Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate
<p>Digital photos and SEM images ((<b>a</b>) pristine RW; (<b>b</b>) BiOBr/RW), EDS spectra of BiOBr/RW (<b>c</b>), and EDS mapping images of BiOBr/RW (<b>d</b>–<b>i</b>).</p> "> Figure 2
<p>XRD patterns of the samples (<b>a</b>), HRSEM images of BiOBr/RW (<b>b</b>,<b>c</b>), and HRTEM images of BiOBr/RW (<b>d</b>–<b>f</b>).</p> "> Figure 3
<p>Photos of different liquid wetting behavior and corresponding contact angle (insets) under various environments on BiOBr/RW fibers (<b>a</b>–<b>d</b>) and pristine RW (<b>e</b>–<b>h</b>), respectively.</p> "> Figure 4
<p>Photos of penetration process on BiOBr/RW surface in the air ((<b>a</b>) water droplet; (<b>b</b>): oil droplet).</p> "> Figure 5
<p>CA<sub>o/w</sub> and CA<sub>o/w</sub> of various oils detected on BiOBr/RW.</p> "> Figure 6
<p>Dynamic interaction of water droplet underoil (ligarine) and oil (1,2-dichloroethane) droplet underwater on the surface of BiOBr/RW (<b>a</b>,<b>b</b>) and pristine RW (<b>c</b>,<b>d</b>) immersed in oil or water.</p> "> Figure 7
<p>A dynamic liquid jet process on BiOBr/RW. Oil (Sudan red I dyed 1,2-dichloroethane) jet underwater (<b>a</b>,<b>b</b>) and water jet underoil (1,2-dichloroethane) (<b>c</b>,<b>d</b>).</p> "> Figure 8
<p>Images of oil/water separation by BiOBr/RW ((<b>a</b>) prewetted by light oil; (<b>b</b>) prewetted by water; (<b>c</b>) prewetted by heavy oil; (<b>d</b>) prewetted by water); light oil and heavy oil were dyed with Sudan I.</p> "> Figure 9
<p>The separation efficiency and flux for different oil/water mixtures.</p> "> Figure 10
<p>Separation efficiency and flux of ligarine/water mixtures under different environments (<b>a</b>), the separation efficiency and contact angles detected by various immiscible liquids mixtures (Liquid 1 is diesel, n-heptane or ligarine; Liquid 2 is EG) (<b>b</b>).</p> "> Figure 11
<p>Degradation of RhB in direct PMS activation system by BiOBr/RW (<b>a</b>), and the change of UV-vis spectra with time for RhB degradation in BiOBr/RW/PMS system (<b>b</b>).</p> "> Figure 12
<p>The synchronous oil/water separation and PMS activation toward RhB removal ((<b>a</b>) BiOBr/RW; (<b>b</b>) pristine RW; (<b>c</b>) cycle results).</p> "> Figure 13
<p>Quenching experiments results in the BiOBr/RW catalyst/PMS direct activation system (<b>a</b>) and ESR spectra in different systems: (<b>b</b>) <sup>1</sup>O<sub>2</sub>, (<b>c</b>) ·SO<sub>4</sub><sup>−</sup> and ·OH, and (<b>d</b>)·O<sub>2</sub><sup>−</sup>.</p> "> Figure 14
<p>Mechanism of synchronous on-demand oil/water separation and PMS activation for pollutants removal by BiOBr/RW.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Properties of Samples
2.2. Wettability and Separation Capacity
2.3. Removal Performance for Water-Soluble Pollutant
3. Experimental Section
3.1. Chemicals and Materials
3.2. Preparation of Samples
3.3. Characterization Techniques
3.4. Oil/Water Separation Performance
3.5. RhB Catalytic Degradation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Geng, B.; Zhou, W.; Lu, L.; Cao, Q.; Hong, M.; Wen, D. Risk assessment of offshore oil spill in the northern South China Sea: A stochastic scenario modeling approach. Front. Mar. Sci. 2022, 9, 986379. [Google Scholar] [CrossRef]
- Wu, S.; Yan, D.; Chen, Y.; Song, J. Self-driven oil/water separator with super-high separation rate. Nano Energy 2024, 119, 109066. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Liu, Y.X.; Hu, C.M.; MacDonald, I.R.; Lu, Y.C. Chronic oiling in global oceans. Science 2022, 6599, 1300–1304. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Ma, R.; Zhan, J.; Shi, W.; Zhu, Y.; Tian, Y. Superhydrophobic/superoleophilic starch-based cryogels coated by silylated porous starch/Fe3O4 hybrid micro/nanoparticles for removing discrete oil patches from water. Sep. Purif. Technol. 2022, 291, 120872. [Google Scholar] [CrossRef]
- Panahi, S.; Moghaddam, M.K.; Moezzi, M. Assessment of milkweed floss as a natural hollow oleophilic fibrous sorbent for oil spill cleanup. J. Environ. Manag. 2020, 268, 110688. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Li, M.; Li, X.; Zhang, L. Fabricated smart sponge with switchable wettability and photocatalytic response for controllable oil-water separation and pollutants removal. J. Ind. Eng. Chem. 2020, 92, 278–286. [Google Scholar] [CrossRef]
- Baig, U.; Matin, A.; Gondal, M.A.; Zubair, S.M. Facile fabrication of superhydrophobic, superoleophilic photocatalytic membrane for efficient oil-water separation and removal of hazardous organic pollutants. J. Clean. Prod. 2019, 208, 904–915. [Google Scholar] [CrossRef]
- Ezazi, M.; Shrestha, B.; Kim, S.I.; Jeong, B.; Gorney, J.; Hutchison, K.; Lee, D.H.; Kwon, G. Selective Wettability Membrane for Continuous Oil-Water Separation and In Situ Visible Light-Driven Photocatalytic Purification of Water. Glob. Chall. 2020, 4, 2000009. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, W.; Yang, M.; Zhang, F.; Shi, H.; Xie, Y.; Wang, Z. Robust fabrication of superhydrophobic and photocatalytic self-cleaning cotton textiles for oil-water separation via thiol-ene click reaction. J. Mater. Sci. 2019, 54, 7369–7382. [Google Scholar] [CrossRef]
- Cao, C.; Wang, F.; Lu, M. Preparation of superhydrophobic CuS cotton fabric with photocatalytic and antibacterial activity for oil/water separation. Mater. Lett. 2020, 260, 126956. [Google Scholar] [CrossRef]
- Cheng, D.; Zhang, Y.; Bai, X.; Liu, Y.; Deng, Z.; Wu, J.; Bi, S.; Ran, J.; Cai, G.; Wang, X. Mussel-inspired fabrication of superhydrophobic cotton fabric for oil/water separation and visible light photocatalytic. Cellulose 2020, 27, 5421–5433. [Google Scholar] [CrossRef]
- Zhu, H.; Wu, L.; Meng, X.; Wang, Y.; Huang, Y.; Lin, M.; Xia, F. An anti-UV superhydrophobic material with photocatalysis, self-cleaning, self-healing and oil/water separation functions. Nanoscale 2020, 12, 11455–11459. [Google Scholar] [CrossRef] [PubMed]
- Cao, G.; Wang, R.; Ju, Y.; Jing, B.; Duan, X.; Ao, Z.; Jiang, J.; Li, F.; Ho, S. Synchronous removal of emulsions and soluble organic contaminants via a microalgae-based membrane system: Performance and mechanisms. Water Res. 2021, 206, 117741. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, N.; Han, Y.; Wang, X.; Zhang, L.; Sun, Y.; Jiang, B. Highly dispersed β-FeOOH nanocatalysts anchored in confined membrane pores for simultaneously improving catalytic and separation performance. Sep. Purif. Technol. 2021, 279, 119684. [Google Scholar] [CrossRef]
- Xue, J.; Li, J.; Gao, J.; Wang, M.; Ma, S. CoFe2O4 functionalized PVDF membrane for synchronous oil/water separation and peroxomonosulfate activation toward aromatic pollutants degradation. Sep. Purif. Technol. 2022, 302, 122120. [Google Scholar] [CrossRef]
- Yin, X.; Ma, X.; He, Y.; Li, H.; Fan, Y.; He, T.; Guo, X.; Chen, L. Robust self-cleaning urchin-like Ni/Co LDH stainless steel mesh for gravity-driven oil/water emulsion separation and catalytic degradation of aromatic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127186. [Google Scholar] [CrossRef]
- Lin, W.T.; Cheng, A.; Huang, R.; Zou, S.Y. Improved microstructure of cement-based composites through the addition of rock wool particles. Mater. Charact. 2013, 84, 1–9. [Google Scholar] [CrossRef]
- Hao, W.; Xu, J.; Li, R.; Zhao, X.; Qiu, L.; Yang, W. Developing superhydrophobic rock wool for high-viscosity oil/water separation. Chem. Eng. J. 2019, 368, 837–846. [Google Scholar] [CrossRef]
- Zhou, L.; Li, R.; Zhang, G.; Wang, D.; Cai, D.; Wu, Z. Zero-valent iron nanoparticles supported by functionalized waste rock wool for efficient removal of hexavalent chromium. Chem. Eng. J. 2018, 339, 85–96. [Google Scholar] [CrossRef]
- Hussain, A.; Hou, J.; Tahir, M.; Ali, S.S.; Rehman, Z.U.; Bilal, M.; Zhang, T.; Dou, Q.; Wang, X. Recent advances in BiOX-based photocatalysts to enhanced efficiency for energy and environment applications. Catal. Rev. 2024, 66, 119–173. [Google Scholar] [CrossRef]
- Shi, Y.; Li, H.; Mao, C.; Zhan, G.; Yang, Z.; Ling, C.; Wei, K.; Liu, X.; Ai, Z.; Zhang, L. Manipulating excitonic effects in layered bismuth oxyhalides for photocatalysis. ACS EST Eng. 2022, 2, 957–974. [Google Scholar] [CrossRef]
- Li, C.; Zhao, Z.; Wang, X.; Li, M.; Jiang, J.; Dong, S. Carbon quantum dots induce in-situ formation of oxygen vacancies and domination of {0 0 1} facets in BiOBr microflower for simultaneous removal of aqueous tetracycline and hexavalent chromium. Chem. Eng. J. 2022, 442, 136249. [Google Scholar] [CrossRef]
- Gallegos-Alcaíno, A.; Robles-Araya, N.; Avalos, C.; Alfonso-Alvarez, A.; Rodríguez, C.A.; Valdés, H.; Sánchez-Flores, N.A.; Durán-Alvarez, J.C.; Bizarro, M.; Romero-Salguero, F.J.; et al. Synthesis of BiOI/Mordenite Composites for Photocatalytic Treatment of Organic Pollutants Present in Agro-Industrial Wastewater. Nanomaterials 2022, 12, 1161. [Google Scholar] [CrossRef] [PubMed]
- Shan, A.Y.; Ghazi, T.I.M.; Rashid, S.A. Immobilisation of titanium dioxide onto supporting materials in heterogeneous photocatalysis: A review. Appl. Catal. A Gen. 2010, 389, 1–8. [Google Scholar] [CrossRef]
- Qiu, H.; Hu, J.; Zhang, R.; Gong, W.; Yu, Y.; Gao, H. The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123996. [Google Scholar] [CrossRef]
- Lin, L.; Huang, M.; Long, L.; Chen, D. Novel photocatalysts of fly ash cenospheres supported BiOBr hierarchical microspheres with high photocatalytic performance. J. Alloys Compd. 2014, 615, 929–932. [Google Scholar] [CrossRef]
- Tang, W.; Zhang, Y.; Guo, H.; Liu, Y. Heterogeneous activation of peroxymonosulfate for bisphenol AF degradation with BiOI 0.5 Cl 0.5. RSC Adv. 2019, 9, 14060–14071. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, Z.; Lucia, L.; Krause, W. Underwater superoleophobic matrix-formatted liquid-infused porous biomembranes for extremely efficient deconstitution of nanoemulsions. ACS Appl. Mater. Interfaces 2020, 12, 50996–51006. [Google Scholar] [CrossRef]
- Yin, X.; Yu, S.; Wang, L.; Wang, J.; Wang, B.; Li, H.; Chen, Z. Dual-functional underliquid superhydrophobic and superoleophobic stainless steel mesh decorated with Ni3S2 nanorods for continuous oil/water separation. Surf. Coat. Technol. 2022, 434, 128177. [Google Scholar] [CrossRef]
- Siligardi, C.; Miselli, P.; Francia, E.; Gualtieri, M.L. Temperature-induced microstructural changes of fiber-reinforced silica aerogel (FRAB) and rock wool thermal insulation materials: A comparative study. Energy Build. 2017, 138, 80–87. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, J.; Yin, S.; Li, H.; Xu, H.; He, M.; Huang, L.; Zhang, Q. Improvement of visible light photocatalytic activity over flower-like BiOCl/BiOBr microspheres synthesized by reactable ionic liquids. Colloids Surf. A Physicochem. Eng. Asp. 2013, 420, 89–95. [Google Scholar] [CrossRef]
- Lin, L.; Huang, M.; Long, L.; Sun, Z.; Zheng, W.; Chen, D. Fabrication of a three-dimensional BiOBr/BiOI photocatalyst with enhanced visible light photocatalytic performance. Ceram. Int. 2014, 40, 11493–11501. [Google Scholar] [CrossRef]
- Zhou, W.; Li, S.; Liu, Y.; Xu, Z.; Wei, S.; Wang, G.; Lian, J.; Jiang, Q. Dual superlyophobic copper foam with good durability and recyclability for high flux, high efficiency, and continuous oil-water separation. ACS Appl. Mater. Interfaces 2018, 10, 9841–9848. [Google Scholar] [CrossRef]
- Liu, M.; Wang, S.; Wei, Z.; Song, Y.; Jiang, L. Bioinspired design of a superoleophobic and low adhesive water/solid interface. Adv. Mater. 2009, 21, 665–669. [Google Scholar] [CrossRef]
- Mai, V.C.; Das, P.; Zhou, J.; Lim, T.T.; Duan, H. Mussel-Inspired Dual-Superlyophobic Biomass Membranes for Selective Oil/Water Separation. Adv. Mater. Interfaces 2020, 7, 1901756. [Google Scholar] [CrossRef]
- Ding, D.; Mao, H.; Chen, X.; Qiu, M.; Fan, Y. Underwater superoleophobic-underoil superhydrophobic Janus ceramic membrane with its switchable separation in oil/water emulsions. J. Membr. Sci. 2018, 565, 303–310. [Google Scholar] [CrossRef]
- Rohrs, C.; Azimi, A.; He, P. Wetting on micropatterned surfaces: Partial penetration in the Cassie State and Wenzel deviation theoretically explained. Langmuir 2019, 35, 15421–15430. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xu, H.; Li, D.; Zou, Z.; Li, Q.; Xia, D. BiOCl/BiOBr heterojunction with rich oxygen vacancies induced by ultraviolet and its enhanced photocatalytic performance. Eur. J. Inorg. Chem. 2019, 46, 4887–4893. [Google Scholar] [CrossRef]
- Lyu, J.; Ge, M.; Hu, Z.; Guo, C. One-pot synthesis of magnetic CuO/Fe2O3/CuFe2O4 nanocomposite to activate persulfate for levofloxacin removal: Investigation of efficiency, mechanism and degradation route. Chem. Eng. J. 2020, 389, 124456. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Wang, D.; Yao, F.; Ma, Y.; Li, X.; Wang, J.; Jiang, L.; Wang, L.; Yu, H. Highly-efficient degradation of amiloride by sulfate radicals-based photocatalytic processes: Reactive kinetics, degradation products and mechanism. Chem. Eng. J. 2018, 354, 983–994. [Google Scholar] [CrossRef]
- Dou, X.; Chen, Y.; Shi, H. CuBi2O4/BiOBr composites promoted PMS activation for the degradation of tetracycline: S-scheme mechanism boosted Cu2+/Cu+ cycle. Chem. Eng. J. 2022, 431, 134054. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, X.; Sun, L.; Meng, J.; Jiang, N.; Wang, J. Efficient degradation of tetracycline in actual water systems by 2D/1D g-C3N4/BiOBr Z-scheme heterostructure through a peroxymonosulfate-assisted photocatalytic process. J. Alloys Compd. 2023, 938, 168698. [Google Scholar] [CrossRef]
- Wu, L.; Sun, Z.; Zhen, Y.; Zhu, S.; Yang, C.; Lu, J.; Tian, Y.; Zhong, D.; Ma, J. Oxygen vacancy-induced nonradical degradation of organics: Critical trigger of oxygen (O2) in the Fe-Co LDH/peroxymonosulfate system. Environ. Sci. Technol. 2021, 55, 15400–15411. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhu, Y.; Zhou, W. Cu-doped Ni-LDH with abundant oxygen vacancies for enhanced methyl 4-hydroxybenzoate degradation via peroxymonosulfate activation: Key role of superoxide radicals. J. Colloid Interface Sci. 2022, 610, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, J.; Wang, J.; Deng, Y.; Zhang, H.; Xu, T.; Wang, W. β particles induced directional inward migration of oxygen vacancies: Surface oxygen vacancies and interface oxygen vacancies synergistically activate PMS. Appl. Catal. B Environ. 2022, 318, 121879. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, L.; Xiao, S.; Wang, C.; Huang, M.; Xu, L.; Huang, Y. Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate. Molecules 2024, 29, 3185. https://doi.org/10.3390/molecules29133185
Lin L, Xiao S, Wang C, Huang M, Xu L, Huang Y. Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate. Molecules. 2024; 29(13):3185. https://doi.org/10.3390/molecules29133185
Chicago/Turabian StyleLin, Li, Si Xiao, Chuxuan Wang, Manhong Huang, Ling Xu, and Yi Huang. 2024. "Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate" Molecules 29, no. 13: 3185. https://doi.org/10.3390/molecules29133185
APA StyleLin, L., Xiao, S., Wang, C., Huang, M., Xu, L., & Huang, Y. (2024). Nanosheet BiOBr Modified Rock Wool Composites for High Efficient Oil/Water Separation and Simultaneous Dye Degradation by Activating Peroxymonosulfate. Molecules, 29(13), 3185. https://doi.org/10.3390/molecules29133185