Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption
<p>(<b>a</b>) The spin-polarized PDOS of C<sub>C</sub>, C<sub>N</sub>, and N 2<span class="html-italic">p</span> in the Pca21 C<sub>4</sub>N<sub>3</sub> monolayer. The C<sub>C</sub> 2<span class="html-italic">p</span>, C<sub>N</sub> 2<span class="html-italic">p</span>, and N 2<span class="html-italic">p</span> states are represented by blue, green, and red lines, respectively. The Fermi level (<span class="html-italic">E</span><sub>f</sub>) is indicated by a black dashed line and set to 0 eV. This representation of <span class="html-italic">E</span><sub>f</sub> is also applicable to the subsequent density of states (DOS) plots. (<b>b</b>) The three-dimensional isosurfaces (iso-value of 0.01 e/Å<sup>3</sup>) depicting net magnetization density (difference between spin-up and spin-down), which also applies to the subsequent net magnetization density, for the Pca21 C<sub>4</sub>N<sub>3</sub> monolayer in the ferromagnetic state. Gray spheres symbolize C atoms, and blue spheres denote N atoms, which also applies to the subsequent Figures 2, 5 and 7. The subfigure labels represent the coordinates.</p> "> Figure 2
<p>The spin-resolved PDOS diagrams for the 2<span class="html-italic">s</span> and 2<span class="html-italic">p</span> states of one (<b>a</b>) N, (<b>b</b>) C<sub>C</sub>, and (<b>c</b>) C<sub>N</sub> atom in the Pca21 C<sub>4</sub>N<sub>3</sub> monolayer. The 2<span class="html-italic">s</span> and 2<span class="html-italic">p</span> states are represented by blue and red lines, respectively. (<b>d</b>) The ELF of Pca21 C<sub>4</sub>N<sub>3</sub> monolayer, with cyan regions indicating electron accumulation. The isosurface value is set to 0.60 e/Å<sup>3</sup>.</p> "> Figure 3
<p>The spin-resolved PDOS of the 2<span class="html-italic">p</span><sub>x</sub>, 2<span class="html-italic">p</span><sub>y</sub>, and 2<span class="html-italic">p</span><sub>z</sub> for N (designated as (<b>a</b>) N<sub>17</sub>, (<b>b</b>) N<sub>18</sub>, and (<b>c</b>) N<sub>19</sub>; see <a href="#app1-molecules-29-05194" class="html-app">Figure S1</a>), and (<b>d</b>) C<sub>N</sub>, and (<b>e</b>) C<sub>C</sub> in the Pca21 C<sub>4</sub>N<sub>3</sub> monolayer. For C<sub>C</sub>, C<sub>N</sub>, and N, 2<span class="html-italic">p</span><sub>x</sub>, 2<span class="html-italic">p</span><sub>y</sub> and 2<span class="html-italic">p</span><sub>z</sub> are represented by green, red, and blue lines, respectively.</p> "> Figure 4
<p>The adsorption energy and net magnetic moment of (<b>a</b>) NO@C<sub>4</sub>N<sub>3</sub> systems and (<b>b</b>) O<sub>2</sub>@C<sub>4</sub>N<sub>3</sub> systems at different adsorption sites. The green lines denote adsorption energy, and the blue lines indicate the values of the magnetic moment.</p> "> Figure 5
<p>(<b>a</b>) The top (upper) and profile (lower) perspectives of the optimized configuration of the NO@C<sub>4</sub>N<sub>3</sub> system. (<b>b</b>) The spin-resolved PDOS of 2<span class="html-italic">p</span> for (NO)<sub>f</sub>, C<sub>C</sub>, C<sub>N</sub>, and N in the NO@C<sub>4</sub>N<sub>3</sub> system. The 2<span class="html-italic">p</span> of (NO)<sub>f</sub> is denoted by red lines, and the C<sub>C</sub> 2<span class="html-italic">p</span>, C<sub>N</sub> 2<span class="html-italic">p</span>, and N 2<span class="html-italic">p</span> are denoted by blue, green, and pink lines, respectively. (<b>c</b>) In (NO)<sub>i</sub>, the spin-resolved PDOS of N 2<span class="html-italic">p</span> and O 2<span class="html-italic">p</span> is represented by blue and red lines, respectively. The inset displays the spatial distribution of spin-up <span class="html-italic">π</span>* orbitals for (NO)<sub>i</sub>. In (NO)<sub>i</sub>, (<b>d</b>) the PDOS of N 2<span class="html-italic">p</span><sub>x</sub>, 2<span class="html-italic">p</span><sub>y</sub>, and 2<span class="html-italic">p</span><sub>z</sub> is represented by green, rose, and black lines, respectively, and (<b>e</b>) the PDOS of O 2<span class="html-italic">p</span><sub>x</sub>, 2<span class="html-italic">p</span><sub>y</sub>, and 2<span class="html-italic">p</span><sub>z</sub> is represented by orange, purple, and cyan lines, respectively. (<b>f</b>) The views of the 3D isosurfaces (iso-value of 0.01 e/Å<sup>3</sup>) of net magnetization density for the NO@C<sub>4</sub>N<sub>3</sub>. (<b>g</b>) Integrals of CDD along the <span class="html-italic">z</span> direction for the NO@C<sub>4</sub>N<sub>3</sub> system. The inset depicts the CDD distributions, with yellow regions representing electron accumulation and cyan regions indicating electron depletion. The isosurface value is established at 5.00 × 10<sup>−3</sup> e/Å<sup>3</sup>. Red spheres denote O atoms, which also applies to the subsequent Figure 7.</p> "> Figure 6
<p>The spin-resolved PDOS of N 2<span class="html-italic">p</span> (denoted with red lines) and O 2<span class="html-italic">p</span> (denoted with blue lines) in (<b>a</b>) (NO)<sub>i</sub> and (<b>b</b>) (NO)<sub>f</sub>; (NO)<sub>i</sub> and (NO)<sub>f</sub> denote NO before and after adsorption on Pca21 C<sub>4</sub>N<sub>3</sub>, respectively. The spin-resolved PDOS of 2<span class="html-italic">p</span> for N<sub>sub</sub> (<b>c</b>), C<sub>C-near</sub> (<b>d</b>), and C<sub>N-near</sub> (<b>e</b>) in systems; the red lines labeled with <b>i</b> denote the 2<span class="html-italic">p</span> sates before NO adsorption, and the blue lines labeled with <b>f</b> represent the 2<span class="html-italic">p</span> after NO adsorption. N<sub>sub</sub> refers to the N in the C<sub>4</sub>N<sub>3</sub> substrate bonded with the NO molecule, C<sub>C-near</sub> is C<sub>C</sub> adjacent to N<sub>sub</sub>, and C<sub>N-near</sub> is C<sub>N</sub> neighboring N<sub>sub</sub>.</p> "> Figure 7
<p>(<b>a</b>) The PDOSs for (O<sub>2</sub>)<sub>f</sub> and C<sub>4</sub>N<sub>3</sub> in the O<sub>2</sub>@C<sub>4</sub>N<sub>3</sub> system, which are represented by blue and red lines, respectively. (<b>b</b>) Integrals of CDD along the <span class="html-italic">z</span> direction for the O<sub>2</sub>@C<sub>4</sub>N<sub>3</sub> system. The inset depicts the CDD distributions, with yellow regions representing electron accumulation and cyan regions indicating electron depletion. The isosurface value is established at 2.00 × 10<sup>−3</sup> e/Å<sup>3</sup>. (<b>c</b>) The top (upper) and profile (lower) views of the 3D isosurfaces (the iso-value is 1.15 × 10<sup>−2</sup> e/Å<sup>3</sup>) of net magnetization density for the O<sub>2</sub>@C<sub>4</sub>N<sub>3</sub> monolayer. (<b>d</b>) The spin-resolved PDOSs of the 2<span class="html-italic">p</span><sub>x</sub>, 2<span class="html-italic">p</span><sub>y</sub>, and 2<span class="html-italic">p</span><sub>z</sub> for (O<sub>2</sub>)<sub>i</sub>, which are represented by green, red, and blue lines, respectively. The inset displays the spatial distribution of spin-up <span class="html-italic">π</span>* orbitals for (O<sub>2</sub>)<sub>i</sub>.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Electronic and Magnetic Properties of Pristine Pca21 C4N3 Monolayer
2.2. The Electronic and Magnetic Modulation of Pca21 C4N3 Monolayer by Gas Adsorption
2.2.1. Stability and Magnetic Property of Pca21 C4N3 Monolayer with Nitric Oxide (NO) or Oxygen (O2) Adsorption
2.2.2. Electronic Structure of NO@C4N3 System
2.2.3. Electronic Structure of O2@C4N3 System Through Magnetic Coupling Between O2 and C4N3 Pca21 C4N3 Monolayer
3. Computation Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Tang, C.; Sachs, R.; Barlas, Y.; Shi, J. Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect. Phys. Rev. Lett. 2015, 114, 016603. [Google Scholar] [CrossRef] [PubMed]
- Gong, C.; Li, L.; Li, Z.; Ji, H.; Stern, A.; Xia, Y.; Cao, T.; Bao, W.; Wang, C.; Wang, Y.; et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 2017, 546, 265–269. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Clark, G.; Navarro-Moratalla, E.; Klein, D.R.; Cheng, R.; Seyler, K.L.; Zhong, D.; Schmidgall, E.; McGuire, M.A.; Cobden, D.H.; et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 2017, 546, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Occhialini, C.A.; Ergeçen, E.; Ilyas, B.; Amoroso, D.; Barone, P.; Kapeghian, J.; Watanabe, K.; Taniguchi, T.; Botana, A.S.; et al. Evidence for a single-layer van der Waals multiferroic. Nature 2022, 602, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Jia, F.; Yu, X.; Hu, S.; Gao, H.; Ren, W. Intrinsic multiferroic MnOF monolayer with room-temperature ferromagnetism. Mater. Today Phys. 2022, 27, 100775. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, X.; Zhang, Y.; Yuan, S.; Guo, Y.; Dong, S.; Wang, J. Prediction of a two-dimensional high-TC f-electron ferromagnetic semiconductor. Mater. Horiz. 2020, 7, 1623–1630. [Google Scholar] [CrossRef]
- Tang, C.; Ostrikov, K.; Sanvito, S.; Du, A. Prediction of room-temperature ferromagnetism and large perpendicular magnetic anisotropy in a planar hypercoordinate FeB3 monolayer. Nanoscale Horiz. 2021, 6, 43–48. [Google Scholar] [CrossRef]
- Han, F.; Yang, G. Ferromagnetism above room temperature in Janus Fe2X (X. = S, Se) monolayers. J. Mater. Chem. C 2024, 12, 6663–6670. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Y.; Li, H.; Wu, Y.; Li, Y.; Li, J.; He, K.; Xu, Y.; Zhang, J.; Wang, Y. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 2020, 19, 522–527. [Google Scholar] [CrossRef]
- Xu, X.; Ma, Y.; Zhang, T.; Lei, C.; Huang, B.; Dai, Y. Prediction of two-dimensional antiferromagnetic ferroelasticity in an AgF2 monolayer. Nanoscale Horiz. 2020, 5, 1386–1393. [Google Scholar] [CrossRef]
- Gong, Y.; Guo, J.; Li, J.; Zhu, K.; Liao, M.; Liu, X.; Zhang, Q.; Gu, L.; Tang, L.; Feng, X.; et al. Experimental Realization of an Intrinsic Magnetic Topological Insulator*. Chin. Phys. Lett. 2019, 36, 076801. [Google Scholar] [CrossRef]
- Mukherjee, T.; Kar, S.; Ray, S.J. Tunable electronic and magnetic properties of two-dimensional magnetic semiconductor VIBr2. Comput. Mater. Sci. 2022, 209, 111319. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Z. First-Principles Study of Metal Impurities in Silicon Carbide: Structural, Magnetic, and Electronic Properties. Front. Mater. 2022, 9, 56675. [Google Scholar] [CrossRef]
- Zhang, L.; Cui, Z. Theoretical Study on Electronic, Magnetic and Optical Properties of Non-Metal Atoms Adsorbed onto Germanium Carbide. Nanomaterials 2022, 12, 1712. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Wang, G.; Wang, T.; Zhao, X.; Yan, Y.; Song, X.; Liu, X.; Wang, Y.; Xia, C. Tuning the magnetic anisotropy of ferromagnetic MnS2 monolayers via electron occupation of Mn d orbitals. Phys. Rev. B 2021, 104, 224406. [Google Scholar] [CrossRef]
- Alsubaie, M.; Tang, C.; Wijethunge, D.; Qi, D.; Du, A. First-Principles Study of the Enhanced Magnetic Anisotropy and Transition Temperature in a CrSe2 Monolayer via Hydrogenation. ACS Appl. Electron. Mater. 2022, 4, 3240–3245. [Google Scholar] [CrossRef]
- Li, L.; Qin, R.; Li, H.; Yu, L.; Liu, Q.; Luo, G.; Gao, Z.; Lu, J. Functionalized Graphene for High-Performance Two-Dimensional Spintronics Devices. ACS Nano 2011, 5, 2601–2610. [Google Scholar] [CrossRef]
- Katekomol, P.; Roeser, J.; Bojdys, M.; Weber, J.; Thomas, A. Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. Chem. Mater. 2013, 25, 1542–1548. [Google Scholar] [CrossRef]
- Tuček, J.; Błoński, P.; Sofer, Z.; Šimek, P.; Petr, M.; Pumera, M.; Otyepka, M.; Zbořil, R. Sulfur Doping Induces Strong Ferromagnetic Ordering in Graphene: Effect of Concentration and Substitution Mechanism. Adv. Mater. 2016, 28, 5045–5053. [Google Scholar] [CrossRef]
- González-Herrero, H.; Gómez-Rodríguez, J.M.; Mallet, P.; Moaied, M.; Palacios, J.J.; Salgado, C.; Ugeda, M.M.; Veuillen, J.-Y.; Yndurain, F.; Brihuega, I. Atomic-scale control of graphene magnetism by using hydrogen atoms. Science 2016, 352, 437–441. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Q.; Sun, Q.; Chen, X.S.; Kawazoe, Y.; Jena, P. Ferromagnetism in Semihydrogenated Graphene Sheet. Nano Lett. 2009, 9, 3867–3870. [Google Scholar] [CrossRef] [PubMed]
- Vozmediano, M.A.H.; López-Sancho, M.P.; Stauber, T.; Guinea, F. Local defects and ferromagnetism in graphene layers. Phys. Rev. B 2005, 72, 155121. [Google Scholar] [CrossRef]
- Hu, J.; Wu, R. Giant Magnetic Anisotropy of Transition-Metal Dimers on Defected Graphene. Nano Lett. 2014, 14, 1853–1858. [Google Scholar] [CrossRef] [PubMed]
- Withers, F.; Dubois, M.; Savchenko, A.K. Electron properties of fluorinated single-layer graphene transistors. Phys. Rev. B 2010, 82, 073403. [Google Scholar] [CrossRef]
- Huang, P.; Huang, J.; Pantovich, S.A.; Carl, A.D.; Fenton, T.G.; Caputo, C.A.; Grimm, R.L.; Frenkel, A.I.; Li, G. Selective CO2 Reduction Catalyzed by Single Cobalt Sites on Carbon Nitride under Visible-Light Irradiation. J. Am. Chem. Soc. 2018, 140, 16042–16047. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Wang, T.; Xia, B.; Qian, J.; Ran, J.; Zhang, Z.; Gao, D. High-temperature ferromagnetism in non-metal carbonitride: From nitrogen vacant g-C3N4 to N-doped graphene. J. Magn. Magn. Mater. 2021, 538, 168223. [Google Scholar] [CrossRef]
- Gao, D.; Liu, Y.; Liu, P.; Si, M.; Xue, D. Atomically Thin B doped g-C(3)N(4) Nanosheets: High-Temperature Ferromagnetism and calculated Half-Metallicity. Sci. Rep. 2016, 6, 35768. [Google Scholar] [CrossRef]
- Majumder, C.; Kumar Mondal, T.; Bhattacharya, S.; Saha, S.K. Observation of room temperature metal free ferromagnetism in sulfur doped graphitic carbon nitride. J. Magn. Magn. Mater. 2022, 559, 169439. [Google Scholar] [CrossRef]
- Du, L.; Gao, B.; Xu, S.; Xu, Q. Strong ferromagnetism of g-C3N4 achieved by atomic manipulation. Nat. Commun. 2023, 14, 2278. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, Y.; Wang, Z.; Fu, L.; Zhang, Y.; Xu, Y.; Yuan, S.; Pan, H.; Du, Y.; Wang, J.; et al. Realization of Strong Room-Temperature Ferromagnetism in Atomically Thin 2D Carbon Nitride Sheets by Thermal Annealing. ACS Nano 2021, 15, 12069–12076. [Google Scholar] [CrossRef]
- He, C.; Liao, Y.; Ouyang, T.; Zhang, H.; Xiang, H.; Zhong, J. Flat-band based high-temperature ferromagnetic semiconducting state in the graphitic C4N3 monolayer. Fundam. Res. 2023. [Google Scholar] [CrossRef]
- Zhao, D.; Tang, X.; Xing, W.; Zhang, Y.; Gao, X.; Zhang, M.; Xie, Z.; Yan, X.; Ju, L. Designing Organic Spin-Gapless Semiconductors via Molecular Adsorption on C4N3 Monolayer. Mol. 2024, 29, 3138. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Tsai, I.L.; Sepioni, M.; Lehtinen, O.; Keinonen, J.; Krasheninnikov, A.V.; Castro Neto, A.H.; Katsnelson, M.I.; Geim, A.K.; Grigorieva, I.V. Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat. Commun. 2013, 4, 2010. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, B.; Yang, J. A First-Principles Study on Electron Donor and Acceptor Molecules Adsorbed on Phosphorene. J. Phys. Chem. C 2015, 119, 2871–2878. [Google Scholar] [CrossRef]
- Zhu, J.; Ha, E.; Zhao, G.; Zhou, Y.; Huang, D.; Yue, G.; Hu, L.; Sun, N.; Wang, Y.; Lee, L.Y.S.; et al. Recent advance in MXenes: A promising 2D material for catalysis, sensor and chemical adsorption. Coord. Chem. Rev. 2017, 352, 306–327. [Google Scholar] [CrossRef]
- Cai, Y.; Zhou, H.; Zhang, G.; Zhang, Y.-W. Modulating Carrier Density and Transport Properties of MoS2 by Organic Molecular Doping and Defect Engineering. Chem. Mater. 2016, 28, 8611–8621. [Google Scholar] [CrossRef]
- Constantinescu, G.; Kuc, A.; Heine, T. Stacking in Bulk and Bilayer Hexagonal Boron Nitride. Phys. Rev. Lett. 2013, 111, 036104. [Google Scholar] [CrossRef] [PubMed]
- Kuc, A.; Springer, M.A.; Batra, K.; Juarez-Mosqueda, R.; Wöll, C.; Heine, T. Proximity Effect in Crystalline Framework Materials: Stacking-Induced Functionality in MOFs and COFs. Adv. Funct. Mater. 2020, 30, 1908004. [Google Scholar] [CrossRef]
- Zhang, Y.; Položij, M.; Heine, T. Statistical Representation of Stacking Disorder in Layered Covalent Organic Frameworks. Chem. Mater. 2022, 34, 2376–2381. [Google Scholar] [CrossRef]
- Tang, C.; Zhang, L.; Du, A. Tunable magnetic anisotropy in 2D magnets via molecular adsorption. J. Mater. Chem. C 2020, 8, 14948–14953. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar] [CrossRef]
- Liu, S.; Yin, H.; Liu, P.-F. Strain-dependent electronic and mechanical properties in one-dimensional topological insulator Nb4SiTe4. Phys. Rev. B 2023, 108, 045411. [Google Scholar] [CrossRef]
- Lide, D.R. Handbook of Chemistry and Physics; CRC Press: New York, NY, USA, 2003. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, D.; Tang, X.; Gao, X.; Xing, W.; Liu, S.; Yin, H.; Ju, L. Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption. Molecules 2024, 29, 5194. https://doi.org/10.3390/molecules29215194
Zhao D, Tang X, Gao X, Xing W, Liu S, Yin H, Ju L. Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption. Molecules. 2024; 29(21):5194. https://doi.org/10.3390/molecules29215194
Chicago/Turabian StyleZhao, Dongqiu, Xiao Tang, Xueying Gao, Wanyan Xing, Shuli Liu, Huabing Yin, and Lin Ju. 2024. "Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption" Molecules 29, no. 21: 5194. https://doi.org/10.3390/molecules29215194
APA StyleZhao, D., Tang, X., Gao, X., Xing, W., Liu, S., Yin, H., & Ju, L. (2024). Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption. Molecules, 29(21), 5194. https://doi.org/10.3390/molecules29215194