Carbon Nanotube–Phenyl Modified g-C3N4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B
<p>Raman spectra of CNT-COOH, f-CNT, and f-CNT/PhCN. The asterisks (*) indicate the Raman peaks of PhCN.</p> "> Figure 2
<p>XRD patterns for (<b>a</b>) PhCN, f-CNT/PhCN, inset normalized area of PhCN diffraction peak and (<b>b</b>) f-CNT, f-CNT/PhCN.</p> "> Figure 3
<p>TEM images of (<b>a</b>) f-CNT, (<b>b</b>) PhCN, and (<b>c</b>) f-CNT/PhCN.</p> "> Figure 4
<p>Absorption spectra of PhCN and f-CNT/PhCN.</p> "> Figure 5
<p>Time-resolved measurement for PhCN and f-CNT/PhCN: ((<b>a</b>,<b>c</b>) 3D profiles for f-CNT/PhCN and PhCN), (<b>b</b>) photoluminescence intensity versus time delay. The blue and red line represent the numerical fit. (<b>d</b>) Photoluminescence intensity versus wavelength.</p> "> Figure 6
<p>Evaluation of the photocatalytic activity. (<b>A</b>) Photocatalytic degradation of pure PhCN, CNT/PhCN and f-CNT/PhCN. (<b>B</b>) Absorption spectrum of RhB solution with f-CNT/PhCN. (<b>C</b>) Repeatability test of f-CNT/PhCN evaluated after four hours.</p> "> Figure 7
<p>Scheme of the mechanism of f-CNT/PhCN for RhB degradation.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
Characterization of the f-CNT/PhCN Photocatalyst
3. Experimental Section
3.1. Materials and Methods
3.1.1. Materials
3.1.2. Preparation of Phenyl-Modified Carbon Nitride (PhCN)
3.1.3. Preparation of Thiophene Functionalized Carbon Nanotubes (f-CNT)
3.1.4. Preparation of f-CNT/PhCN Nanocomposite
3.2. Structural Characterization
3.3. Photodegradation of RhB
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanganyado, E.; Gwenzi, W. Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks. Sci. Total Environ. 2019, 669, 785–797. [Google Scholar] [CrossRef] [PubMed]
- Alharbi, O.M.L.; Basheer, A.A.; Khattab, R.A.; Ali, I. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 2018, 263, 442–453. [Google Scholar] [CrossRef]
- Porcu, S.; Maloccu, S.; Corona, A.; Hazra, M.; David, T.C.; Chiriu, D.; Carbonaro, C.M.; Tramontano, E.; Ricci, P.C. Visible Light-Mediated Inactivation of H1N1 Virus UsingPolymer-Based Heterojunction Photocatalyst. Polymers 2023, 15, 2536. [Google Scholar] [CrossRef]
- Kayalvizhi, S.; Sengottaiyan, A.; Selvankumar, T.; Senthilkumar, B.; Sudhakar, C.; Selvam, K. Eco-friendly cost-effective approach for synthesis of copper oxide nanoparticles for enhanced photocatalytic performance. Optik 2020, 202, 163507. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, L.; Yin, C.; Li, Y.; Cui, L.; Wang, Y. Fast flash frozen synthesis of holey few-layer g-C3N4 with high enhancement of photocatalytic reactive oxygen species evolution under visible light irradiation. Appl. Catal. B Environ. 2017, 211, 266–274. [Google Scholar] [CrossRef]
- Li, P.; Zhang, W.; Zhang, Y.; Sun, Y.; Dong, F. (NH4)2SO4-assisted polycondensation of dicyandiamide for porous g-C3N4 with enhanced photocatalytic NO removal. RSC Adv. 2016, 6, 96334–96338. [Google Scholar] [CrossRef]
- Huang, Z.; Li, F.; Chen, B.; Lu, T.; Yuan, Y.; Yuan, G. Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Appl. Catal. B Environ. 2013, 136–137, 269–277. [Google Scholar] [CrossRef]
- Li, F.B.; Li, X.Z.; Hou, M.F. Photocatalytic degradation of 2-mercaptobenzothiazole in aqueous La3+-TiO2 suspension for odor control. Appl. Catal. B Environ. 2004, 48, 185–194. [Google Scholar] [CrossRef]
- Bakre, P.V.; Tilve, S.G. Dicarboxylic Acids as Soft Templates for the Sol-Gel Synthesis of Mesoporous Nano TiO2 with Enhanced Photocatalytic Activity. Chem. Select 2017, 2, 7063–7072. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, M.; Han, C.; Liang, Y.; Zhao, K. Achieving solar-to-hydrogen evolution promotion using TiO2 nanoparticles and an unanchored Cu co-catalyst. Mater. Res. Bull. 2020, 129, 110891. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, L.; Liao, Y.; Xiang, Q. Effect of Functional Group Modifications on the Photocatalytic Performance of g-C3N4. Small 2023, 19, 2300109. [Google Scholar] [CrossRef]
- Yu, Z.; Li, F.; Xiang, Q. Carbon dots-based nanocomposites for heterogeneous photocatalysis. J. Mater. Sci. Technol. 2024, 175, 244–257. [Google Scholar] [CrossRef]
- Ohemeng, P.O.; Godin, R. Surface properties of carbon nitride materials used in photocatalytic systems for energy and environmental applications. Chem. Commun. 2024, 60, 12034–12061. [Google Scholar] [CrossRef]
- Zhu, Y.; Lv, C.; Yin, Z.; Ren, J.; Yang, X.; Dong, C.L.; Liu, H.; Cai, R.; Huang, Y.C.; Theis, W.; et al. A [001]-Oriented Hittorf’s Phosphorus Nanorods/Polymeric Carbon Nitride Heterostructure for Boosting Wide-Spectrum-Responsive Photocatalytic Hydrogen Evolution from Pure Water. Angew. Chem. Int. Ed. 2020, 59, 868–873. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhou, C.; Jing, Q.; Tang, Q.; Mu, Y.; Du, A.K. Facile synthesis of g-C3N4 nanosheets/ZnO nanocomposites with enhanced photocatalytic activity in reduction of aqueous chromium(VI) under visible light. Nanomaterials 2016, 6, 173. [Google Scholar] [CrossRef] [PubMed]
- Porcu, S.; Secci, F.; Ricci, P.C. Advances in Hybrid Composites for Photocatalytic Applications: A Review. Molecules 2022, 27, 6828. [Google Scholar] [CrossRef]
- Ismael, M.; Wu, Y. A facile synthesis method for fabrication of LaFeO3/g-C3N4 nanocomposite as efficient visible-light-driven photocatalyst for photodegradation of RhB and 4-CP. New J. Chem. 2019, 43, 13783–13793. [Google Scholar] [CrossRef]
- Vijayan, B.K.; Dimitrijevic, N.M.; Finkelstein-Shapiro, D.; Wu, J.; Gray, K.A. Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites. ACS Catal. 2012, 2, 223–229. [Google Scholar] [CrossRef]
- Yan, Y.; Miao, J.; Yang, Z.; Xiao, F.X.; Yang, H.B.; Liu, B.; Yang, Y. Carbon nanotube catalysts: Recent advances in synthesis, characterization and applications. Chem. Soc. Rev. 2015, 44, 3295–3346. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, D.; Cheng, M.; Liu, Z.; Lai, C.; Zhang, C.; Zhou, C.; Xiong, W.; Qin, L.; Shao, B.; et al. Metal sulfide/MOF-based composites as visible-light-driven photocatalysts for enhanced hydrogen production from water splitting. Coord. Chem. Rev. 2020, 409, 213220. [Google Scholar] [CrossRef]
- Nasir, J.A.; Rehman, Z.U.; Shah, S.N.A.; Khan, A.; Butler, I.S.; Catlow, C.R.A. Recent developments and perspectives in CdS-based photocatalysts for water splitting. J. Mater. Chem. A 2020, 8, 20752–20780. [Google Scholar] [CrossRef]
- Chava, R.K.; Do, J.Y.; Kang, M. Strategy for improving the visible photocatalytic H2 evolution activity of 2D graphitic carbon nitride nanosheets through the modification with metal and metal oxide nanocomponents. Appl. Catal. B Environ. 2019, 248, 538–551. [Google Scholar] [CrossRef]
- Gong, S.; Fan, J.; Cecen, V.; Huang, C.; Min, Y.; Xu, Q.; Li, H. Noble-metal and cocatalyst free W2N/C/TiO photocatalysts for efficient photocatalytic overall water splitting in visible and near-infrared light regions. Chem. Eng. J. 2021, 405, 126913. [Google Scholar] [CrossRef]
- Lei, W.; Zhou, T.; Pang, X.; Xue, S.; Xu, Q. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects. J. Mater. Sci. Technol. 2022, 114, 143–164. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, C.; Wang, W.; Xiong, W.; Zeng, G.; Huang, D.; Zhang, C.; Song, B.; Xue, W.; Li, X.; et al. Recent advances in application of transition metal phosphides for photocatalytic hydrogen production. Chem. Eng. J. 2021, 405, 126547. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, J.; Dai, K. Graphitic carbon nitride/antimonene van der Waals heterostructure with enhanced photocatalytic CO2 reduction activity. J. Mater. Sci. Technol. 2022, 116, 192–198. [Google Scholar] [CrossRef]
- Chen, Y.; Tan, L.; Zhang, H.; Zhang, X.; Chen, Q.; Jiang, H.; Ge, F.; Wei, S.; Gao, X.; Wang, P. Metal-free in situ carbon-nanotube-modified mesoporous graphitic carbon nitride nanocomposite with enhanced visible light photocatalytic performance. Res. Chem. Intermed. 2021, 47, 3349–3362. [Google Scholar] [CrossRef]
- Sharma, N.; Pap, Z.; Székely, I.; Focsan, M.; Karacs, G.; Nemeth, Z.; Garg, S.; Hernadi, K. Combination of iodine-deficient BiOI phases in the presence of CNT to enhance photocatalytic activity towards phenol decomposition under visible light. Appl. Surf. Sci. 2021, 565, 150605. [Google Scholar] [CrossRef]
- Chaudhary, D.; Vankar, V.D.; Khare, N. Noble metal-free g-C3N4/TiO2/CNT ternary nanocomposite with enhanced photocatalytic performance under visible-light irradiation via multi-step charge transfer process. Sol. Energy 2017, 158, 132–139. [Google Scholar] [CrossRef]
- Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Adv. 2016, 6, 109916–109935. [Google Scholar] [CrossRef]
- Andrews, R.; Jacques, D.; Minot, M.; Rantell, T. Fabrication of carbon multiwall nanotube/polymer composites by shear mixing. Macromol. Mater. Eng. 2002, 287, 395–403. [Google Scholar] [CrossRef]
- Meng, L.; Fu, C.; Lu, Q. Advanced technology for functionalization of carbon nanotubes. Prog. Nat. Sci. 2009, 19, 801–810. [Google Scholar] [CrossRef]
- Agbolaghi, S.; Charoughchi, S.; Aghapour, S.; Abbasi, F.; Bahadori, A.; Sarvari, R. Bulk heterojunction photovoltaics with improved efficiencies using stem-leaf, shish-kebab and double-fibrillar nano-hybrids based on modified carbon nanotubes and poly(3-hexylthiophene). Sol. Energy 2018, 170, 138–150. [Google Scholar] [CrossRef]
- Nova-Fernández, J.L.; González-Muñoz, D.; Pascual-Coca, G.; Cattelan, M.; Agnoli, S.; Pérez-Ruiz, R.; Alemán, J.; Cabrera, S.; Blanco, M. Enhancing the Photocatalytic Activity via Direct Covalent Functionalization in Single-Walled Carbon Nanotubes. Adv. Funct. Mater. 2024, 34, 2313102. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Dresselhaus, G.; Dresselhaus, M.S.; Cançado, L.G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290. [Google Scholar] [CrossRef]
- Li, Z.; Deng, L.; Kinloch, I.A.; Young, R.J. Raman spectroscopy of carbon materials and their composites: Graphene, nanotubes and fibres. Prog. Mater. Sci. 2023, 135, 101089. [Google Scholar] [CrossRef]
- Ramos, S.L.L.M.; Pimenta, M.A.; Champi, A. Multiple-excitation study of the double-resonance Raman bands in rhombohedral graphite. Carbon 2021, 179, 683–691. [Google Scholar] [CrossRef]
- Shi, G.; Xu, J.; Fu, M. Raman spectroscopic and electrochemical studies on the doping level changes of polythiophene films during their electrochemical growth processes. J. Phys. Chem. B 2002, 106, 288–292. [Google Scholar] [CrossRef]
- Vu, Q.T.; Pavlik, M.; Hebestreit, N.; Rammelt, U.; Plieth, W.; Pfleger, J. Nanocomposites based on titanium dioxide and polythiophene: Structure and properties. React. Funct. Polym. 2005, 65, 69–77. [Google Scholar] [CrossRef]
- Mosca, S.; Milani, A.; Castiglioni, C.; Hernández Jolín, V.; Meseguer, C.; López Navarrete, J.T.; Zhao, C.; Sugiyasu, K.; Ruiz Delgado, M.C. Raman Fingerprints of π-Electron Delocalization in Polythiophene-Based Insulated Molecular Wires. Macromolecules 2022, 55, 3458–3468. [Google Scholar] [CrossRef]
- Stagi, L.; Chiriu, D.; Carbonaro, C.M.; Corpino, R.; Ricci, P.C. Structural and optical properties of carbon nitride polymorphs. Diam. Relat. Mater. 2016, 68, 84–92. [Google Scholar] [CrossRef]
- Porcu, S.; Roppolo, I.; Salaun, M.; Sarais, G.; Barbarossa, S.; Casula, M.F.; Carbonaro, C.M.; Ricci, P.C. Come to light: Detailed analysis of thermally treated Phenyl modified Carbon Nitride Polymorphs for bright phosphors in lighting applications. Appl. Surf. Sci. 2020, 504, 144330. [Google Scholar] [CrossRef]
- Liu, G.; Liao, M.; Zhang, Z.; Wang, H.; Chen, D.; Feng, Y. Enhanced photodegradation performance of Rhodamine B with g-C3N4 modified by carbon nanotubes. Sep. Purif. Technol. 2020, 244, 116618. [Google Scholar] [CrossRef]
- Guo, Z.; Cao, H.; Wang, Y.; Xie, Y.; Xiao, J.; Yang, J.; Zhang, Y. High activity of g-C3N4/multiwall carbon nanotube in catalytic ozonation promotes electro-peroxone process. Chemosphere 2018, 201, 206–213. [Google Scholar] [CrossRef]
- Raju, V.; Rani, J.V.; Basak, P. One-dimensional polythiophene/multi-walled carbon nanotube composite cathodes for rechargeable magnesium battery: Evidence of improved stability and electrochemically induced rearrangement in electrode morphology. Electrochim. Acta 2022, 404, 139707. [Google Scholar] [CrossRef]
- Karim, M.R.; Lee, C.J.; Lee, M.S. Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 5283–5290. [Google Scholar] [CrossRef]
- Porcu, S.; Secci, F.; Abdullah, Q.A.; Ricci, P.C. 4-nitrophenol efficient photoreduction from exfoliated and protonated phenyl-doped graphitic carbon nitride nanosheets. Polymers 2021, 13, 3752. [Google Scholar] [CrossRef]
- Dai, A.; Huang, Z.; Tian, L.; Zhang, Z.; Guan, X.; Guo, L. Phenyl-incorporated carbon nitride photocatalyst with extended visible-light-absorption for enhanced hydrogen production from water splitting. J. Colloid Interface Sci. 2022, 622, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dai, M.; Zhang, S.; Dai, M.; Zhang, P.; Wang, S.; He, Z. Recent Progress on Carbon-Nanotube-Based Materials for Photocatalytic Applications: A Review. Sol. RRL 2022, 6, 2200243. [Google Scholar] [CrossRef]
- Luo, J.; Dai, Z.; Feng, M.; Gu, M.; Xie, Y. Graphitic carbon nitride/ferroferric oxide/reduced graphene oxide nanocomposite as highly active visible light photocatalyst. Nano Res. 2023, 16, 371–376. [Google Scholar] [CrossRef]
- Elhaddad, E.; Al-fawwaz, A.T.; Rehan, M. An effective stannic oxide/graphitic carbon nitride (SnO2 NPs@g-C3N4) nanocomposite photocatalyst for organic pollutants degradation under visible-light. J. Saudi Chem. Soc. 2023, 27, 101677. [Google Scholar] [CrossRef]
- Vattikuti, S.V.P.; Nam, N.D.; Shim, J. Graphitic carbon nitride/Na2Ti3O7/V2O5 nanocomposite as a visible light active photocatalyst. Ceram. Int. 2020, 46, 18287–18296. [Google Scholar] [CrossRef]
- Razali, M.H.; Md Fauzi, M.A.F.; Mohd Azam, B.; Yusoff, M. g-C3N4/TiO2 nanocomposite photocatalyst for methylene blue photodegradation under visible light. Appl. Nanosci. 2022, 12, 3197–3206. [Google Scholar] [CrossRef]
- Jilani, A.; Rehman, G.U.; Ansari, M.O.; Othman, M.H.D.; Hussain, S.Z.; Dustgeer, M.R.; Darwesh, R. Sulfonated polyaniline-encapsulated graphene@graphitic carbon nitride nanocomposites for significantly enhanced photocatalytic degradation of phenol: A mechanistic study. New J. Chem. 2020, 44, 19570–19580. [Google Scholar] [CrossRef]
- Jiang, D.; Ma, W.; Xiao, P.; Shao, L.; Li, D.; Chen, M. Enhanced photocatalytic activity of graphitic carbon nitride/carbon nanotube/Bi2WO6 ternary Z-scheme heterojunction with carbon nanotube as efficient electron mediator. J. Colloid Interface Sci. 2018, 512, 693–700. [Google Scholar] [CrossRef]
- Ji, H.; Du, P.; Zhao, D.; Li, S.; Sun, F.; Duin, E.C.; Liu, W. 2D/1D graphitic carbon nitride/titanate nanotubes heterostructure for efficient photocatalysis of sulfamethazine under solar light: Catalytic “hot spots” at the rutile–anatase–titanate interfaces. Appl. Catal. B Environ. 2020, 263, 118357. [Google Scholar] [CrossRef]
- Dangwang Dikdim, J.M.; Gong, Y.; Noumi, G.B.; Sieliechi, J.M.; Zhao, X.; Ma, N.; Yang, M.; Tchatchueng, J.B. Peroxymonosulfate improved photocatalytic degradation of atrazine by activated carbon/graphitic carbon nitride composite under visible light irradiation. Chemosphere 2019, 217, 833–842. [Google Scholar] [CrossRef]
- Mao, S.; Bao, R.; Fang, D.; Yi, J. Fabrication of sliver/graphitic carbon nitride photocatalyst with enhanced visible-light photocatalytic efficiency through ultrasonic spray atomization. J. Colloid Interface Sci. 2019, 538, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Jiang, X.; Waterhouse, G.I.N.; Zhang, Z.M.; Yu, L. min Protonated graphitic carbon nitride/polypyrrole/reduced graphene oxide composites as efficient visible light driven photocatalysts for dye degradation and E. coli disinfection. J. Alloys Compd. 2021, 873, 159750. [Google Scholar] [CrossRef]
- Xu, W.; Lai, S.; Pillai, S.C.; Chu, W.; Hu, Y.; Jiang, X.; Fu, M.; Wu, X.; Li, F.; Wang, H. Visible light photocatalytic degradation of tetracycline with porous Ag/graphite carbon nitride plasmonic composite: Degradation pathways and mechanism. J. Colloid Interface Sci. 2020, 574, 110–121. [Google Scholar] [CrossRef]
- Dharani, S.; Gnanasekaran, L.; Arunachalam, S.V.; Zielińska-Jure, A.; Almoallim, H.S.; Soto-Moscoso, M. Photodegrading rhodamine B dye with cobalt ferrite-graphitic carbon nitride (CoFe2O4/g-C3N4) composite. Environ. Res. 2024, 258, 119484. [Google Scholar] [CrossRef] [PubMed]
- Huy, B.T.; Paeng, D.S.; Thi Bich Thao, C.; Kim Phuong, N.T.; Lee, Y.I. ZnO-Bi2O3/graphitic carbon nitride photocatalytic system with H2O2-assisted enhanced degradation of Indigo carmine under visible light. Arab. J. Chem. 2020, 13, 3790–3800. [Google Scholar] [CrossRef]
- Porcu, S.; Castellino, M.; Roppolo, I.; Carbonaro, C.M.; Palmas, S.; Mais, L.; Casula, M.F.; Neretina, S.; Hughes, R.A.; Secci, F.; et al. Highly efficient visible light phenyl modified carbon nitride/TiO2 photocatalyst for environmental applications. Appl. Surf. Sci. 2020, 531, 147394. [Google Scholar] [CrossRef]
- Liu, J.; Song, Y.; Xu, H.; Zhu, X.; Lian, J.; Xu, Y.; Zhao, Y.; Huang, L.; Ji, H.; Li, H. Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: Facile synthesis and the enhanced visible-light photocatalytic activity. J. Colloid Interface Sci. 2017, 494, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Zhang, G.; Wang, X. Integrating CdS quantum dots on hollow graphitic carbon nitride nanospheres for hydrogen evolution photocatalysis. Appl. Catal. B Environ. 2015, 179, 479–488. [Google Scholar] [CrossRef]
- She, X.; Liu, L.; Ji, H.; Mo, Z.; Li, Y.; Huang, L.; Du, D.; Xu, H.; Li, H. Template-free synthesis of 2D porous ultrathin nonmetal-doped g-C3N4 nanosheets with highly efficient photocatalytic H2 evolution from water under visible light. Appl. Catal. B Environ. 2016, 187, 144–153. [Google Scholar] [CrossRef]
- Liu, G.; Wang, H.; Chen, D.; Dai, C.; Zhang, Z.; Feng, Y. Photodegradation performances and transformation mechanism of sulfamethoxazole with CeO2/CN heterojunction as photocatalyst. Sep. Purif. Technol. 2020, 237, 116329. [Google Scholar] [CrossRef]
Materials | Synthesis Method Used | Experimental Conditions | Light Source | Type of Dye | Degradation Time | Photodegradation | Reference | |
---|---|---|---|---|---|---|---|---|
1 | g-C3N4/Fe3O4/rGO | Precipitation method | Different ratios of photocatalysts dispersed in RhB solution | Visible light | RhB | 75 min | 100% | [50] |
2 | SnO2@g-C3N4 | Solid-state reaction | Concentration of dye: 10−5 M 0.2 of nanocomposite concentration: 10, 20, 30% | Visible light | Methyl orange | 6 h | 85% | [51] |
3 | g-C3N4/Na2Ti3O7/V2O5 | Hydrothermal method | photocatalysts (0.05 g) dispersed in an aqueous solution (50 mL) containing 0.25 mmol of Na2SO3 and Na2S | Visible light | RhB | 60 min | 90% | [52] |
4 | CNT/mp-g-C3N4 | Refluxing/thermal polymerization | 0.03 g of sample powder was added to the solution of RhB (50 mL) | Visible light | RhB | 5 h | 90% | [27] |
5 | g-C3N4/TiO2 | Hydrothermal method | 10 mg powder of photocatalyst dispersed in 60 mL dye aqueous solution concentration of (5 ppm) | Visible light | Methylene Blue | 2 h | 100% | [53] |
6 | s-PANI@g-C3N4 | In-situ oxidative polymerization | 0.2 g of nanocomposite added into the 300 mL aqueous solution that comprised 50 ppm phenol | UV | Phenol | 7 h | 100% by addition of 1%w GN | [54] |
7 | g-C3N4/CNT/Bi2WO6 | Hydrothermal method | 40 mg photocatalyst added into 40 mL of TC solution | Visible light | TC aqueous solution | 90 min | 87.65% | [55] |
8 | 2D/1D g-C3N4/TNT | Hydrothermal method | SMT concentration was 5 mg/L and material dosage was 0.2 g/L, PH = 7 | Solar light | SMT | 5 h | 100% | [56] |
9 | Activated carbon/g-C3N4 | By mixing melamine and AC | ATZ = 5 mg/L pH = 5.56 Catalyst = 1 g/L | Visible light | Atrazine with PMS | 2 h | 78.76% | [57] |
10 | Ag/g-C3N4/t-CFP | Thermal polymerization with IEP method | As-prepared sample was hung in 20 mL mixed solution containing 20 mg/L MB | Visible light | Methylene Blue | 40 min | 72% | [58] |
11 | PPy/P-C3N4/rGO | In-situ chemical polymerization | 50 mg of sample dispersed in 125 mg/L of X3B solution | Visible light | X3B (Brilliant red dye) | 1 h | 98% | [59] |
12 | Ag/graphite carbon nitride | Thermal exfoliation and photo-reduction method | 50 mg of photocatalyst dispersed in 20 mg/L of TC solution | Visible light | Tetracycline (TC) | 2 h | 83% | [60] |
13 | CoFe2O4/g-C3N4 | Sol-gel and Ultrasonic treatment | 30 mg of catalyst dropped into 50 mL of RhB | Visible light | RhB | 2 h | 57% | [61] |
14 | ZnO-Bi2O3/g-C3N4 | Hydrothermal method | 50 mg of catalyst added in a 100 mL of Indigo carmine solution (50 mg/L) | Visible light | Indigo Carmine | 3 h | 68.8% | [62] |
15 | f-CNT/PhCN | Water-bath method | 4 mg of sample added into 20 mL of RhB solution | Visible light | RhB | 4 h | 60% | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghourichay, S.A.; Agbolaghi, S.; Corpino, R.; Ricci, P.C. Carbon Nanotube–Phenyl Modified g-C3N4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B. Molecules 2024, 29, 5439. https://doi.org/10.3390/molecules29225439
Ghourichay SA, Agbolaghi S, Corpino R, Ricci PC. Carbon Nanotube–Phenyl Modified g-C3N4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B. Molecules. 2024; 29(22):5439. https://doi.org/10.3390/molecules29225439
Chicago/Turabian StyleGhourichay, Sahar Aghapour, Samira Agbolaghi, Riccardo Corpino, and Pier Carlo Ricci. 2024. "Carbon Nanotube–Phenyl Modified g-C3N4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B" Molecules 29, no. 22: 5439. https://doi.org/10.3390/molecules29225439
APA StyleGhourichay, S. A., Agbolaghi, S., Corpino, R., & Ricci, P. C. (2024). Carbon Nanotube–Phenyl Modified g-C3N4: A Visible Light Driven Efficient Charge Transfer System for Photocatalytic Degradation of Rhodamine B. Molecules, 29(22), 5439. https://doi.org/10.3390/molecules29225439