H, H-2), 6.68 (td, J = 7.5, J = 4.0 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 7.17 (bs, 1H, NH), 7.35 (td, J = 7.7, J = 4.0 Hz, 1H), 7.49 (dd, J = 8.4, J = 1.9 Hz, 1H), 7.61 (dd, J = 7.9, J = 1.3 Hz, 1H), 7.67 (d, J = 8.3 Hz, 1H), 7.78 (d, J = 1.9 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.2 (C-3), 55.6 (C-2), 116.8, 117.3, 118.3 (Cq), 126.8, 127.8, 129.5, 130.6 (Cq), 131.2, 131.6 (Cq), 135.7, 143.4 (Cq), 152.6 (Cq), 192.5 (C=O) ppm. MS (70 eV): m/z (%) = 295/293/291 (14.2/84.1/100) [M+], 294/292/290 (19/51/45), 146 (98), 119 (36).
- 6-(Benzo[d][1,3]dioxol-5-yl)-6,7-dihydro-[1,3]dioxolo [4,5-g]quinolin-8(5H)-one 22h: Yellow solid, 97% yield. M.p. >300 °C. FTIR (KBr): ν = 3327 (NH), 1649 (C=O), 1604 (C=C), 1236 (C-O-C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.54 (dd, J = 16.0, J = 3.2 Hz, 1H, Ha-3), 2.72 (dd, J = 16.1, J = 12.7 Hz, 1H, Hb-3), 4.60 (dd, J = 12.7, J = 4.1 Hz, 1H, H-2), 5.97 (d, J = 6.0 Hz, 2H, OCH2O), 6.01 (bd, J = 1.0 Hz, 2H, OCH2O), 6.44 (s, 1H), 6.87–6.96 (m, 3H), 7.0 (s, 1H), 7.08 (bs, 1H, NH) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.5 (C-3), 57.1 (C-2), 96.1, 101.5 (OCH2O), 101.7 (OCH2O), 103.7, 107.8, 108.6, 111.4 (Cq), 120.6, 136.0 (Cq), 140.6 (Cq), 147.2 (Cq), 147.8 (Cq), 151.4 (Cq), 154.1 (Cq), 190.7 (C=O) ppm. MS (70 eV): m/z (%) = 311 (99) [M+], 310 (70), 190 (100), 163 (33).
- 2-(Benzo[d][1,3]dioxol-5-yl)-2,3-dihydroquinolin-4(1H)-one 22i: Yellow solid, 87% yield. M.p. 125–127 °C. FTIR (KBr): ν = 3327 (NH), 1649 (C=O), 1604 (C=C), 1236 (C-O-C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.62 (ddd, J = 16.0, J = 4.1, J = 1.1 Hz, 1H, Ha-3), 2.83 (dd, J = 16.0, J = 12.3 Hz, 1H, Hb-3), 4.68 (dd, J = 12.3, J = 4.1 Hz, 1H, H-2), 6.01 (bd, J = 1.6 Hz, 2H, OCH2O), 6.65 (td, J = 7.9, J = 0.9 Hz, 1H), 6.58–6.97 (m, 3H), 7.05 (bs, 1H, NH), 7.09 (d, J = 1.5 Hz, 1H), 7.32 (td, J = 8.5, J = 1.6 Hz, 1H), 7.60 (dd, J = 7.9, J = 1.50 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 45.9 (C-3), 56.5 (C-2), 101.5 (OCH2O), 107.8, 108.6, 116.7, 117.0, 118.2 (Cq), 120.6, 126.8, 135.5, 136.0 (Cq), 147.2 (Cq), 147.8 (Cq), 152.9 (Cq), 193.0 (C=O). MS (70 eV): m/z (%) = 267 (80) [M+], 266 (54), 146 (77), 83 (100), 119 (18).
- 2-(4-Bromophenyl)-1-methyl-2,3-dihydroquinolin-4(1H)-one 25a: Greenish solid, 68% yield. M.p. 98 °C. FTIR (KBr): ν = 1655 (C=O), 1604 (C=C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.90 (dd, J = 16.1, J = 6.0 Hz, 1H, Ha-3), 2.97 (s, 3H, N-CH3), 3.19 (dd, J = 16.1, J = 6.2 Hz, 1H, Hb-3), 4.67 (bt, J = 6.0 Hz, 1H, H-2), 6.78–6.81 (m, 2H), 7.07 (d, J = 8.4 Hz, 2H), 7.43–7.57 (m, 3H), 7.89 (dd, J = 8.0, J = 1.4 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 38.0 (N-CH3), 45.3 (C-3), 64.2 (C-2), 113.0, 117.0, 119.8 (Cq), 121.8 (Cq), 127.7, 128.3, 132.2, 136.2, 139.0 (Cq), 151.5 (Cq), 192.0 (C=O) ppm. MS (70 eV): m/z (%) = 317/315 (86.8/88.5) [M+], 160 (100).
- 2-(4-Bromophenyl)-1-methylquinolin-4(1H)-one 23a: Yellow solid, 61% yield. M.p. 97–98 °C. FTIR (KBr): ν = 3120, 2918, 2849, 1618 (C=O) cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.70 (s, 3H, N-CH3), 6.46 (s, 1H, H-3), 7.35 (d, J = 8.2, 2H), 7.51 (t, J = 7.6, 1H), 7.63 (d, J = 8.6, 1H), 7.70 (d, J = 8.2, 2H), 7.80 (t, J = 7.8, 1H), 8.52 (d, J = 7.9, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 37.6 (N-CH3), 112.3 (C-3), 116.1, 124.4, 124.5 (Cq), 126.8, 130.2, 132.3, 132.9, 134.4 (Cq), 136.5 (Cq), 141.8 (Cq), 154.0 (Cq), 176.9 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 315/313 (2.4/2.6) [M+], 86 (58), 84 (100). Anal. Calcd for C16H12BrNO: C, 61.17; H, 3.85; N, 4.46. Found: C, 60.98; H, 3.90; N, 4.62.
- 2-(4-Chlorophenyl)-1-methylquinolin-4(1H)-one 23b: Yellow solid, 62% yield. M.p. 83–84 °C. FTIR (KBr): ν = 3072, 2938, 2837, 1599 (C=O) cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.65 (s, 3H, N-CH3), 6.32 (s, 1H, H-3), 7.39 (d, J = 8.4, 2H), 7.47 (t, J = 7.5, 1H), 7.53 (d, J = 8.4, 2H), 7.63 (d, J = 8.6, 1H), 7.77 (t, J = 7.1, 1H), 8.54 (d, J = 8.0, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 37.4 (N-CH3), 112.6 (C-3), 116.0, 124.1, 126.7 (Cq), 126.8, 129.2, 130.0, 132.7, 134.1 (Cq), 136.1 (Cq), 141.9 (Cq), 153.8 (Cq), 177.6 (C=O) ppm. MS (EI, 70 eV): m/z (%): = 271/269 (37/100) [M+], 241 (61). Anal. Calcd for C16H12ClNO: C, 71.25; H, 4.48; N, 5.19. Found: C, 71.12; H, 4.54; N, 5.30.
- 2-(4-Methoxyphenyl)-1-methylquinolin-4(1H)-one 23c: Yellow solid, 75% yield. M.p. 193–194 °C. FTIR (KBr): ν = 3080, 2974, 2943, 1598 (C=O), [1249, 1078] C-O cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.67 (s, 3H, N-CH3), 3.91 (s, 3H, OCH3), 6.34 (s, 1H, H-3), 7.04 (d, J = 8.0 Hz, 2H), 7.33 (d, J = 8.0 Hz, 2H), 7.45 (td, J = 8.0, J = 1.0 Hz, 1H), 7.59 (d, J = 8.6, 1H), 7.75 (td, J = 8.6, J = 3.2 Hz, 1H), 8.51 (dd, J = 8.1, J = 1.4 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 37.5 (N-CH3), 55.5 (OCH3), 112.6 (C-3), 114.3, 116.1, 123.8, 126.7, 128.0 (Cq), 130.0 (x 2, Cq and CH), 132.4, 142.0 (Cq), 155.0 (Cq), 160.7 (Cq), 177.6 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 265 (23) [M+], 237 (17), 222 (14), 85 (69), 83 (100). Anal. Calcd for C17H15NO2: C, 76.96; H, 5.70; N, 5.28. Found: C, 77.09; H, 5.92; N, 5.17.
- 1-Methyl-2-(p-tolyl)quinolin-4(1H)-one 23d: Yellow solid, 94% yield. M.p. 86–87 °C. FTIR (KBr): ν = 3070, 2924, 2857, 1627 (C=O) cm−1. 1H NMR (400 MHz, CDCl3): δ = 2.48 (s, 3H, CH3), 3.77 (s, 3H, N-CH3), 6.52 (s, 1H, H-3), 7.28–7.36 (m, 4H), 7.48 (t, J = 8.2 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 8.0 Hz, 1H), 8.54 (d, J = 8.2 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.4 (CH3), 38.1 (N-CH3), 111.4 (C-3), 116.4, 124.7, 126.6, 128.4, 129.6, 130.2 (Cq), 133.5, 136.4 (Cq), 137.5 (Cq), 139.3 (Cq), 140.6 (Cq), 187.4 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 249 (45) [M+], 221 (44), 85 (71), 83 (100). Anal. Calcd for C17H15NO: C, 81.90; H, 6.06; N, 5.62. Found: C, 82.03; H, 6.23; N, 5.79.
- 1-Methyl-2-phenylquinolin-4(1H)-one 23e: Yellow solid, 93% yield. M.p. 82–83 °C. FTIR (KBr): ν = 3110, 2925, 2859, 1650 (C=O) cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.98 (s, 3H, N-CH3), 6.91 (s, 1H, H-3), 7.55 (d, J = 8.9, 2H), 7.62–7.64 (bd, 3H), 7.70 (t, J = 8.6, 1H), 7.93 (d, J = 7.8, 1H), 8.01 (t, J = 7.8, 1H), 8.62 (d, J = 7.9, 1H) ppm. NMR 13C (100 MHz, CDCl3): δ = 39.5 (N-CH3), 110.2 (C-3), 117.6, 126.3, 126.4 (×2, Cq and CH), 128.8, 129.4, 130.9, 133.7 (Cq), 134.8, 140.6 (Cq), 150.3 (Cq), 177.3 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 235 (2.4) [M+], 149 (28), 57 (100). Anal. Calcd for C16H13NO: C, 81.68; H, 5.57; N, 5.95. Found: C, 81.53; H, 5.66; N, 6.04.
- 1-Methyl-2-(3,4,5-trimethoxyphenyl)quinolin-4(1H)-one 23f: Yellow solid, 64% yield. M.p. 146–145 °C. FTIR (KBr): ν = 3070, 2934, 2836, 1676 (C=O), [1242, 1126] C-O cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.86 (s, 3H, N-CH3), 3.92 (s, 6H, OCH3), 3.97 (s, 3H, OCH3), 6.71 (s, 1H, H-3), 7.57 (t, J = 7.4, 1H), 7.77 (d, J = 8.7, 1H), 7.89 (t, J = 8.7, 1H), 8.05 (s, 2H), 8.57 (d, J = 7.9, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 38.7 (N-CH3), 56.8 (OCH3), 61.1 (OCH3), 106.2, 111.0 (C-3), 116.9, 125.3, 126.4, 130.2 (Cq), 133.7, 136.4 (Cq), 139.2 (Cq), 141.5 (Cq), 153.6 (Cq), 156.5 (Cq), 176.7 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 325 (2.5) [M+], 167 (20), 149 (100). Anal. Calcd for C19H19NO4: C, 70.14; H, 5.89; N, 4.31. Found: C, 70.02; H, 5.96; N, 4.15.
- 2-(3,4-Dichlorophenyl)-1-methylquinolin-4(1H)-one 23g: Yellow solid, 93% yield. M.p. 82–83 °C. FTIR (KBr): ν = 3102, 2940, 1626 (C=O) cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.64 (s, 3H, N-CH3), 6.26 (s, 1H, H-3), 7.29 (dd, J = 7.2, J = 1.2 Hz, 1H), 7.47 (t, J = 7.5, 1H), 7.54–7.60 (m, 2H), 7.63 (d, J = 8.2, 1H), 7.76 (td, J = 7.3, J = 1.1 Hz, 1H), 8.50 (dd, J = 8.0, J = 1.3 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 37.3 (N-CH3), 112.8 (C-3), 116.0, 124.0, 126.8, 126.9 (Cq), 127.9, 130.6, 131.0, 132.7, 133.4 (Cq), 134.4 (Cq), 135.6 (Cq), 141.9 (Cq), 152.1 (Cq), 177.5 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 307/305/303 (0.5/2.1/3.3) [M+], 149 (21), 85 (77), 83 (100). Anal. Calcd for C16H11Cl2NO: C, 63.18; H, 3.65; N, 4.60. Found: C, 63.32; H, 3.74; N, 4.48.
- 6-(Benzo[d][1,3]dioxol-5-yl)-5-methyl-[1,3]dioxolo[4,5-g]quinolin-8(5H)-one 23h: Yellow solid, 90% yield. M.p. 185–186 °C. FTIR (KBr): ν = 3040, 2989, 1658 (C=O), [1238, 1120] C-O cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.61 (s, 3H, N-CH3), 6.09 (s, 2H, OCH2O), 6.13 (s, 2H, OCH2O), 6.26 (s, 1H, H-3), 6.88 (d, J = 1.3 Hz, 1H), 6.90 (dd, J = 7.8, J = 1.6 Hz, 1H), 6.94 (d, J = 7.9 Hz, 1H), 6.98 (s, 1H), 7.85 (s, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 38.0 (N-CH3), 95.5, 101.7 (OCH2O), 102.1 (OCH2O), 103.9, 108.6, 109.1, 112.0 (C-3), 122.6 (Cq), 122.8, 129.4 (Cq), 139.2 (Cq), 145.5 (Cq), 148.0 (Cq), 148.7 (Cq), 152.4 (Cq), 153.2(Cq), 176.3 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 323 (0.8) [M+], 279 (31), 167 (99), 149 (100). Anal. Calcd for C18H13NO5: C, 66.87; H, 4.05; N, 4.33. Found: C, 66.91; H, 3.96; N, 4.52.
- 2-(Benzo[d][1,3]dioxol-5-yl)-1-methylquinolin-4(1H)-one (Graveoline 1): Yellow solid, 65% yield. M.p. 193–194 °C. FTIR (KBr): ν = 3160, 2919, 2854, 1623 (C=O), [1264, 1164] C-O cm−1. 1H NMR (400 MHz, CDCl3): δ = 3.68 (s, 3H, N-CH3), 6.11 (s, 2H, OCH2O), 6.35 (s, 1H, H-3), 6.91 (s, 1H), 6.92–6.98 (m, 2H), 7.47 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 8.0 Hz, 1H), 7.76 (td, J = 11.4, J = 4.2 Hz, 1H), 8.53 (d, J = 7.1 Hz, 1H) ppm. 13C NMR (100 MHz, CDCl3): δ = 37.2 (N-CH3), 101.6 (OCH2O), 108.7, 109.3, 112.6 (C-3), 115.9, 122.7, 123.9, 126.6 (Cq), 126.8, 129.5 (Cq), 132.5, 142.0 (Cq), 148.0 (Cq), 148.8 (Cq), 154.4 (Cq), 177.1 (C=O) ppm. MS (EI, 70 eV): m/z (%) = 279 (80) [M+], 149 (100). Anal. Calcd for C17H13NO3: C, 73.11; H, 4.69; N, 5.02. Found: C, 72.98; H, 4.55; N, 5.00.
- 2-(4-Bromophenyl)-1,2,3,4-tetrahydroquinolin-4-ol 26a: Pale yellow solid, 90% yield. M.p. 114–115 °C. FTIR (KBr): ν = 3420br (OH), 1602 (C=C), 1070 (C-O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 1.74 (d, J = 8.3 Hz, 1H, OH), 2.02–2.08 (m, 1H, Ha-3), 2.36–2.41 (m, 1H, Hb-3), 3.97 (bs, 1H, NH), 4.55 (dd, J = 11.2, J = 2.6 Hz, 1H, H-2), 5.02–5.08 (m, 1H, H-4), 6.56 (d, J = 8.0 Hz, 1H), 6.79 (t, J = 7.4 Hz, 1H), 7.10 (t, J = 7.4 Hz, 1H), 7.32 (d, J = 8.4, 2H), 7.43 (d, J = 7.6 Hz, 1H), 7.50 (d, J = 8.4 Hz, 2H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 41.4 (C-3), 55.2 (C-2), 67.2 (C-4), 114.3, 118.3, 121.5 (Cq), 124.4 (Cq), 127.0, 128.3, 128.7, 131.9, 142.4 (Cq), 144.0 (Cq) ppm. MS (70 eV): m/z (%) = 305/303 (73.9/75.4) [M+], 287/285 (98.0/100.0) [M-H2O], 148 (87).
- 2-(4-Bromophenyl)quinoline 24a: Yellow solid, 80% yield. M.p. 120–121 °C. FTIR (KBr): ν = 1539 (C=C), 1475 (C=N) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.54 (t, J = 7.4 Hz, 1H), 7.65 (d, J = 8.5 Hz, 2H), 7.74 (td, J = 7.7, J = 1.2 Hz, 1H), 7.80–7.85 (bd, 2H), 8.06 (d, J = 8.5 Hz, 2H), 8.18–8.25 (bt, 2H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 118.7, 124.2 (Cq), 126.7, 127.4 (Cq), 127.6, 129.3, 129.7, 130.1, 132.1, 137.3, 138.4 (Cq), 148.2 (Cq), 156.1 (Cq) ppm. MS (70 eV): m/z (%) = 285/283 (86/90) [M+], 204 (100). Anal. Calcd for C15H10BrN: C, 63.40; H, 3.55; N, 4.93. Found: C, 63.23; H, 3.41; N, 5.05.
- 2-(4-Chlorophenyl)quinoline 24b: Beige solid, 75% yield. M.p. 115–116 °C. FTIR (KBr): ν = 1591 (C=C), 1485 (C=N) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.50 (d, J = 8.6 Hz, 2H), 7.54 (td, J = 7.5, J = 1.0 Hz, 1H), 7.75 (td, J = 7.7, J = 1.0 Hz, 1H), 7.80–7.85 (bd, 2H), 8.12 (d, J = 8.6 Hz, 2H), 8.17 (d, J = 8.5 Hz, 1H), 8.21 (d, J = 8.6 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 118.6, 126.5, 127.3 (Cq), 127.5, 128.9, 129.0, 129.7, 129.9, 135.6 (Cq), 137.0, 138.1 (Cq), 148.3 (Cq), 156.0 (Cq) ppm. MS (70 eV): m/z (%) = 241/239 (32/100) [M+], 204 (67). Anal. Calcd for C15H10ClN: C, 75.16; H, 4.21; N, 5.84. Found: C, 75.23; H, 4.29; N, 5.75.
- 2-(4-Methoxyphenyl)quinoline 24c: Beige solid, 73% yield. M.p. 122–123 °C. FTIR (KBr): ν = 1597 (C=C), 1492 (C=N),1246 (C-O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 3.89 (s, 3H, OCH3), 7.06 (d, J = 8.8 Hz, 2H), 7.51 (t, J = 7.5 Hz, 1H), 7.72 (td, J = 7.7, J = 1.0 Hz, 1H), 7.78–7.86 (bt, 2H), 8.12–8.21 (m, 4H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 55.4 (OCH3), 114.3, 118,6, 126.0, 127.0 (Cq), 127.5, 129.0, 129.5, 129.7, 132.2 (Cq), 136.8, 148.2 (Cq), 156.9 (Cq), 160.9 (Cq) ppm. MS (70 eV): m/z (%) = 235 (100) [M+], 220 (31), 192 (34), 191 (35). Anal. Calcd for C16H13NO: C, 81.68; H, 5.57; N, 5.95. Found: C, 81.57; H, 5.36; N, 6.03.
- 2-(p-Tolyl)quinoline 24d: Yellow solid, 85% yield. M.p. 83–84 °C. FTIR (KBr): ν = 1595 (C=C), 1494 (C=N) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 2.45 (s, 3H, CH3), 7.35 (d, J = 8.1 Hz, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 7.7 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 8.6 Hz, 1H), 8.10 (d, J = 8.1 Hz, 2H), 8.20–8.27 (bt, 2H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 21.4 (CH3), 119.0, 126.3, 127.1 (Cq), 127.5, 127.6, 129.4, 129.6, 129.8, 136.5 (Cq), 137.0, 139.7 (Cq), 148.0 (Cq), 157.3 (Cq) ppm. MS (70 eV): m/z (%) = 219 (100) [M+], 204 (39). Anal. Calcd for C16H13N: C, 87.64; H, 5.98; N, 6.39. Found: C, 87.57; H, 6.05; N, 6.44.
- 2-Phenylquinoline 24e: Beige solid, 70% yield. M.p. 82–83 °C. FTIR (KBr): ν = 1595 (C=C), 1489 (C=N) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.48 (t, J = 7.1 Hz, 1H), 7.52–7.58 (m, 3H), 7.75 (t, J = 7.6 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.89 (d, J = 8.6 Hz, 1H), 8.16–8.25 (m, 4H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 119.1, 126.3, 127.2 (Cq), 127.5, 127.6, 128.9, 129.4, 129.7, 129.8, 136.8, 139.7 (Cq), 148.3 (Cq), 157.4 (Cq) ppm. MS (70 eV): m/z (%) = 205 (100) [M+], 204 (94). Anal. Calcd for C15H11N: C, 87.77; H, 5.40; N, 6.82. Found: C, 87.50; H, 5.28; N, 6.86.
- (3,4,5-Trimethoxyphenyl)quinoline 24f: Yellow solid, 80% yield. M.p. 90–93 °C. FTIR (KBr): ν = 1593 (C=C), 1496 (C=N), 1244 (C-O) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 3.93 (s, 3H, OCH3), 4.01 (s, 6H, OCH3), 7.42 (s, 2H), 7.53 (t, J = 7.5 Hz, 1H), 7.74 (t, J = 7.5 Hz, 1H), 7.81–7.85 (m, 2H), 8.20–8.24 (bd, 2H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 56.4 (OCH3), 61.0 (OCH3), 105.0, 118.9, 126.4, 127.2 (Cq), 127.5, 129.5, 129.9, 135.0 (Cq), 137.0, 139.6 (Cq), 147.9 (Cq), 153.6 (Cq), 156.9 (Cq) ppm. MS (70 eV): m/z (%) = 295 (100) [M+], 280 (49), 222 (38). Anal. Calcd for C18H17NO3: C, 73.20; H, 5.80; N, 4.74. Found: C, 73.48; H, 5.65; N, 4.82.
- 2-(3,4-Dichlorophenyl)quinoline 24g: Yellow solid, 87% yield. M.p. 107–108 °C. FTIR (KBr): ν = 1593 (C=C), 1543 (C=N) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 7.53–7.60 (m, 2H), 7.76 (t, J = 7.7 Hz, 1H), 7.79–7.86 (bt, 2H), 8.00 (dd, J = 8.4, J = 1.8 Hz, 1H), 8.16 (d, J = 8.5 Hz, 1H), 8.23 (d, J = 8.6 Hz, 1H), 8.32 (d, J = 1.7 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 118.3, 126.6, 126.8, 127.4 (Cq), 127.5, 129.4, 129.8, 130.0, 130.7, 133.2 (Cq), 133.6 (Cq), 137.2, 139.5 (Cq), 148.2 (Cq), 154.6 (Cq) ppm. MS (70 eV): m/z (%) = 277/275/273 (12/66/100) [M+], 238 (67), 203 (29). Anal. Calcd for C15H9Cl2N: C, 65.72; H, 3.31; N, 5.11. Found: C, 65.82; H, 3.13; N, 4.98.
- 6-(Benzo[d][1,3]dioxol-5-yl)-[1,3]dioxolo[4,5-g]quinoline 24h: Pink solid, 75% yield. M.p. 195–196 °C. FTIR (KBr): ν = 1581 (C=C), 1481 (C=N), 1253 (C-O-C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.03 (s, 2H, OCH2O), 6.10 (s, 2H, OCH2O), 6.93 (d, J = 8.1 Hz, 1H), 7.04 (s, 1H), 7.41 (s, 1H), 7.58–7.64 (m, 2H), 7.67 (d, J = 1.6 Hz, 1H), 7.96 (d, J = 8.5 Hz, 1H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 101.3 (OCH2O), 101.7 (OCH2O), 102.6, 106.1, 107.7, 108.5, 116.8, 121.3, 123.9 (Cq), 134.3 (Cq), 135.5, 146.5 (Cq), 147.6 (Cq), 148.3 (Cq), 148.5 (Cq), 150.8 (Cq), 154.7 (Cq) ppm. MS (70 eV): m/z (%) = 293 (100) [M+], 177 (19). Anal. Calcd for C17H11NO4: C, 69.62; H, 3.78; N, 4.78. Found: C, 69.78; H, 3.86; N, 4.81.
- 2-(Benzo[d][1,3]dioxol-5-yl)quinoline (Dubamine 2): Pink solid, 81% yield. M.p. 93–94 °C. FTIR (KBr): ν = 1593 (C=C), 1485 (C=N), 1250 (C-O-C) cm−1. 1H NMR (400 MHz, DMSO-d6): δ = 6.05 (s, 2H, OCH2O), 6.96 (d, J = 8.1 Hz, 1H), 7.51 (t, J = 7.4 Hz, 1H), 7.67 (dd, J = 8.1, J = 1.7 Hz, 1H), 7.72 (td, J = 7.7, J = 1.7 Hz, 1H), 7.76 (d, J = 1.4 Hz, 1H), 7.77–7.82 (m, 2H), 8.10–8.20 (bt, 2H) ppm. 13C NMR (100 MHz, DMSO-d6): δ = 101.4 (OCH2O), 108.0, 108.5, 118.6, 121.8, 126.1, 127.0 (Cq), 127.4, 129,6, 129.7, 134.2 (Cq), 136.7, 148.2 (Cq), 148.4 (Cq), 148.9 (Cq), 156.7 (Cq) ppm. MS (70 eV): m/z (%) = 249 (100) [M+], 191 (52). Anal. Calcd for C16H11NO2: C, 77.10; H, 4.45; N, 5.62. Found: C, 77.22; H, 4.36; N, 5.80.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wright, C.W.; Addae-Kyereme, J.; Breen, A.G.; Brown, J.E.; Cox, M.F.; Croft, S.L.; Gökçek, Y.; Kendrick, H.; Phillips, R.M.; Pollet, P.L. Synthesis and Evaluation of Cryptolepine Analogues for Their Potential as New Antimalarial Agents. J. Med. Chem. 2001, 44, 3187–3194. [Google Scholar] [CrossRef]
- Chiari, E.; Oliveira, A.B.; Prado, M.A.; Alves, R.J.; Galvão, L.M.; Araujo, F.G. Potential Use of WR6026 as Prophylaxis Against Transfusion-Transmitted American Trypanosomiasis. Antimicrob. Agents Chemother. 1996, 40, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Lu, Y. Asymmetric Synthesis of 2-Aryl-2,3-Dihydro-4-Quinolones via Bifunctional Thiourea-Mediated Intramolecular Cyclization. Org. Lett. 2010, 12, 5592–5595. [Google Scholar] [CrossRef] [PubMed]
- Chelghoum, M.; Bahnous, M.; Bouraiou, A.; Bouacida, S.; Belfaitah, A. An Efficient and Rapid Intramolecular Aza-Michael Addition of 2′-Aminochalcones Using Ionic Liquids as Recyclable Reaction Media. Tetrahedron Lett. 2012, 53, 4059–4061. [Google Scholar] [CrossRef]
- Meléndez-Gómez, C.M.; Kouznetsov, V.V.; Sortino, M.A.; Álvarez, S.L.; Zacchino, S.A. In Vitro Antifungal Activity of Polyfunctionalized 2-(Hetero)Arylquinolines Prepared through Imino Diels–Alder Reactions. Bioorg. Med. Chem. 2008, 16, 7908–7920. [Google Scholar] [CrossRef] [PubMed]
- Hussein, M.; Kafafy, A.-H.; Abdel-Moty, S.; Abou-Ghadir, O. Synthesis and Biological Activities of New Substituted Thiazoline-Quinoline Derivatives. Acta Pharm. 2009, 59, 365–382. [Google Scholar] [CrossRef]
- Insuasty, B.; Becerra, D.; Quiroga, J.; Abonia, R.; Nogueras, M.; Cobo, J. Microwave-Assisted Synthesis of Pyrimido[4,5-b][1,6]Naphthyridin-4(3H)-Ones with Potential Antitumor Activity. Eur. J. Med. Chem. 2013, 60, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Yang, Z.-Y.; Xia, P.; Bastow, K.F.; Tachibana, Y.; Kuo, S.-C.; Hamel, E.; Hackl, T.; Lee, K.-H. Antitumor Agents. 181. Synthesis and Biological Evaluation of 6,7,2′,3′,4′-Substituted-1,2,3,4-Tetrahydro-2-Phenyl-4-Quinolones as a New Class of Antimitotic Antitumor Agents. J. Med. Chem. 1998, 41, 1155–1162. [Google Scholar] [CrossRef]
- An, Z.-Y.; Yan, Y.-Y.; Peng, D.; Ou, T.-M.; Tan, J.-H.; Huang, S.-L.; An, L.-K.; Gu, L.-Q.; Huang, Z.-S. Synthesis and Evaluation of Graveoline and Graveolinine Derivatives with Potent Anti-Angiogenesis Activities. Eur. J. Med. Chem. 2010, 45, 3895–3903. [Google Scholar] [CrossRef]
- Song, S.J.; Cho, S.J.; Park, D.K.; Kwon, T.W.; Jenekhe, S.A. Microwave Enhanced Solvent-Free Synthesis of a Library of Quinoline Derivatives. Tetrahedron Lett. 2003, 44, 255–257. [Google Scholar] [CrossRef]
- Mahanty, J.S.; De, M.; Das, P.; Kundu, N.G. Palladium-Catalyzed Heteroannulation with Acetylenic Carbinols as Synthons-Synthesis of Quinolines and 2,3-Dihydro-4(1H)-Quinolones. Tetrahedron 1997, 53, 13397–13418. [Google Scholar] [CrossRef]
- Bompart, D.; Núñez-Durán, J.; Rodríguez, D.; Kouznetsov, V.V.; Meléndez-Gómez, C.M.; Sojo, F.; Arvelo, F.; Visbal, G.; Alvarez, A.; Serrano-Martín, X.; et al. Anti-Leishmanial Evaluation of C2-Aryl Quinolines: Mechanistic Insight on Bioenergetics and Sterol Biosynthetic Pathway of Leishmania braziliensis. Bioorg. Med. Chem. 2013, 21, 4426–4431. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-S.; Kang, P.M.; Park, K.S.; Kim, C.H. Plant Growth Promoting and Fungicidal 4-Quinolinones from Pseudomonas cepacia. Phytochemistry 1996, 42, 365–368. [Google Scholar] [CrossRef]
- Vieira, P.C.; Kubo, I. Molluscicidal Quinoline Alkaloids from Galipea bracteata. Phytochemistry 1990, 29, 813–815. [Google Scholar] [CrossRef]
- Asgarpanah, J.; Khoshkam, R. Phytochemistry and Pharmacological Properties of Ruta graveolens L. J. Med. Plant Res. 2012, 6, 3942–3949. [Google Scholar] [CrossRef]
- Li, Z.; Mu, C.; Wang, B.; Jin, J. Graveoline Analogs Exhibiting Selective Acetylcholinesterase Inhibitory Activity as Potential Lead Compounds for the Treatment of Alzheimer’s Disease. Molecules 2016, 21, 132. [Google Scholar] [CrossRef]
- Hale, A.L.; Meepagala, K.M.; Oliva, A.; Aliotta, G.; Duke, S.O. Phytotoxins from the Leaves of Ruta graveolens. J. Agric. Food Chem. 2004, 52, 3345–3349. [Google Scholar] [CrossRef]
- Koyama, J.; Toyokuni, I.; Tagahara, K. Synthesis of 2-Arylquinoline and 2-Aryl-4-Quinolone Alkaloids via Diels-Alder Reaction of 1,2,3-Benzotriazine with Enamines. Chem. Pharm. Bull. 1999, 47, 1038–1039. [Google Scholar] [CrossRef]
- Shimizu, I.; Nakajima, T.; Inada, T. Short Step Synthesis of Natural 2-Arylquinolones Based on Iridium-Catalyzed Three-Component Coupling Quinoline Synthesis. Heterocycles 2006, 69, 497. [Google Scholar] [CrossRef] [PubMed]
- Tollari, S.; Penoni, A.; Cenini, S. The Unprecedented Detection of the Intermediate Formation of N-Hydroxy Derivatives during the Carbonylation of 2′-Nitrochalcones and 2-Nitrostyrenes Catalysed by Palladium. J. Mol. Catal. A Chem. 2000, 152, 47–54. [Google Scholar] [CrossRef]
- Bandatmakuru, S.R.; Arava, V.R. Novel Synthesis of Graveoline and Graveolinine. Synth. Commun. 2018, 48, 2635–2641. [Google Scholar] [CrossRef]
- Ferretti, F.; Fouad, M.A.; Abbo, C.; Ragaini, F. Effective Synthesis of 4-Quinolones by Reductive Cyclization of 2′-Nitrochalcones Using Formic Acid as a CO Surrogate. Molecules 2023, 28, 5424. [Google Scholar] [CrossRef]
- Singh, S.; Nerella, S.; Pabbaraja, S.; Mehta, G. Access to 2-Alkyl/Aryl-4-(1 H)-Quinolones via Orthogonal “NH3” Insertion into o-Haloaryl Ynones: Total Synthesis of Bioactive Pseudanes, Graveoline, Graveolinine, and Waltherione F. Org. Lett. 2020, 22, 1575–1579. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-S.; Yang, F.; Wang, T.; Zhang, G.-Q.; Wei, Y.; Wang, M.-H.; Chen, Z.-S.; Ji, K. Chemoselective Transformations of Amides: An Approach to Quinolones from β-Amido Ynones. Org. Lett. 2023, 25, 5762–5767. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Ping, Y.; Chang, T.; Wang, J. Palladium-Catalyzed [3+3] Annulation of Vinyl Chromium(0) Carbene Complexes through Carbene Migratory Insertion/Tsuji–Trost Reaction. Angew. Chem. Int. Ed. 2017, 56, 13140–13144. [Google Scholar] [CrossRef] [PubMed]
- Tummanapalli, S.; Gulipalli, K.C.; Bodige, S.; Pommidi, A.K.; Boya, R.; Choppadandi, S.; Bakangari, M.R.; Punna, S.K.; Medaboina, S.; Mamindla, D.Y.; et al. Cu-Catalyzed Tandem C-N and C-C Bond Formation Leading to 4(1H)-Quinolones: A Scaffold with Diverse Biological Properties from Totally New Raw Materials in a Single Step. J. Org. Chem. 2024, 89, 1609–1617. [Google Scholar] [CrossRef] [PubMed]
- Echavarren, A.M.; Stille, J.K. Palladium-Catalyzed Coupling of Aryl Triflates with Organostannanes. J. Am. Chem. Soc. 1987, 109, 5478–5486. [Google Scholar] [CrossRef]
- Kametani, T.; Takeda, H.; Suzuki, Y.; Kasai, H.; Honda, T. Application of the Lewis Acid Catalyzed [4+2] Cycloaddition Reaction to Synthesis of Natural Quinoline Alkaloids. Heterocycles 1986, 24, 3385–3395. [Google Scholar] [CrossRef]
- Meléndez, C.M.; Kouznetsov, V.; Astudillo, L. Síntesis de Derivados del Alcaloide Dubamina vía Reacción Imino-Diels-Alder Multi-Componente. Sci. Tech. 2007, XIII, 369–372. Available online: https://moodle2.utp.edu.co/index.php/revistaciencia/article/view/6143 (accessed on 14 January 2024).
- Maji, A.; Gupta, S.; Maji, M.; Kundu, S. Well-Defined Phosphine-Free Manganese(II)-Complex-Catalyzed Synthesis of Quinolines, Pyrroles, and Pyridines. J. Org. Chem. 2022, 87, 8351–8367. [Google Scholar] [CrossRef]
- Pawar, G.; Mahammad Ghouse, S.; Kar, S.; Manohar Chelli, S.; Reddy Dannarm, S.; Gour, J.; Sonti, R.; Nanduri, S. SmI2-mediated C-alkylation of Ketones with Alcohols under Microwave Conditions: A Novel Route to Alkylated Ketones. Chem. Asian J. 2022, 17, e202200041. [Google Scholar] [CrossRef]
- Yu, K.; Chen, Q.; Liu, W. Iron-Catalysed Quinoline Synthesis via Acceptorless Dehydrogenative Coupling. Org. Chem. Front. 2022, 9, 6573–6578. [Google Scholar] [CrossRef]
- Sirindil, F.; Pertschi, R.; Naulin, E.; Hatey, D.; Weibel, J.-M.; Pale, P.; Blanc, A. Trans-Dichlorobis(XPhos)Palladium(II) Precatalyst for Suzuki–Miyaura Cross-Coupling Reactions of Aryl/Vinyl Sulfonates/Halides: Scope, Mechanistic Study, and Synthetic Applications. ACS Omega 2022, 7, 1186–1196. [Google Scholar] [CrossRef]
- Ghora, S.; Sreenivasulu, C.; Satyanarayana, G. A Domino Heck Coupling–Cyclization–Dehydrogenative Strategy for the One-Pot Synthesis of Quinolines. Synthesis 2022, 54, 393–402. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, J.-T.; Feng, J.-Y.; Liang, J.-Y.; Xu, X.-T.; Peng, J.-B. Palladium Catalyzed Annulation of o-Iodo-Anilines with Propargyl Alcohols: Synthesis of Substituted Quinolines. J. Org. Chem. 2023, 88, 12054–12063. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, S.; Huo, Y.; Chen, Q.; Li, X.; Hu, X.-Q. NiH-Catalyzed Hydroamination/Cyclization Cascade: Rapid Access to Quinolines. ACS Catal. 2021, 11, 7772–7779. [Google Scholar] [CrossRef]
- Cuervo, P.; Abonía, R.; Cobo, J.; Low, J.N.; Glidewell, C. 1-(6-Amino-1,3-Benzodioxol-5-yl)-3-(4-Pyridyl)Prop-2-En-1-One Crystallizes with Z′ = 2: Hydrogen-Bonded Supramolecular Substructures in One and Two Dimensions, Each Containing Only One Type of Molecule. Acta Cryst. 2007, C63, o99–o101. [Google Scholar] [CrossRef] [PubMed]
- Abonia, R.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J.; Meier, H.; Lotero, E. An Amberlyst-15® Mediated Synthesis of New Functionalized Dioxoloquinolinone Derivatives. Open Org. Chem. J. 2008, 2, 26–34. [Google Scholar] [CrossRef]
- Abonia, R.; Cuervo, P.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. A Simple Two-Step Sequence for the Synthesis of Novel 4-Aryl-4,5-dihydro-6H-[1,3]Dioxolo[4,5-h]Pyrrolo[1,2-a][1]Benzazepin-6-ones from 6-Amino-3,4-methylenedioxyacetophenone. Eur. J. Org. Chem. 2008, 2008, 4684–4689. [Google Scholar] [CrossRef]
- Abonia, R.; Cuervo, P.; Castillo, J.; Insuasty, B.; Quiroga, J.; Nogueras, M.; Cobo, J. Unexpected Intramolecular Cyclization of Some 2′-Aminochalcones to Indolin-3-Ones Mediated by Amberlyst®-15. Tetrahedron Lett. 2008, 49, 5028–5031. [Google Scholar] [CrossRef]
- Mondal, M.A.; Khan, A.A.; Mitra, K. Tetrazole 5-Acetic Acid Catalyzed Synthesis and Photophysical Study of 2-Aryl-2,3-dihydroquinolin-4(1H)-ones. Lett. Org. Chem. 2019, 16, 176–184. [Google Scholar] [CrossRef]
- Shmidt, M.S.; García Vior, M.C.; Ezquerra Riega, S.D.; Lázaro-Martínez, J.M.; Abasolo, M.I.; Lazaro-Carrillo, A.; Tabero, A.; Villanueva, A.; Moglioni, A.G.; Blanco, M.M.; et al. 3-Hydroxykynurenic Acid: Physicochemical Properties and Fluorescence Labeling. Dyes Pigm. 2019, 162, 552–561. [Google Scholar] [CrossRef]
- Politanskaya, L.V.; Chuikov, I.P.; Tretyakov, E.V.; Shteingarts, V.D.; Ovchinnikova, L.P.; Zakharova, O.D.; Nevinsky, G.A. An Effective Two-step Synthesis, Fluorescent Properties, Antioxidant Activity and Cytotoxicity Evaluation of Benzene-Fluorinated 2,2-Dimethyl-2,3-dihydro-1H-quinolin-4-ones. J. Fluorine Chem. 2015, 178, 142–153. [Google Scholar] [CrossRef]
- Laguerre, M.; Dunoguès, J.; Calas, R. Novel Polyhydronaphthalenic Structures. Tetrahedron Lett. 1981, 22, 1227–1230. [Google Scholar] [CrossRef]
- Chen, Q.; du Jourdin, X.M.; Knochel, P. Transition-Metal-Free BF3-Mediated Regioselective Direct Alkylation and Arylation of Functionalized Pyridines Using Grignard or Organozinc Reagents. J. Am. Chem. Soc. 2013, 135, 4958–4961. [Google Scholar] [CrossRef]
- Lü, J.-M.; Rosokha, S.V.; Neretin, I.S.; Kochi, J.K. Quinones as Electron Acceptors. X-Ray Structures, Spectral (EPR, UV-vis) Characteristics and Electron-Transfer Reactivities of Their Reduced Anion Radicals as Separated vs. Contact Ion Pairs. J. Am. Chem. Soc. 2006, 128, 16708–16719. [Google Scholar] [CrossRef]
- Buckle, D.R. Chloranil. In Encyclopedia of Reagents for Organic Synthesis; John Wiley: Hoboken, NJ, USA, 2001. [Google Scholar] [CrossRef]
Entry | Conditions | Reaction Time (h) | Yield (%) |
---|---|---|---|
1 | (1) NBS/MeOH/silica gel (2) KOH/MeOH/50 °C | 3 | Complex mixture |
2 | p-chloranil/DCM/reflux | 24 | 8 |
3 | p-chloranil/DMF/reflux | 2 | 61 |
Entry | Conditions | Reaction Time (h) | Yield (%) a of 27a/24a |
---|---|---|---|
1 | MeOH/B(OH)3/reflux | 3 | NR |
2 | MeOH/PTSA/reflux | 2 | Complex mixture |
3 | Toluene/PTSA/reflux/air | 3 | ND/20 |
4 | p-dioxane/PTSA/air/rt | 2 | ND/80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abonia, R.; Cabrera, L.; Arteaga, D.; Insuasty, D.; Quiroga, J.; Cuervo, P.; Insuasty, H. Using Quinolin-4-Ones as Convenient Common Precursors for a Metal-Free Total Synthesis of Both Dubamine and Graveoline Alkaloids and Diverse Structural Analogues. Molecules 2024, 29, 1959. https://doi.org/10.3390/molecules29091959
Abonia R, Cabrera L, Arteaga D, Insuasty D, Quiroga J, Cuervo P, Insuasty H. Using Quinolin-4-Ones as Convenient Common Precursors for a Metal-Free Total Synthesis of Both Dubamine and Graveoline Alkaloids and Diverse Structural Analogues. Molecules. 2024; 29(9):1959. https://doi.org/10.3390/molecules29091959
Chicago/Turabian StyleAbonia, Rodrigo, Lorena Cabrera, Diana Arteaga, Daniel Insuasty, Jairo Quiroga, Paola Cuervo, and Henry Insuasty. 2024. "Using Quinolin-4-Ones as Convenient Common Precursors for a Metal-Free Total Synthesis of Both Dubamine and Graveoline Alkaloids and Diverse Structural Analogues" Molecules 29, no. 9: 1959. https://doi.org/10.3390/molecules29091959