Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes
"> Figure 1
<p>Electrochemical oxidation process for the growth of TiO<sub>2</sub> nanotubes. The colored regions on the left represent the different stages of the anodizing process. Adapted with permission from [<a href="#B102-molecules-29-05638" class="html-bibr">102</a>]. Copyright © 2013, Elsevier. Adapted with permission from [<a href="#B119-molecules-29-05638" class="html-bibr">119</a>]. Copyright © 2017, Springer Nature.</p> "> Figure 2
<p>A schematic overview of the different methods to form free-standing TiO<sub>2</sub> nanotube membranes. Reprinted in part with permission from [<a href="#B60-molecules-29-05638" class="html-bibr">60</a>]. Copyright © 2010, American Chemical Society. Reprinted in part with permission from [<a href="#B28-molecules-29-05638" class="html-bibr">28</a>]. Copyright © 2014, American Chemical Society. Reprinted in part with permission from [<a href="#B42-molecules-29-05638" class="html-bibr">42</a>]. Copyright © 2018, IOP Publishing. Reprinted in part with permission from [<a href="#B97-molecules-29-05638" class="html-bibr">97</a>]. Copyright © 2008, John Wiley and Sons. Reprinted in part with permission from [<a href="#B78-molecules-29-05638" class="html-bibr">78</a>]. Copyright © 2010, Royal Society of Chemistry. Reprinted in part with permission from [<a href="#B17-molecules-29-05638" class="html-bibr">17</a>]. Copyright © 2017, Elsevier. Reprinted in part with permission from [<a href="#B107-molecules-29-05638" class="html-bibr">107</a>]. Copyright © 2012, Elsevier. Reprinted in part with permission from [<a href="#B26-molecules-29-05638" class="html-bibr">26</a>]. Copyright © 2018, Elsevier.</p> "> Figure 3
<p>Photocatalytic results in terms of amount of generated H<sub>2</sub> vs. irradiation time of Pt-decorated TNT membranes in a tube top-up ((<b>a</b>,<b>b</b>)) and top down ((<b>c</b>,<b>d</b>)) under front- ((<b>a</b>,<b>c</b>)) and back-side illumination. Reprinted in part with permission from [<a href="#B13-molecules-29-05638" class="html-bibr">13</a>]. Copyright © 2016, John Wiley and Sons.</p> "> Figure 4
<p>Amount of photocatalytically evolved H<sub>2</sub> measured over irradiation time for (<b>a</b>) pristine and (<b>b</b>) Pt-decorated TiO<sub>2</sub> nanotube membranes of different thicknesses; (<b>c</b>) photocatalytic results expressed in terms of H<sub>2</sub> evolution rate (rH<sub>2</sub>) for pristine and Pt-decorated TiO<sub>2</sub> nanotube membranes plotted as a function of the membrane thickness. Reprinted in part with permission from [<a href="#B17-molecules-29-05638" class="html-bibr">17</a>]. Copyright © 2017, Elsevier.</p> "> Figure 5
<p>(<b>a</b>) Scheme of front-side illuminated DSSC fabricated using free-standing TNT layer. The photos of TNT (<b>b</b>) before and (<b>c</b>) after dye sensitization. Reprinted in part with permission from [<a href="#B62-molecules-29-05638" class="html-bibr">62</a>]. Copyright © 2009, American Chemical Society.</p> "> Figure 6
<p>(<b>a</b>) Cross-sectional SEM image of a 20 µm-thick TNT membrane. Inset: a scheme of the photoanode with OED configuration. (<b>b</b>) J–V curves and (<b>c</b>) a summary of the photovoltaic performance of DSSCs constructed using TNT layers annealed at selected heating rates. Top-view and cross-section SEM images of TNT membranes annealed in air at 500 °C at a heating rate of (<b>d</b>) 10, (<b>e</b>) 30, and (<b>f</b>) 60 °C min<sup>−1</sup>. Reprinted in part with permission from [<a href="#B15-molecules-29-05638" class="html-bibr">15</a>]. Copyright © 2015, Royal Society of Chemistry.</p> "> Figure 7
<p>The (<b>a</b>) top, (<b>b</b>) cross-section SEM, and (<b>c</b>) TEM images, accompanied with (<b>d</b>) elemental mapping of CdSe and CdS QDs-modified TNT. The photovoltaic performance recorded for (<b>e</b>) CdSe QD TNT solar cells influenced by CdSe SILAR cycles and (<b>f</b>) CdSe(9)/CdS(x) TNT solar cells influenced by CdS SILAR cycles. Reprinted in part with permission from [<a href="#B56-molecules-29-05638" class="html-bibr">56</a>]. Copyright © 2018, Elsevier.</p> ">
Abstract
:1. Introduction
2. Self-Organized Titanium Dioxide Nanotubes (TNTs) Membrane Preparation
2.1. Electrochemical Anodizing Method
TNTs Formation Mechanism
2.2. Detachment and Flow-Through TiO2 Nanotube Membrane Formation
3. Applications of TiO2 Nanotube Membranes
3.1. Photocatalytic and Electrocatalytic Hydrogen Generation
Anodizing Parameters | TNT Layer Detachment | TNT Layer Morphology | Photocatalytic Hydrogen Production | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Thickness/Lenght (μm) | Tube Diameter (nm) | Wall Thickness (nm) | Catalyst Preparation | Electrolyte | Measurement Conditions | Results | ||||
Photocatalyst | Light Source | H2 Production Rate | ||||||||
0.15 wt% NH4F, 3 vol% H2O in EG 1st: 60 V for 1 h |
| 15 | 110 | - |
| 20 vol% methanol aqueous solution | TNTs decorated with Pt NPs | HeCd laser (λ = 325 nm, 60 mW cm−2) or CW-laser (λ = 266 nm, 11.9 mW cm−2) | 325 nm laser: grass top TiNTs ~126 μmol h−1; 266 nm laser: grass top TiNTs ~30 μmol h−1; | [12] |
|
| 325 nm laser: open top TiNTs ~144 μmol h−1; 266 nm laser: open top TiNTs ~38 μmol h−1; | ||||||||
|
| 325 nm laser: bottom closed TiNTs ~42 μmol h−1; 266 nm laser: bottom closed TiNTs ~16 μmol h−1; | ||||||||
0.15 wt% NH4F, 3 vol% H2O in EG 1st: 60 V for 1 h |
| 325 nm laser: bottom open TiNTs ~70 μmol h−1; 266 nm laser: bottom open TiNTs ~23 μmol h−1; | ||||||||
0.15 wt% NH4F, 3 vol% H2O in EG 1st: 60 V for 1 h |
| 15 | outer diameter ~100–120;inner diameter ~30–40 | ~60–70 |
| 20 vol% methanol aqueous solution | TNTs decorated with or without Pt NPs | HeCd laser (λ = 325 nm) 60 mW cm−2; active area 0.78 cm2 | - TNTs membrane without Pt: front-side illumination ~3.4 µL h−1 cm−2 and: back-side illumination ~1.5 µL h−1 cm−2; TU 5,5 F ~241 µL h−1 cm−2 TU 5,5 B ~93 µL h−1 cm−2 TU 0,10 F ~74 µL h−1 cm−2 TU 0,10 B ~71 µL h−1 cm−2 TU 5,0 F ~148 µL h−1 cm−2 TU 5,0 B ~57 µL h−1 cm−2 TU 0,5 F ~74 µL h−1 cm−2 TU 0,5 B ~66 µL h−1 cm−2 TU 10,0 F ~174 µL h−1 cm−2 TU 10,0 B ~60 µL h−1 cm−2 TD 5,5 F ~163 µL h−1 cm−2 TD 5,5 B ~178 µL h−1 cm−2 TD 0,10 F ~121 µL h−1 cm−2 TD 0,10 B ~46 µL h−1 cm−2 TD 5,0 F ~82 µL h−1 cm−2 TD 5,0 B ~133 µL h−1 cm−2 TD 0,5 F ~98 µL h−1 cm−2 TD 0,5 B ~39 µL h−1 cm−2 TD 10,0 F ~81 µL h−1 cm−2 TD 10,0 B ~142 µL h−1 cm−2 *TU/D X,Y F/B: TU and TD– top up and top down tube configuration onto FTO, respectively; X,Y—nominal thickness (in nm) of the sputtered Pt film at top and bottom of tubes, respectively F and B stand for front- and back-side illumination, respectively | [13] |
0.15 M NH4F, 3 vol% H2O in EG 1st anodization step Removed by ultrasonication in water 2nd anodization step |
| 1.5–60 |
| 20 vol% methanol aqueous solution | TNTs decorated with or without Pt NPs | HeCd laser (λ = 325 nm) 60 mW cm−2; active area 0.785 cm2 | [17] | |||
glycerol and distillate H2O in a ratio of 4:1, including 0.5 wt% of NH4F 1st: 50 V for 10 h |
| 5 | 100–200 | - |
| Mixture of pure water and methanol in a ratio of 1:1 | 3 µm thick TNT/Pd membrane (1 µm thick TNTa coated with 2 µm thick Pd film) | Xe lamp (λ = 300–400 nm) 30 mW cm−2, 1.5 cm diameter of active area | 0.21 µmol−1 h−1 cm−2 | [44] |
glycerol and distillate H2O in a ratio of 9:1, including 0.5 wt% of NH4F 1st: 50 V for 10 h | 5 | 100 | - |
| TNT coated with 10 µm Pd film | - | ||||
0.3 wt% NH4F, 2 vol% H2O in EG 1st: 60 V for 10 h |
| 110 | 90 | - |
| Water and methanol mixture with a ratio of 9:1 (vol/vol) | 40 mg (catalyst to solvent ratio of 1 g/L) | 300 W Xe lamp, UV irradiation, 1.8 mW cm−2 | Annealed TiO2 nanotube membrane, HHC and 3D-HTiO2 decorated with 1% of Pt was 385 μmol h−1 g−1, 661 μmol h−1 g−1 and 1310 μmol h−1 g−1, respectively | [28] |
0.3 wt% NH4F, 2 wt% H2O in EG, RT 1st: 60 V for 1 h Removed by ultrasonication in 0.1 M HCl 2nd: 60 V for 4 h |
| 38 | Inner diameter 95; outer diameter 120 | 24 ± 1.1 |
| 0.5 M H2SO4 | 5 µL of the catalyst ink (350 µL of H2O/EtOH (5:3 vol/vol) with 5 wt% Nafion 0.4 ratio) immobilized onto glassy carbon electrode; geometric surface area 0.2475 cm2 loading of the catalyst 0.450 mg cm−2 on carbon fiber paper | - | - | [18] |
3.2. Fuel Cells
3.3. Li-S Batteries
3.4. Dye-Sensitized Solar Cells
3.4.1. Methods of TNT Array Detachment Used for Photoanode Preparation
Anodizing Parameters | TNT Layer Detachment | TNT Layer Morphology | DSSC Measurement | Ref. | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thickness (μm) | Tube Diameter (nm) | Wall Thickness (nm) | Photoanode Preparation | Electrolyte | Measurement Conditions | Results | ||||||||
Active Area (cm2) | Light Source | Short-Circuit Current Density (mA cm−2) | Open-Circuit Voltage (V) | Fill Factor (%) | Energy Conversion Efficiency (%) | Dye Loading (10−8 M cm−2) | ||||||||
0.25 wt% NH4F, 2 vol% H2O, in EG 1st: 60 V |
| 35 | ~130 nm | ~15 |
| 0.6 M butylmethylimidazolium iodide, 0.03 M I2, 0.1 M guanidinium thiocyanate, 0.5 M 4-tert-butylpyridine, in ACN and valeronitrile (85:15, vol/vol) | 0.03–0.15 | AM 1.5 | 16.8 | 0.733 | 62 | 7.6 | - | [69] |
0.25 wt% NH4F, in EG 1st: 50 V, 24 h |
| ~25 | ~50 nm | - |
| 0.05 M LiI, 0.05 M I2, 0.6 M PMII, 0.5 M 4-terbutylpyridine in 3-methoxyproprionitrile | 0.20 | Xe lamp | 12.4 | 0.701 | 63.3 | 5.5 | - | [62] |
0.25 wt% NH4F, 0.75 wt% H2O, in EG + PEG (4:1, v/v) 1st: 50 V, 4 h |
| 20.8 | 99 | 27 |
| 0.03 M I2, 0.6 M PMII, 0.10 M guanidinium thiocyanate, 0.5 M tertbutylpyridine, in ACN/valeronitrile (85:15, vol/vol) | - | AM 1.5 | 15.46 | 0.814 | 64.1 | 8.070 | 15.8 | [60] |
0.5 wt% NH4F, 3 wt% H2O2, in EG 1st: 80 V, 12 h, 20 °C |
*Barrier layer removed in 0.5 wt% oxalic acid at 40 °C for 16 h | ~70 | Inner ~140 | ~50 |
| 0.5 M LiI, 0.05 M I2, 0.5 M tert-butylpyridine in dry ACN | 0.25 | AM 1.5 | TNT array with barrier layer | [78] | ||||
11.7 | 0.714 | 63 | 5.3 | 15.9 | ||||||||||
TNT array without barrier layer | ||||||||||||||
18.5 | 0.77 | 64 | 9.1 | 15.2 | ||||||||||
0.2 M NH4F, 0.01 M H3PO4, 2.2 wt/vol% H2O, in EG 1st: 60 V, 5 h |
| 22–23 | - | - |
| 0.6 M 1-propyl-2,3-dimethylimidazolium iodide, 0.05 M I2, 0.1 M LiI, 0.1 M guanidine thiocyanate, 0.5 M tert-butylpyridine, in ACN/valeronitrile (1:1, vol/vol) | 0.16 | AM 1.5 | OED open-ended down (facing NP layer) | [73] | ||||
16.3 | 0.700 | 53 | 6.12 | - | ||||||||||
CED closed-ended down (facing NP layer) | ||||||||||||||
9.68 | 0.630 | 61 | 3.75 | - | ||||||||||
0.5 wt% NH4F, 3 vol% H2O, in EG 1st: 60 V, 0.5 h Removed by ultrasonication in DI 2nd: 60 V, 1 h |
| 23.8 | - | - |
| DMPII/LiI/I2/TBP/ GuSCN in ACN | - | AM 1.5 | TNT with nanotubes opened on both sides (200 °C) | [14] | ||||
10.65 | 0.70 | 70 | 5.32 | - | ||||||||||
TNT with nanotubes opened on one side (400 °C) | ||||||||||||||
10.32 | 0.71 | 62 | 4.52 | - | ||||||||||
0.5 wt% NH4F, 3 vol% H2O, in EG 1st: 60 V, 30 min, RT Removed by ultrasonication 2nd: 60 V, 2 h |
| 7.86 | - | - |
| DHS-E23 | 0.64 | AM 1.5 | 15.60 | 0.76 | 64 | 7.62 | 25.47 | [19] |
0.6 wt% NH4F, 2 vol% H2O, in EG 1st: 50 V, 4 h |
| 16 | - | - |
| Solid electrolyte: 0.2 mM triethylammonium thiocyanate in a mixture of saturated Ni(SCN)2, α-CuSCN and β-CuSCN propyl-sulfide (PS) solutions (vol. ratio 1:1:10) | 0.5 | AM 1.5 | - | - | - | 6.3 | [107] | |
0.5 wt% NH4F, 2.5 vol% H2O, in EG 1st: 60 V, 2 h |
| 12 | Outer 120 |
| Iodolyte AN 50 | 0.22 | AM 1.5 | 14.61 | 0.66 | 63 | 6.07 | - | [70] | |
0.5 wt% NH4, 2.5 vol% H2O, in EG 1st: 60 V, 30 min Removed by ultrasonication in ACN 2nd: 60 V, 4 h |
| 30 | Outer 120 | 20 |
| Iodolyte AN 50 | - | AM 1.5 | 17.47 | 0.677 | 64 | 7.56 | - | [20] |
0.5 wt.% NH4F, 3 vol.% H2O, in EG 1st: 60 V, 20 °C |
| 13 | - | 10–20 |
| 1.0 M 1,2-dimethyl-3-propyl imidazolium iodide (DMPII), 0.12 M I2, 0.1 M LiI, 0.5 M 4-tertbutylpyridine (TBP) in 3-methoxypropionitrile (MPN) | 0.16 | AM 1.5 | 16.02 | 0.76 | 64 | 7.81 | 9.7 | [68] |
0.5 wt% NH4F, 2 vol% H2O, in EG 1st: 60 V, 8 h |
| 32 | 100 | - |
| 0.5 M KI, 0.05 M I2, in EG | - | UV (368.1 nm) LED | - | - | - | 10.6 | - | [71] |
0.5 wt% NH4F, 2 vol% H2O, in EG 1st: 40 V, 12 h, RT |
| 15 | ~120 | ~ 20 |
| 0.3 M LiI, 0.05 M I2, 0.6 M 1-propyl-3-methylimidazolium iodide, 0.5 M tert-butylpyridine in dry ACN | - | AM 1.5 | 15.88 | 0.65 | 61 | 6.32 | 4.43 | [74] |
0.08 M NH4F, 1.5 wt% H2O, in EG, 1st: 60 V, 60 min Removed 2nd: 40–60 V, 200 min |
| 14 | 60 on tube top and 100 on bottom | - |
| 0.05 M I2, 0.5 M LiI, 0.3 M DMPII and 0.5 M 4-TBP, in ACN solution | - | AM 1.5 | 8.17 | 0.705 | 66.1 | 3.78 | - | [21] |
0.5 wt% NH4F, 3.0 vol% H2O, in EG 1st: 60 V, 30 min, RT Removed by ultrasonication 2nd: 60 V, 2 h |
| 10.88 ± 0.06 | Inner 98, outer 147 | - |
| DHS-E23 | 0.64 | AM 1.5 | 15.64 ± 0.15 | 0.759 ± 0.015 | 64 ± 2 | 7.64 ± 0.24 | 25.47 ± 1.62 | [22] |
0.15 M NH4F, 3 vol% H2O, in EG 1st: 60 V, 1 h, RT |
| Approximately 20 | - | - |
| Io-li-tec, ES-0004 | 0.2 | AM 1.5 | 22.60 | 0.79 | 55 | 9.79 | 12.5 | [15] |
0.5 wt% NH4F, 3 vol% H2O, in EG 1st: 60 V, 1 h, RT Removed by ultrasonication 2nd: 60 V, 1 h |
| 19 | 100 |
| DMPII/LiI/I2/TBP/GuSCN in 3-methoxypropionitrile | - | AM 1.5 | 9.35 | 0.73 | 68 | 4.65 | - | [23] | |
0.3 wt% NH4F, 2 wt% H2O, in EG 1st: 50 V, 1 h, RT Removed by ultrasonication 2nd: 50 V, 3 h |
| 16.7 | Inner 60, outer 100 | 20 |
| 0.4 M sodium iodide, 0.1 M tetrabutyl ammonium iodide, 0.5 M 4-tert-butylpyridine, 0.05 M iodine, in ACN | 0.12 | AM 1.5 | 16.28 | 0.766 | 67.6 | 8.43 | - | [24] |
0.8 wt% NH4F, 2 vol% H2O, in EG 1st: 60 V, 1 h, 25 °C |
*Barrier layer removed by Ar+ bombardment | ~22 | - | - |
| 0.7 M 1-butyl-3-methyl-imidazolium iodide (BMII), 0.03 M I2, 0.1 M guanidium thiocyanate (GSCN), 0.5 M 4-tertbutylpyridine (TBP), in ACN/valeronitrile (85:15, vol/vol). | 0.25 | AM 1.5 | 11.56 | 0.79 | 67 | 6.12 | - | [41] |
0.1 M NH4F, 2 vol% H2O, in EG 1st: 60 V, 45 min Removed by ultrasonication 2nd: 2 h |
| - | Inner ~110 | ~17 |
| Electrolyte containing I/I−3 redox | - | AM 1.5 | 11.3 | 0.72 | 65 | 5.2 | - | [25] |
0.8 wt% NH4F, 2 vol.% H2O, in EG 1st: 60 V, 2 h, 25 °C |
*Barrier layer removed by Ar+ ion milling | 18 | 100 | - |
| 0.7 M 1-butyl-3-methyl-imidazolium iodide (BMII), 0.03 M I2, 0.1 M guanidium thiocyanate (GSCN), and 0.5 M 4-tertbutylpyridine (TBP), in ACN/valeronitrile (85:15, vol/vol) | - | AM 1.5 | TNT array without barrier layer | [40] | ||||
9.12 | 0.81 | 73 | 5.39 | 15.0 | ||||||||||
TNT with barrier layer | ||||||||||||||
7.87 | 0.80 | 71 | 4.47 | 13.8 | ||||||||||
0.33 g NH4F, 2 mL H2O, 98 mL EG 1st: 40 V, |
| - | Inner 40–60 | 30–60 |
| Iodolyte | 0.16 | AM 1.5 | 12.71 | 0.77 | 73.85 | 7.24 | - | [72] |
0.5 wt% NH4F, 2.0 wt% H2O, in EG 1st: 60 V, 1 h Removed by ultrasonication 2nd: 60 V, 2 h |
| 18 | Inner 100, outer 170 | - |
| ELT-ACN-I: Standard Iodine Based Electrolyte | 0.25 | AM 1.5 | 14.73 | 0.69 | 61.0 | 6.12 | - | [26] |
0.3 wt%, NH4F, 2 vol% H2O, in EG, 1st: 60 V, 4 h, 27 °C |
*Barrier layer removed by ion-beam etching | 24 | 150 | - |
| Iodolyte AN-50 | 0.25 | - | 14.40 | 0.594 | 40.7 | 3.48 | - | [42] |
0.15 M NH4F, 3 vol% H2O, in EG 1st: 60 V, 4 h, 30 °C Removed by ultrasonication 2nd: 60 V, 4 h, 30 °C |
*Barrier layer etching by HF vapour for 60 min | 26.60 | - | - |
| Irasol | - | AM 1.5 | 6.75 | 0.684 | 60 | 2.76 | - | [27] |
0.8 wt% NH4F, 2 vol% H2O, in EG 1st: 60 V, 2 h, 25 °C |
*Barrier layer removed by Ar+ ion milling | 18 | 100 | - |
| 0.7 M 1-butyl-3-methyl-imidazolium iodide, 0.03 M I2, 0.1 M guanidium thiocyanate, 0.5 M 4-tertbutylpyridine, in ACN/valeronitrile (85:15, vol/vol) | - | AM 1.5 | 10.64 | 0.795 | 69.4 | 5.87 ± 0.47 | [39] | |
0.8 wt% NH4F, 2 vol% H2O, in EG 1st: 60 V, 2 h, 25 °C |
| 18 | 100 | - |
| 0.7 M 1-butyl-3-methyl-imidazolium iodide, 0.03 M I2, 0.1 M guanidium thiocyanate, 0.5 M 4-tertbutylpyridine, in ACN/valeronitrile (85:15, vol/vol) | - | AM 1.5 | 10.27 | 0.764 | 65.9 | 5.17 | - | [49] |
3.4.2. Influence of the TNT Array Thickness on DSSC Performance
3.4.3. Result of TNT Array Configuration and Barrier Layer Removal
3.4.4. Effect of the Annealing Temperature and Heating Rate
3.4.5. Impact of a Binder
3.4.6. Strategies of TNT Layers Modification and Doping in DSSC
3.5. Quantum Dots Sensitized Solar Cells
Anodizing Parameters | TNT Layer Detachment | TNT Layer Morphology | QDSSC Measurement | Ref. | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Thickness (μm) | Tube Diameter (nm) | Wall Thickness (nm) | Photoanode Preparation | Electrolyte | Active Area (cm2) | Results | ||||||
Short- Circuit Current (mA cm−2) | Open-Circuit Voltage (V) | Fill Factor (%) | Conversion Efficiency (%) | |||||||||
0.3 wt% NH4F, 3 wt% DI, in EG 1st: 40 V |
| 12 | Inner 100, outer 110 | 10 |
| 0.5 M Na2S, 2.0 M S, 0.2 M KCl in H2O/methanol (3:7, vol/vol) | - | 7.52 | 0.462 | 42 | 1.47 | [51] |
0.25 wt% NH4F, 1 M H2O, in EG 1st: 60 V, 3 h |
| 18 | 80 ± 3 | 13 |
| 0.5 M Na2S, 2 M S, 0.2 M KCl, in H2O/methanol (3:7, vol/vol) | 0.16 | 16.02 | 0.51 | 29.74 | 2.43 | [52] |
0.3 wt% NH4F, 3 vol% H2O, in EG 1st: 60 V, 8 h |
| 5–6 | Inner 90 outer 110 | 20 |
| 0.5 M Na2S, 0.1 M S, 0.01 M KCl, in H2O | 0.25 | 13.27 | 0.44 | 44 | 2.57 | [53] |
0.3 wt% NH4F, 3 vol% H2O in EG 1st: 50 V, 8 h |
| - | Outer 100 inner 80 | ~20 |
| 0.5 M Na2S, 0.1 M S, in H2O | 0.16 | 10.49 | 0.41 | 0.50 | 2.15 | [54] |
0.25 wt% NH4F, 2 wt% H2O, in EG 1st: 50 V, 3 h |
*Barrier layer removal in 0.5 wt% oxalic acid | 14.5 | 100 | 15 |
| 0.5 M LiI, 0.05 MI2, 0.5 M tert-butylpyridine in anhydrous ACN | 0.25 | 5.2 | - | - | 3.34 | [36] |
0.45 wt% NH4F, 2 wt% H2O, in EG 1st: 60 V, 2–3 h |
| 16.7–35.9 | 85.8–126.0 | - |
| 1.0 M Na2S, 1.0 M S | 0.15 | 1.39 | −0.29 | 30 | 0.16 | [55] |
0.3 wt% NH4F, 3 vol% H2O, in EG 1st: 60 V, 15 h |
| 20 | 100 | - |
| 1.0 M Na2S, 1.0 M S, in H2O/methanol (1:1, vol/vol) | 0.16 | 14.44 | 0.39 | 46 | 2.52 | [56] |
3.6. Diffusion and/or Degradation of Organic Pollutants
3.7. Biomedical Application (Biofiltration—Sensor)
3.8. Micromotors
3.9. Electrochromic Devices
4. Conclusions and Future Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
References
- Zakir, O.; Ait-Karra, A.; Idouhli, R.; Khadiri, M.; Dikici, B.; Aityoub, A.; Outzourhit, A. A review on TiO2 nanotubes: Synthesis strategies, modifications, and applications. J. Solid State Electrochem. 2023, 27, 2289–2307. [Google Scholar] [CrossRef]
- Jafari, S.; Mahyad, B.; Hashemzadeh, H.; Janfaza, S.; Gholikhani, T.; Tayebi, L. Biomedical applications of TiO2 nanostructures: Recent advances. Int. J. Nanomed. 2020, 15, 3447–3470. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed]
- Kuchibhatla, S.V.N.T.; Karakoti, A.S.; Bera, D.; Seal, S. One dimensional nanostructured materials. Prog. Mater. Sci. 2007, 52, 699–913. [Google Scholar] [CrossRef]
- Zwilling, V.; Darque-Ceretti, E.; Boutry-Forveille, A.; David, D.; Perrin, M.Y.; Aucouturier, M. Structure and Physicochemistry of Anodic Oxide Films on Titanium and TA6V Alloy. Surf. Interface Anal. 1999, 27, 629–637. [Google Scholar] [CrossRef]
- Spanu, D.; Recchia, S.; Mohajernia, S.; Schmuki, P.; Altomare, M. Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst. Appl. Catal. B 2018, 237, 198–205. [Google Scholar] [CrossRef]
- Lynch, R.P.; Ghicov, A.; Schmuki, P. A Photo-Electrochemical Investigation of Self-Organized TiO2 Nanotubes. J. Electrochem. Soc. 2010, 157, G76. [Google Scholar] [CrossRef]
- Makarova, M.V.; Amano, F.; Nomura, S.; Tateishi, C.; Fukuma, T.; Takahashi, Y.; Korchev, Y.E. Direct Electrochemical Visualization of the Orthogonal Charge Separation in Anatase Nanotube Photoanodes for Water Splitting. ACS Catal. 2022, 12, 1201–1208. [Google Scholar] [CrossRef]
- Prakasam, H.E.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. A new benchmark for TiO2 nanotube array growth by anodization. J. Phys. Chem. C 2007, 111, 7235–7241. [Google Scholar] [CrossRef]
- Kulkarni, M.; Mazare, A.; Gongadze, E.; Perutkova, Š.; Kralj-Iglič, V.; Milošev, I.; Mozetič, M. Titanium nanostructures for biomedical applications. Nanotechnology 2015, 26, 062002. [Google Scholar] [CrossRef]
- Roy, P.; Berger, S.; Schmuki, P. TiO2 nanotubes: Synthesis and applications. Angew. Chem. Int. Ed. 2011, 50, 2904–2939. [Google Scholar] [CrossRef] [PubMed]
- Cha, G.; Lee, K.; Yoo, J.E.; Killian, M.S.; Schmuki, P. Topographical study of TiO2 nanostructure surface for photocatalytic hydrogen production. Electrochim. Acta 2015, 179, 423–430. [Google Scholar] [CrossRef]
- Cha, G.; Altomare, M.; Truong Nguyen, N.; Taccardi, N.; Lee, K.; Schmuki, P. Double-Side Co-Catalytic Activation of Anodic TiO2 Nanotube Membranes with Sputter-Coated Pt for Photocatalytic H2 Generation from Water/Methanol Mixtures. Chem. Asian J. 2017, 12, 314–323. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Chen, J.; Chen, X. High-efficiency dye-sensitized solar cells based on robust and both-end-open TiO2 nanotube membranes. Nanoscale Res. Lett. 2011, 6, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mohammadpour, F.; Moradi, M.; Lee, K.; Cha, G.; So, S.; Kahnt, A.; Schmuki, P. Enhanced performance of dye-sensitized solar cells based on TiO2 nanotube membranes using an optimized annealing profile. Chem. Commun. 2015, 51, 1631–1634. [Google Scholar] [CrossRef]
- Albu, S.P.; Roy, P.; Virtanen, S.; Schmuki, P. Self-organized TiO2 nanotube arrays: Critical effects on morphology and growth. Isr. J. Chem. 2010, 50, 453–467. [Google Scholar] [CrossRef]
- Cha, G.; Schmuki, P.; Altomare, M. Anodic TiO2 nanotube membranes: Site-selective Pt-activation and photocatalytic H2 evolution. Electrochim. Acta 2017, 258, 302–310. [Google Scholar] [CrossRef]
- Komba, N.; Zhang, G.; Pu, Z.; Wu, M.; Rosei, F.; Sun, S. MoS2-supported on free-standing TiO2-nanotubes for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2020, 45, 4468–4480. [Google Scholar] [CrossRef]
- Huang, J.; Tan, X.; Yu, T.; Zhao, L.; Xue, S. A simple and facile approach for synthesis of a free-standing TiO2 nanotube layer and its photovoltaic application. RSC Adv. 2012, 2, 12657–12660. [Google Scholar] [CrossRef]
- Lamberti, A.; Sacco, A.; Bianco, S.; Manfredi, D.; Cappelluti, F.; Hernandez, S.; Pirri, C.F. Charge transport improvement employing TiO2 nanotube arrays as front-side illuminated dye-sensitized solar cell photoanodes. Phys. Chem. Chem. Phys. 2013, 15, 2596–2602. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Y.; Chen, K.; Yang, G.; Peng, Z.; Bao, Q.; Chen, W. Enhanced light-harvesting of the conical TiO2 nanotube arrays used as the photoanodes in flexible dye-sensitized solar cells. Electrochim. Acta 2014, 146, 838–844. [Google Scholar] [CrossRef]
- Huang, J.; Tan, X.; Yu, T.; Zhao, L.; Liu, H. Enhanced photovoltaic and photoelectrocatalytic properties by free-standing TiO2 nanotubes via anodization. J. Solid. State Electrochem. 2015, 19, 1151–1160. [Google Scholar] [CrossRef]
- Zhu, S.; Liu, X.; Lin, J.; Chen, X. Low temperature transferring of anodized TiO2 nanotube-array onto a flexible substrate for dye-sensitized solar cells. Opt. Mater. Express 2015, 5, 2754. [Google Scholar] [CrossRef]
- Lan, Z.; Wu, W.; Zhang, S.; Que, L.; Wu, J. An efficient method to prepare high-performance dye-sensitized photoelectrodes using ordered TiO2 nanotube arrays and TiO2 quantum dot blocking layers. J. Solid. State Electrochem. 2016, 20, 2643–2650. [Google Scholar] [CrossRef]
- Chamanzadeh, Z.; Noormohammadi, M.; Zahedifar, M. Enhanced photovoltaic performance of dye sensitized solar cell using TiO2 and ZnO nanoparticles on top of free standing TiO2 nanotube arrays. Mater. Sci. Semicond. Process 2017, 61, 107–113. [Google Scholar] [CrossRef]
- Rezaei, B.; Mohammadi, I.; Ensafi, A.A.; Momeni, M.M. Electrochemical analysis of AC-electrophoretic combination of TiO2 nanoparticle and open-ended nanotube membrane. J. Electroanal. Chem. 2018, 814, 127–133. [Google Scholar] [CrossRef]
- Peighambardoust, N.S.; Asl, S.K.; Mohammadpour, R.; Asl, S.K. Improved efficiency in front-side illuminated dye sensitized solar cells based on free-standing one-dimensional TiO2 nanotube array electrodes. Sol. Energy 2019, 184, 115–126. [Google Scholar] [CrossRef]
- Haider, Z.; Kang, Y.S. Facile preparation of hierarchical TiO2 nano structures: Growth mechanism and enhanced photocatalytic H2 production from water splitting using methanol as a sacrificial reagent. ACS Appl. Mater. Interfaces 2014, 6, 10342–10352. [Google Scholar] [CrossRef]
- Ali Yahia, S.A.; Hamadou, L.; Kadri, A.; Benbrahim, N.; Sutter, E.M.M. Effect of Anodizing Potential on the Formation and EIS Characteristics of TiO2 Nanotube Arrays. J. Electrochem. Soc. 2012, 159, K83–K92. [Google Scholar] [CrossRef]
- Yin, H.; Liu, H.; Shen, W.Z. The large diameter and fast growth of self-organized TiO2 nanotube arrays achieved via electrochemical anodization. Nanotechnology 2010, 21, 035601. [Google Scholar] [CrossRef]
- Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Anodic growth of TiO2 nanopore arrays at various temperatures. Electrochim. Acta 2013, 104, 526–535. [Google Scholar] [CrossRef]
- Liu, G.; Hoivik, N.; Wang, X.; Lu, S.; Wang, K.; Jakobsen, H. Photoconductive, free-standing crystallized TiO2 nanotube membranes. Electrochim. Acta 2013, 93, 80–86. [Google Scholar] [CrossRef]
- Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264. [Google Scholar] [CrossRef]
- Raja, K.S.; Gandhi, T.; Misra, M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes. Electrochem. Commun. 2007, 9, 1069–1076. [Google Scholar] [CrossRef]
- Chen, C.L.; Dong, C.L.; Chen, C.H.; Wu, J.W.; Lu, Y.R.; Lin, C.J.; Wu, M.K. Electronic properties of free-standing TiO2 nanotube arrays fabricated by electrochemical anodization. Phys. Chem. Chem. Phys. 2015, 17, 22064–22071. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Li, F.; Tian, Y.; Zhao, W.; Liu, X.; Yang, J. A novel method for the preparation of CdS quantum dots sensitized solar cells based on free-standing and through-hole TiO2 nanotube arrays. J. Nanosci. Nanotechnol. 2016, 16, 6086–6092. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Macak, J.M.; Hahn, R.; Schmuki, P. Self-organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 2007, 7, 1286–1289. [Google Scholar] [CrossRef]
- Rho, W.Y.; Kim, H.S.; Kim, H.M.; Suh, J.S.; Jun, B.H. Carbon-doped freestanding TiO2 nanotube arrays in dye-sensitized solar cells. New J. Chem. 2016, 41, 285–289. [Google Scholar] [CrossRef]
- Rho, W.Y.; Lee, K.H.; Han, S.H.; Kim, H.Y.; Jun, B.H. Au-embedded and carbon-doped freestanding TiO2 nanotube arrays in dye-sensitized solar cells for better energy conversion efficiency. Micromachines 2019, 10, 805. [Google Scholar] [CrossRef]
- Rho, W.Y.; Song, D.H.; Lee, S.H.; Jun, B.H. Enhanced efficiency in dye-sensitized solar cells by electron transport and light scattering on freestanding TiO2 nanotube arrays. Nanomaterials 2017, 7, 345. [Google Scholar] [CrossRef]
- Rho, W.Y.; Chun, M.H.; Kim, H.S.; Kim, H.M.; Suh, J.S.; Jun, B.H. Ag nanoparticle–functionalized open-ended freestanding TiO2 nanotube arrays with a scattering layer for improved energy conversion efficiency in dye-sensitized solar cells. Nanomaterials 2016, 6, 117. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, V.; Mangalaraj, D.; Hayashi, H.; Nanjo, H. Semitransparent TiO2 nanotube arrays with both ends open by electrochemical anodization and ion-beam etching process. Mater. Res. Express 2018, 5, 095021. [Google Scholar] [CrossRef]
- Zhu, B.; Li, J.; Chen, Q.; Cao, R.G.; Li, J.; Xu, D. Artificial, switchable K+-gated ion channels based on flow-through titania-nanotube arrays. Phys. Chem. Chem. Phys. 2010, 12, 9989–9992. [Google Scholar] [CrossRef] [PubMed]
- Hattori, M.; Noda, K. All electrochemical fabrication of a bilayer membrane composed of nanotubular photocatalyst and palladium toward high-purity hydrogen production. Appl. Surf. Sci. 2015, 357, 214–220. [Google Scholar] [CrossRef]
- Wierzbicka, E.; Schultz, T.; Syrek, K.; Sulka, G.D.; Koch, N.; Pinna, N. Ultra-stable self-standing Au nanowires/TiO2 nanoporous membrane system for high-performance photoelectrochemical water splitting cells. Mater. Horiz. 2022, 9, 2797–2808. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, H.; Fu, L.; Xiao, Y.; Gao, Y.; Li, Y.; Shao, Z. An oriented ultrathin catalyst layer derived from high conductive TiO2 nanotube for polymer electrolyte membrane fuel cell. Electrochim. Acta 2015, 153, 361–369. [Google Scholar] [CrossRef]
- Rho, W.Y.; Kim, H.S.; Lee, S.H.; Jung, S.; Suh, J.S.; Hahn, Y.B.; Jun, B.H. Front-illuminated dye-sensitized solar cells with Ag nanoparticle-functionalized freestanding TiO2 nanotube arrays. Chem. Phys. Lett. 2014, 614, 78–81. [Google Scholar] [CrossRef]
- Kim, H.S.; Chun, M.H.; Suh, J.S.; Jun, B.H.; Rho, W.Y. Dual functionalized freestanding TiO2 nanotube arrays coated with Ag nanoparticles and carbon materials for dye-sensitized solar cells. Appl. Sci. 2017, 7, 576. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, S.H.; Kim, H.M.; Pham, X.H.; Hahm, E.; Kang, E.J.; Rho, W.Y. Plasmonic and charging effects in dye-sensitized solar cells with Au nanoparticles incorporated into the channels of freestanding TiO2 nanotube arrays by an electrodeposition method. J. Ind. Eng. Chem. 2019, 80, 311–317. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Han, Y.; Wang, Y.; Zhou, X.; Gao, Z.; Schmuki, P. Carbon-Decorated TiO2 Nanotube Membranes: A Renewable Nanofilter for Charge-Selective Enrichment of Proteins. ACS Appl. Mater. Interfaces 2016, 8, 21997–22004. [Google Scholar] [CrossRef]
- Ma, X.; Shen, Y.; Wu, Q.; Shen, T.; Cao, M.; Gu, F.; Wang, L. Free-Standing TiO2 Nanotube Arrays for Front-Side Illuminated CdS Quantum Dots Sensitized Solar Cells. J. Inorg. Organomet. Polym. Mater. 2013, 23, 798–802. [Google Scholar] [CrossRef]
- Jung, S.W.; Lee, S.Y.; Park, M.A.; Kim, J.H.; Kang, S.H.; Kim, H.; Ahn, K.S. Enhanced light harvesting and electron lifetime of front side-illuminated CdSe quantum dot-assembled TiO2 nanotube arrays for quantum dot-sensitized solar cells. Mol. Cryst. Liq. Cryst. 2014, 598, 144–153. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Liu, Y.; Sun, S. Enhanced photovoltaic performance of solar cell based on front-side illuminated CdSe/CdS double-sensitized TiO2 nanotube arrays electrode. J. Mater. Sci. 2014, 49, 6392–6403. [Google Scholar] [CrossRef]
- Li, Z.; Yu, L.; Liu, Y.; Sun, S. Arrays of ZnxCd1−xSe/TiO2 nanotubes: Fabrication by ion-exchange and photovoltaic applications. J. Mater. Sci. Mater. Electron. 2015, 26, 1625–1633. [Google Scholar] [CrossRef]
- Gualdrón-Reyes, A.F.; Cárdenas-Arenas, A.; Martínez, C.A.; Kouznetsov, V.V.; Meléndez, A.M. Fabrication of transparent TiO2 nanotube-based photoanodes for CdS/CdTe quantum co-sensitized solar cells. J. Phys. Conf. Ser. 2017, 786, 012044. [Google Scholar] [CrossRef]
- Ren, X.; Yu, L.; Li, Z.; Song, H.; Wang, Q. The influence of CdS intermediate layer on CdSe/CdS co-sensitized free-standing TiO2 nanotube solar cells. Superlattices Microstruct. 2018, 113, 696–705. [Google Scholar] [CrossRef]
- Jiang, S.; Yi, B.; Zhang, C.; Liu, S.; Yu, H.; Shao, Z. Vertically aligned carbon-coated titanium dioxide nanorod arrays on carbon paper with low platinum for proton exchange membrane fuel cells. J. Power Sources 2015, 276, 80–88. [Google Scholar] [CrossRef]
- Shankar, K.; Mor, G.K.; Prakasam, H.E.; Yoriya, S.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells. Nanotechnology 2007, 18, 065707. [Google Scholar] [CrossRef]
- Jennings, J.R.; Ghicov, A.; Peter, L.M.; Schmuki, P.; Walker, A.B. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: Transport, trapping, and transfer of electrons. J. Am. Chem. Soc. 2008, 130, 13364–13372. [Google Scholar] [CrossRef]
- Lei, B.X.; Liao, J.Y.; Zhang, R.; Wang, J.; Su, C.Y.; Kuang, D.B. Ordered crystalline TiO2 nanotube arrays on transparent FTO glass for efficient dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 15228–15233. [Google Scholar] [CrossRef]
- Hou, X.; Aitola, K.; Lund, P.D. TiO2 nanotubes for dye-sensitized solar cells-A review. Energy Sci. Eng. 2021, 9, 921–937. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, D. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells. J. Phys. Chem. C 2009, 113, 6310–6314. [Google Scholar] [CrossRef]
- Mor, G.K.; Shankar, K.; Paulose, M.; Varghese, O.K.; Grimes, C.A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218. [Google Scholar] [CrossRef] [PubMed]
- Varghese, O.K.; Paulose, M.; Grimes, C.A. Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nat. Nanotechnol. 2009, 4, 592–597. [Google Scholar] [CrossRef]
- Park, M.W.; Chun, K.Y. Effects of anodization growth of TiO2-nanotube array membrane on photo-conversion efficiency of dye-sensitized solar cell. Electron. Mater. Lett. 2009, 5, 7–11. [Google Scholar] [CrossRef]
- Joseph, S.; Melvin Boby, S.J.; Theresa Nathan, D.M.G.; Sagayaraj, P. Investigation on the role of cost effective cathode materials for fabrication of efficient DSSCs with TiNT/TiO2 nanocomposite photoanodes. Sol. Energy Mater. Sol. Cells 2017, 165, 72–81. [Google Scholar] [CrossRef]
- Shin, K.; Jim, Y.; Han, G.Y.; Park, J.H. Effect of incorporation of TiO2 nanoparticles into oriented TiO2 nanotube based dye-sensitized solar cells. J. Nanosci. Nanotechnol. 2009, 9, 7436–7439. [Google Scholar] [CrossRef]
- Lin, J.; Guo, M.; Yip, C.T.; Lu, W.; Zhang, G.; Liu, X.; Huang, H. High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells. Adv. Funct. Mater. 2013, 23, 5952–5960. [Google Scholar] [CrossRef]
- Park, J.H.; Lee, T.W.; Kang, M.G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: Use in dye-sensitized solar cells. Chem. Commun. 2008, 2867–2869. [Google Scholar] [CrossRef]
- Lamberti, A.; Sacco, A.; Hidalgo, D.; Bianco, S.; Manfredi, D.; Quaglio, M.; Pirri, C. TiO2 nanotube array as effcient transparent photoanode in dye-sensitized solar cell with high electron lifetime. Acta Phys. Pol. A 2013, 123, 376–379. [Google Scholar] [CrossRef]
- Wang, K.; Yang, D.; Wang, W.Z. Influence of secondary anodization voltage on free-standing crystallized TiO2 nanotube array membrane. J. Mater. Sci. Mater. Electron. 2013, 24, 443–447. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Hojamberdiev, M.; Alamgir, F.M.; Semenikhin, N. Effect of morphology evolution from nanotubes to concatenated nanoparticles of hierarchical TiO2 nanostructures on power conversion efficiency of dye-sensitized solar cells. J. Alloys Compd. 2017, 708, 508–516. [Google Scholar] [CrossRef]
- Dubey, M.; Shrestha, M.; Zhong, Y.; Galipeau, D.; He, H. TiO2 nanotube membranes on transparent conducting glass for high efficiency dye-sensitized solar cells. Nanotechnology 2011, 22, 285201. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Zhao, L.; Yang, Y.; Liao, H.; Wang, S.; Sun, X.; Dong, B. TiO2 nanotube arrays composite film as photoanode for high-efficiency dye-sensitized solar cell. Int. J. Photoenergy 2014, 2014, 602692. [Google Scholar] [CrossRef]
- Paulose, M.; Shankar, K.; Varghese, O.K.; Mor, G.K.; Grimes, C.A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells. J. Phys. D Appl. Phys. 2006, 39, 2498–2503. [Google Scholar] [CrossRef]
- Roy, P.; Kim, D.; Lee, K.; Spiecker, E.; Schmuki, P. TiO2 nanotubes and their application in dye-sensitized solar cells. Nanoscale 2010, 2, 45–59. [Google Scholar] [CrossRef]
- Chen, C.C.; Chung, H.W.; Chen, C.H.; Lu, H.P.; Lan, C.M.; Chen, S.F.; Diau, E.W.G. Fabrication and characterization of anodic titanium oxide nanotube arrays of controlled length for highly efficient dye-sensitized solar cells. J. Phys. Chem. C 2008, 112, 19151–19157. [Google Scholar] [CrossRef]
- Lin, C.J.; Yu, W.Y.; Chien, S.H. Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye-sensitized solar cells. J. Mater. Chem. 2010, 20, 1073–1077. [Google Scholar] [CrossRef]
- Kamat, P.V. Quantum dot solar cells. The next big thing in photovoltaics. J. Phys. Chem. Lett. 2013, 4, 908–918. [Google Scholar] [CrossRef]
- Roy, P.; Albu, S.P.; Schmuki, P. TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Electrochem. Commun. 2010, 12, 949–951. [Google Scholar] [CrossRef]
- Fisher, A.C.; Peter, L.M.; Ponomarev, E.A.; Walker, A.B.; Wijayantha, K.G.U. Intensity Dependence of the Back Reaction and Transport of Electrons in Dye-Sensitized Nanocrystalline TiO2 Solar Cells. J. Phys. Chem. B 2000, 104, 949–958. [Google Scholar] [CrossRef]
- O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740. [Google Scholar] [CrossRef]
- Dasarathan, S.; Sung, J.; Hong, J.W.; Jo, Y.S.; Kim, B.G.; Lee, Y.J.; Kim, D. Free-standing TiO2 nanograssy tubular hybrid membrane for polysulfide trapping in Li-S battery. RSC Adv. 2023, 13, 8299–8306. [Google Scholar] [CrossRef] [PubMed]
- So, S.; Hwang, I.; Riboni, F.; Yoo, J.E.; Schmuki, P. Robust free standing flow-through TiO2 nanotube membranes of pure anatase. Electrochem. Commun. 2016, 71, 73–78. [Google Scholar] [CrossRef]
- Liao, J.; Lin, S.; Pan, N.; Li, D.; Li, S.; Li, J. Free-standing open-ended TiO2 nanotube membranes and their promising through-hole applications. Chem. Eng. J. 2012, 211–212, 343–352. [Google Scholar] [CrossRef]
- Pan, Z.; Li, Y.; Hou, X.; Yan, J.; Wang, C. Effect of annealing temperature on the photocatalytic activity of CdS-modified TNAs/glass nanotube arrays. Phys. E Low-Dimens. Syst. Nanostruct. 2014, 63, 1–7. [Google Scholar] [CrossRef]
- Tighineanu, A.; Ruff, T.; Albu, S.; Hahn, R.; Schmuki, P. Conductivity of TiO2 nanotubes: Influence of annealing time and temperature. Chem. Phys. Lett. 2010, 494, 260–263. [Google Scholar] [CrossRef]
- Liu, N.; Paramasivam, I.; Yang, M.; Schmuki, P. Some critical factors for photocatalysis on self-organized TiO2 nanotubes. J. Solid. State Electrochem. 2012, 16, 3499–3504. [Google Scholar] [CrossRef]
- He, X.; Cai, Y.; Zhang, H.; Liang, C. Photocatalytic degradation of organic pollutants with Ag decorated free-standing TiO2 nanotube arrays and interface electrochemical response. J. Mater. Chem. 2011, 21, 475–480. [Google Scholar] [CrossRef]
- Passalacqua, R.; Ampelli, C.; Perathoner, S.; Centi, G. Self-standing TiO2 nanotubular membranes for sustainable production of energy. Chem. Eng. Trans. 2014, 41, 319–324. [Google Scholar] [CrossRef]
- Paulose, M.; Peng, L.; Popat, K.C.; Varghese, O.K.; LaTempa, T.J.; Bao, N.; Grimes, C.A. Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes. J. Membr. Sci. 2008, 319, 199–205. [Google Scholar] [CrossRef]
- Schweicher, J.; Desai, T.A. Facile synthesis of robust free-standing TiO2 nanotubular membranes for biofiltration applications. J. Appl. Electrochem. 2014, 44, 411–418. [Google Scholar] [CrossRef] [PubMed]
- Cui, R.; Pan, H.C.; Zhu, J.J.; Chen, H.Y. Versatile immunosensor using CdTe quantum dots as electrochemical and fluorescent labels. Anal. Chem. 2007, 79, 8494–8501. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.Y.; Schmidt-Stein, F.; Berger, S.; Schmuki, P. TiO2 nano test tubes as a self-cleaning platform for high-sensitivity immunoassays. Small 2010, 6, 1180–1184. [Google Scholar] [CrossRef] [PubMed]
- Kilicarslan, B.; Sardan Ekiz, M.; Bayram, C. Electrostatic Repulsive Features of Free-Standing Titanium Dioxide Nanotube-Based Membranes in Biofiltration Applications. Langmuir 2023, 39, 3400–3410. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Z.; Solovev, A.A.; Huang, G.; Mei, Y. Light-controlled two-dimensional TiO2 plate micromotors. RSC Adv. 2019, 9, 29433–29439. [Google Scholar] [CrossRef]
- Ghicov, A.; Albu, S.P.; Macak, J.M.; Schmuki, P. High-contrast electrochromic switching using transparent lift-off layers of self-organized TiO2 nanotubes. Small 2008, 4, 1063–1066. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Berger, S.; Jha, H.; Schmuki, P. TiO2 nanotube layers: Flexible and electrically active flow-through membranes. Electrochem. Commun. 2010, 12, 1352–1355. [Google Scholar] [CrossRef]
- Hwang, I.; Riboni, F.; Gongadze, E.; Iglič, A.; Yoo, J.; So, S.; Schmuki, P. Dye-sensitized TiO2 nanotube membranes act as a visible-light switchable diffusion gate. Nanoscale Adv. 2019, 1, 4844–4852. [Google Scholar] [CrossRef]
- Broens, M.I.; Ramos Cervantes, W.; Asenjo Collao, A.M.; Iglesias, R.A.; Teijelo, M.L.; Linarez Pérez, O.E. TiO2 nanotube arrays grown in ethylene glycol-based media containing fluoride: Understanding the effect of early anodization stages on the morphology. J. Electroanal. Chem. 2023, 935, 117314. [Google Scholar] [CrossRef]
- Yoo, J.; Lee, K. TiO2 nanotubes fabricated by electrochemical anodization in molten o-H3PO4-based electrolyte: Properties and applications. Curr. Opin. Colloid. Interface Sci. 2023, 63, 101672. [Google Scholar] [CrossRef]
- Regonini, D.; Bowen, C.R.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R Rep. 2013, 74, 377–406. [Google Scholar] [CrossRef]
- Hazra, A.; Dutta, K.; Bhowmik, B.; Manjuladevi, V.; Gupta, R.K.; Chattopadhyay, P.P.; Bhattacharyya, P. Structural and optical characterizations of electrochemically grown connected and free-standing TiO2 nanotube array. J. Electron. Mater. 2014, 43, 3229–3235. [Google Scholar] [CrossRef]
- Sulka, G.D.; Kapusta-Kołodziej, J.; Brzózka, A.; Jaskuła, M. Fabrication of nanoporous TiO2 by electrochemical anodization. Electrochim. Acta 2010, 55, 4359–4367. [Google Scholar] [CrossRef]
- Vincent, M.; Kowalski, D. In Situ Raman Spectroscopy of Li+ and Na+ Storage in Anodic TiO2 Nanotubes: Implications for Battery Design. ACS Appl. Nano Mater. 2023, 6, 6528–6537. [Google Scholar] [CrossRef]
- Macak, J.M.; Hildebrand, H.; Marten-Jahns, U.; Schmuki, P. Mechanistic aspects and growth of large diameter self-organized TiO2 nanotubes. J. Electroanal. Chem. 2008, 621, 254–266. [Google Scholar] [CrossRef]
- Xie, Z.B.; Adams, S. A reliable TiO2 nanotube membrane transfer method and its application in photovoltaic devices. Electrochim. Acta 2012, 62, 116–123. [Google Scholar] [CrossRef]
- Jarosz, M.; Kapusta-Kołodziej, J.; Jaskuła, M.; Sulka, G.D. Effect of different polishing methods on anodic titanium dioxide formation. J. Nanomater. 2015, 2015, 295126. [Google Scholar] [CrossRef]
- Wiltshire, B.D.; Alijani, M.; Mohammadi, S.; Hosseini, A.; Macak, J.M.; Zarifi, M.H. High-Frequency TiO2 Nanotube-Adapted Microwave Coplanar Waveguide Resonator for High-Sensitivity Ultraviolet Detection. ACS Appl. Mater. Interfaces 2022, 14, 6203–6211. [Google Scholar] [CrossRef]
- Luan, N.H.; Chang, C.F. Efficient fabrication of robust and highly ordered free-standing TiO2 nanotube layers. Mater. Res. Bull. 2022, 151, 111829. [Google Scholar] [CrossRef]
- Misriyani Kunarti, E.S. Synthesis and photoelectrochemical activity of TiO2 nanotube based free standing membrane. Asian J. Chem. 2020, 32, 2739–2742. [Google Scholar] [CrossRef]
- Yanagishita, T.; Hirose, H.; Kondo, T.; Schmuki, P.; Masuda, H. Fabrication of ideally ordered TiO2 through-hole membranes by two-layer anodization. RSC Adv. 2020, 10, 37657–37661. [Google Scholar] [CrossRef] [PubMed]
- Purusothaman, M.; Sivaprakash, V.; Bruno, A.D.; Sekar, S.; Martin, L. Fabrication of TiO2 nanotubes with effect of water and in-situ condition for biomedical application. Environ. Qual. Manag. 2023, 33, 249–256. [Google Scholar] [CrossRef]
- Park, J.; Cimpean, A.; Tesler, A.B.; Mazare, A. Anodic TiO2 nanotubes: Tailoring osteoinduction via drug delivery. Nanomaterials 2021, 11, 2359. [Google Scholar] [CrossRef]
- Albu, S.P.; Ghicov, A.; Aldabergenova, S.; Drechsel, P.; LeClere, D.; Thompson, G.E.; Schmuki, P. Formation of double-walled TiO2 nanotubes and robust anatase membranes. Adv. Mater. 2008, 20, 4135–4139. [Google Scholar] [CrossRef]
- Zhang, W. An Oxygen-bubble-mould-effect Derived Model for Kinetics of Anodic TiO2 Nanotubes under Constant Current. J. Phys. Conf. Ser. 2021, 1893, 012011. [Google Scholar] [CrossRef]
- Li, Z.; Pan, J.; Bian, H.; Lu, J.; Li, Y.Y. New explanation on formation mechanism of anodic TiO2 nanotubes. Mater. Sci. Eng. B 2022, 286, 115985. [Google Scholar] [CrossRef]
- Li, C.; Ni, Y.; Gong, J.; Song, Y.; Gong, T.; Zhu, X. A review: Research progress on the formation mechanism of porous anodic oxides. Nanoscale Adv. 2022, 4, 322–333. [Google Scholar] [CrossRef]
- Patil, J.V.; Mali, S.S.; Hong, C.K.; Kim, J.H.; Patil, P.S. Structural, morphological, and wettability study of electrochemically anodized 1D TiO2 nanotube arrays. Appl. Phys. A Mater. Sci. Process 2017, 123, 1–8. [Google Scholar] [CrossRef]
- O’Sullivan, J.P.; Wood, G.C. Morphology and mechanism of formation of porous anodic films on aluminum. Proc. R. Soc. Ser. A Math. Phys. Sci. 1970, 317, 511–543. [Google Scholar] [CrossRef]
- Riboni, F.; Nguyen, N.T.; So, S.; Schmuki, P. Aligned metal oxide nanotube arrays: Key-aspects of anodic TiO2 nanotube formation and properties. Nanoscale Horiz. 2016, 1, 445–466. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicka, E.; Szaniawska-Białas, E.; Schultz, T.; Basilio, A.O.; Siemiaszko, D.; Ray, K.; Polański, M. Long-Term Stability of Light-Induced Ti3+ Defects in TiO2 Nanotubes for Amplified Photoelectrochemical Water Splitting. ChemSusChem 2024, 17, e202301614. [Google Scholar] [CrossRef] [PubMed]
- Wiltshire, B.D.; Zarifi, M.H. TiO2 nanotube-integrated microwave planar resonator sensor for ultraviolet transmission-based liquid characterization. Sens. Actuators B Chem. 2021, 341, 130014. [Google Scholar] [CrossRef]
- Manikandan, M.; Vedarajan, R.; Kodiyath, R.; Abe, H.; Ueda, S.; Dakshnamoorthy, A.; Ramesh, G.V. Pt decorated free-standing TiO2 nanotube arrays: Highly active and durable electrocatalyst for oxygen reduction and methanol oxidation reactions. J. Nanosci. Nanotechnol. 2016, 16, 8269–8278. [Google Scholar] [CrossRef]
- Chen, Q.; Xu, D.; Wu, Z.; Liu, Z. Free-standing TiO2 nanotube arrays made by anodic oxidation and ultrasonic splitting. Nanotechnology 2008, 19, 365708. [Google Scholar] [CrossRef]
- Ali, G.; Yoo, S.H.; Kum, J.M.; Kim, Y.N.; Cho, S.O. A novel route to large-scale and robust free-standing TiO2 nanotube membranes based on N2 gas blowing combined with methanol wetting. Nanotechnology 2011, 22, 245602. [Google Scholar] [CrossRef]
- Lin, J.; Chen, J.; Chen, X. Facile fabrication of free-standing TiO2 nanotube membranes with both ends open via self-detaching anodization. Electrochem. Commun. 2010, 12, 1062–1065. [Google Scholar] [CrossRef]
- Yang, H.Y.; Rho, W.Y.; Lee, S.K.; Kim, S.H.; Hahn, Y.B. TiO2 nanoparticles/nanotubes for efficient light harvesting in perovskite solar cells. Nanomaterials 2019, 9, 326. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef]
- Reghunath, S.; Pinheiro, D.; KR, S.D. A review of hierarchical nanostructures of TiO2: Advances and applications. Appl. Surf. Sci. Adv. 2021, 3, 100063. [Google Scholar] [CrossRef]
- Ni, M.; Leung, M.K.H.; Leung, D.Y.C.; Sumathy, K. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew. Sustain. Energy Rev. 2007, 11, 401–425. [Google Scholar] [CrossRef]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zheng, G.; Li, W.; Seh, Z.W.; Yao, H.; Yan, K.; Cui, Y. Sulfur cathodes with hydrogen reduced titanium dioxide inverse opal structure. ACS Nano 2014, 8, 5249–5256. [Google Scholar] [CrossRef] [PubMed]
- Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 145–153. [Google Scholar] [CrossRef]
- Pazoki, M.; Cappel, U.B.; Johansson, E.M.J.; Hagfeldt, A.; Boschloo, G. Characterization techniques for dye-sensitized solar cells. Energy Environ. Sci. 2017, 10, 672–709. [Google Scholar] [CrossRef]
- Li, L.L.; Chen, Y.J.; Wu, H.P.; Wang, N.S.; Diau, E.W.G. Detachment and transfer of ordered TiO2 nanotube arrays for front-illuminated dye-sensitized solar cells. Energy Environ. Sci. 2011, 4, 3420–3425. [Google Scholar] [CrossRef]
- Liu, G.; Wang, K.; Hoivik, N.; Jakobsen, H. Progress on free-standing and flow-through TiO2 nanotube membranes. Sol. Energy Mater. Sol. Cells 2012, 98, 24–38. [Google Scholar] [CrossRef]
- Shi, J.W.; Yan, X.; Cui, H.J.; Zong, X.; Fu, M.L.; Chen, S.; Wang, L. Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light. J. Mol. Catal. A Chem. 2012, 356, 53–60. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szaniawska-Białas, E.; Brudzisz, A.; Nasir, A.; Wierzbicka, E. Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes. Molecules 2024, 29, 5638. https://doi.org/10.3390/molecules29235638
Szaniawska-Białas E, Brudzisz A, Nasir A, Wierzbicka E. Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes. Molecules. 2024; 29(23):5638. https://doi.org/10.3390/molecules29235638
Chicago/Turabian StyleSzaniawska-Białas, Ewelina, Anna Brudzisz, Amara Nasir, and Ewa Wierzbicka. 2024. "Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes" Molecules 29, no. 23: 5638. https://doi.org/10.3390/molecules29235638
APA StyleSzaniawska-Białas, E., Brudzisz, A., Nasir, A., & Wierzbicka, E. (2024). Recent Advances in Preparation, Modification, and Application of Free-Standing and Flow-Through Anodic TiO2 Nanotube Membranes. Molecules, 29(23), 5638. https://doi.org/10.3390/molecules29235638