Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population
<p>PCA and metabolite accumulation of different organs of <span class="html-italic">C. luteoflora</span>. (<b>A</b>) Correlation plot between samples; (<b>B</b>) PCA score plot of all samples; (<b>C</b>) cluster heat map of metabolites; (<b>D</b>) classification of metabolites.</p> "> Figure 2
<p>Analysis of DEMs in five organs of <span class="html-italic">C. luteoflora</span>. (<b>A</b>) The number of different types of DEMs in five organs; (<b>B</b>) the number of up-regulated and down-regulated DEMs between R, F, Fr, S, and L, and the red column represents the up-regulated DEMs; blue column represents down-regulated DEMs; (<b>C</b>) the top 20 KEGG metabolic pathways of DEMs were significantly enriched; (<b>D</b>) petal diagram of DEMs; (<b>E</b>) the heat map of common metabolites.</p> "> Figure 3
<p>The dominant DEMs of roots, flowers, fruits, stems, and leaves of <span class="html-italic">C. luteoflora</span>. (<b>A</b>) The dominant DEMs of R; (<b>B</b>) The dominant DEMs of F; (<b>C</b>) The dominant DEMs of Fr; (<b>D</b>) The dominant DEMs of S; (<b>E</b>) The dominant DEMs of L.</p> "> Figure 3 Cont.
<p>The dominant DEMs of roots, flowers, fruits, stems, and leaves of <span class="html-italic">C. luteoflora</span>. (<b>A</b>) The dominant DEMs of R; (<b>B</b>) The dominant DEMs of F; (<b>C</b>) The dominant DEMs of Fr; (<b>D</b>) The dominant DEMs of S; (<b>E</b>) The dominant DEMs of L.</p> "> Figure 3 Cont.
<p>The dominant DEMs of roots, flowers, fruits, stems, and leaves of <span class="html-italic">C. luteoflora</span>. (<b>A</b>) The dominant DEMs of R; (<b>B</b>) The dominant DEMs of F; (<b>C</b>) The dominant DEMs of Fr; (<b>D</b>) The dominant DEMs of S; (<b>E</b>) The dominant DEMs of L.</p> "> Figure 3 Cont.
<p>The dominant DEMs of roots, flowers, fruits, stems, and leaves of <span class="html-italic">C. luteoflora</span>. (<b>A</b>) The dominant DEMs of R; (<b>B</b>) The dominant DEMs of F; (<b>C</b>) The dominant DEMs of Fr; (<b>D</b>) The dominant DEMs of S; (<b>E</b>) The dominant DEMs of L.</p> "> Figure 4
<p>Summary of total metabolite enrichment and some dominant DEMs in roots, flowers, fruits, stems, and leaves of <span class="html-italic">C. luteoflora</span>. The rectangles represent the enrichment of the relative total content of various metabolites in different organs, and the rounded rectangles represent the enrichment of the relative content of some dominant DEMs.</p> "> Figure 5
<p>The different organs of <span class="html-italic">C. luteoflora</span>. R: Root; F: flower; Fr: fruit; S: stem; L: leaf. Bars = 1 cm.</p> ">
Abstract
:1. Introduction
2. Results
2.1. Multivariate Statistical Analysis
2.2. Metabolite Analysis of the Five Studied Organs of C. luteoflora
2.3. Analysis of the Relative Contents of Metabolites in the Different Organs of C. luteoflora
2.4. DEM Analysis in the Different Organs of C. luteoflora
2.5. Analysis of Dominant DEMs in the Different Organs of C. luteoflora
3. Materials and Methods
3.1. Plant Materials
3.2. Sample Preparation
3.3. UPLC Conditions
3.4. ESI–QTRAP–MS/MS Conditions
3.5. Qualitative and Quantitative Analysis of Metabolites
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, H.T.; Zeng, F.A. Luteoflora, a new secton of Camellia. Acta Sci. Nat. Acta Sci. Nat. Univ. Sunyatseni 1982, 21, 74–75. [Google Scholar]
- Zou, T.C. Inquire into species origin of Camellia luteoflora Y. K. Li, an endemic species in Guizhou. J. Guizhou Normal Univ. (Nat. Sci.) 2002, 20, 6–10. [Google Scholar]
- Zhang, H.Y.; Zong, X.H.; Wang, X.; Wang, X.; Bai, X.J.; Liang, S.; Deng, H.P. Population structure and living community characteristics of endangered Camellia luteoflora Li ex H. T. Chang. Plant Sci. J. 2016, 34, 539–546. [Google Scholar]
- Jiang, Z.M.; Liu, X.Y.; Gong, X.L.; Huang, M.; Chen, X.Y.; Diao, J.Y.; Gao, G. Studies on the community characteristics and population structure of Camellia luteoflora in Huagaoxi Reserve. J. Yibin Univ. 2024. [Google Scholar]
- Bai, X.J.; Shen, K.P.; Mu, J.; Weng, T.; Zang, L.P.; Ren, W.D.; Han, X.; Li, Q.; Tan, Q.Y.; He, Y.J. Population structure and survival potentiality analysis of endangered Camellia luteoflora. J. Trop. Subtrop. Bot. 2022, 30, 718–726. [Google Scholar]
- Han, H.J. Literature analysis of the valuable and endangered species Camellia luteoflora. For. Sci. Technol. 2019, 6, 97–100. [Google Scholar]
- Yi, H.; He, J.; Yang, X.; Rong, S.T.; Wang, L. Diversity analysis of endophytic fungi and preliminary screening of antibacterial activity in Camellia luteoflora. Guihaia 2024, 44, 382–395. [Google Scholar]
- Chen, D.; Chen, G.; Sun, Y.; Zeng, X.X.; Ye, H. Physiological genetics, chemical composition, health benefits and toxicology of tea (Camellia sinensis L.) flower: A review. Food Res. Int. 2020, 137, 109584. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, F.; Chen, B.; Su, E.Z.; Chen, Y.Z.; Cao, F.L. Composition, bioactive substances, extraction technologies and the influences on characteristics of Camellia oleifera oil: A review. Food Res. Int. 2022, 156, 111159. [Google Scholar] [CrossRef]
- Ouyang, W.; Ning, J.M.; Zhu, X.Z.; Jiang, Y.W.; Wang, J.J.; Yuan, H.B.; Hua, J.J. UPLC-ESI-MS/MS analysis revealed the dynamic changes and conversion mechanism of non-volatile metabolites during green tea fixation. LWT Food Sci. Technol. 2024, 198, 116010. [Google Scholar] [CrossRef]
- Luo, H.; Ou, J.; Huang, J. Reactive carbonyl species scavenger: Epigallocatechin-3-gallate. Foods 2024, 13, 992. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Chen, W.; Pan, H.J.; Xie, D.C.; Wang, Y.F.; Zhou, J.H. Biochemical insights into tea foam: A comparative study across six categories. Food Chem. X 2024, 23, 101596. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Bai, Y.; Qing, X.S.; Yang, Z.Y.; Chen, L.Q.; Wu, T. Study on the effects of different processing technologies on the quality of flowers from Camellia nitidissima Chi. Sci. Technol. Food Ind. 2024. [Google Scholar]
- Liu, Q.B.; Liu, B.Y.; Liang, S. Exploration of the causes of endangerment of Camellia luteoflora and countermeasures to deal with it. Environ. Prot. Technol. 2005, 11, 18–20. [Google Scholar]
- Wang, H. Study on Genetic Diversity of a Rare and Endangered Plant Camellia luteoflora Li ex H.T. Chang. Master’s Thesis, Southwest University, Chongqing, China, 2020. [Google Scholar]
- Tang, F.; Wang, J.W.; Liu, H.Y.; Zou, T.C. Study on seed characteristics and population ecological characteristics of Camellia luteoflora. Seed 2021, 40, 71–77. [Google Scholar]
- Li, J.T.; Mu, J.; Shen, K.P.; Guo, Y.; Bai, X.J.; Zang, L.P.; Li, Q.; Han, X.; Zhao, Y.; He, Y.J. Niche and interspecific association of dominant woody plants in Camellia luteoflora community. Acta Ecol. Sin. 2024, 44, 283–294. [Google Scholar]
- Rong, S.; Luo, P.R.; Yi, H.; Yang, X.; Zhang, L.H.; Zeng, D.; Wang, L. Predicting habitat suitability and adaptation strategies of an endangered endemic species, Camellia luteoflora Li ex chang (ericales: Theaceae) under future climate change. Forests 2023, 14, 2177. [Google Scholar] [CrossRef]
- Wang, G.; Luo, Y.; Hou, N.; Deng, L.X. The complete chloroplast genomes of three rare and endangered camellias (Camellia huana, C. liberofilamenta and C. luteoflora) endemic to Southwest China. Conserv. Genet. Resour. 2017, 9, 583–585. [Google Scholar] [CrossRef]
- Yang, W.C.; Wu, G.Y.; Bai, X.J.; He, Q.Q.; Xiang, T.; Yu, X.; Yang, J.; Liu, F.; Weng, T.; Huang, D.X. A Method for Rapid Propagation of Camellia luteoflora Rooting. CN117814030A, 5 April 2024. [Google Scholar]
- Jin, T.; Dai, Y.X.; Wang, D.; Xu, H.X.; Wang, L. Analysis of volatile components in flowers and leaves of Camellia luteoflora Y.K.Li. Mod. Food Sci. Technol. 2021, 37, 250–258+249. [Google Scholar]
- Liu, H.Y.; Wang, J.W.; Hong, J.; Fan, Z.W.; Tang, S.H.; Zou, T.C. Contents of amino acids and fatty acids in seeds of five wild Camellia species in Guizhou plateau (IIID 10 d). Guihaia 2018, 38, 169–179. [Google Scholar]
- Wang, J.L.; Zhang, T.; Shen, X.T.; Liu, J.; Zhao, D.L.; Sun, Y.W.; Wang, L.; Liu, Y.J.; Gong, X.Y.; Liu, Y.X. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 2016, 12, 116. [Google Scholar] [CrossRef]
- Wang, A.M.; Li, R.S.; Ren, L.; Gao, X.L. A comparative metabolomics studyof flavonoids in sweet potato with different flesh colors (Ipomoea batatas (L.) Lam). Food Chem. 2018, 260, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.W.; Qian, Y.Y.; Wei, M. Widely targeted metabolomics analysis to reveal metabolite of Morus alba L. in different medicinal parts. Molecules 2024, 29, 3981. [Google Scholar] [CrossRef]
- Tang, D.K.; Shen, Y.H.; Li, F.D.; Yue, R.; Duan, J.W.; Ye, Z.L.; Lin, Y.; Zhou, W.; Yang, Y.L.; Chen, L.X.; et al. Integrating metabolite and transcriptome analysis revealed the different mechanisms of characteristic compound biosynthesis and transcriptional regulation in tea flowers. Front. Plant Sci. 2022, 29, 1016692. [Google Scholar] [CrossRef]
- Liu, C.S.; Li, J.L.; Li, H.X.; Xue, J.H.; Wang, M.; Jian, G.T.; Zhu, C.; Zeng, L.T. Differences in the quality of black tea (Camellia sinensis var. Yinghong No. 9) in different seasons and the underlying factors. Food Chem. X 2023, 20, 100998. [Google Scholar] [CrossRef] [PubMed]
- Saroat, R.; Dena, M.; Sunantha, K.; Suphat, P. Chemical properties and nutritional factors of pressed-cake from tea and sacha inchi seeds. Food Biosci. 2016, 15, 64–71. [Google Scholar]
- Chen, H.B.; Yu, F.; Kang, J.X.; Li, Q.; Hasitha, K.W.; Li, B. Quality chemistry, physiological functions, and health benefits of organic acids from tea (Camellia sinensis). Molecules 2023, 28, 2339. [Google Scholar] [CrossRef]
- Ye, J.H.; Wang, Y.H.; Wang, Y.C.; Hong, L.; Jia, X.L.; Kang, J.Q.; Lin, S.X.; Wu, Z.Y.; Wang, H.B. Improvement of soil acidification in tea plantations by long-term use of organic fertilizers and its effect on tea yield and quality. Front. Plant Sci. 2022, 13, 1055900. [Google Scholar] [CrossRef]
- Luan, F.; Zeng, J.S.; Yang, Y.; He, X.R.; Wang, B.J.; Gao, Y.B.; Zeng, N. Recent advances in Camellia oleifera Abel: A review of nutritional constituents, biofunctional properties, and potential industrial applications. J. Funct. Foods 2020, 75, 104242. [Google Scholar] [CrossRef]
- Li, J.; Yuan, H.B.; Rong, Y.T.; Qian, M.; Liu, F.Q.; Hua, J.J.; Zhou, Q.H.; Deng, Y.L.; Zeng, J.; Jiang, Y.W. Lipid metabolic characteristics and marker compounds of ripened Pu-erh tea during pile fermentation revealed by LC-MS-based lipidomics. Food Chem. 2023, 404, 134665. [Google Scholar] [CrossRef]
- Tang, M.; Li, C.H.; Zhang, C.; Cai, Y.M.; Zhang, Y.C.; Yang, L.Y.; Chen, M.X.; Zhu, F.Y.; Li, Q.Z.; Li, K.H. SWATH-MS-based proteomics reveals the regulatory metabolism of amaryllidaceae alkaloids in three Lycoris species. Int. J. Mol. Sci. 2023, 24, 4495. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.S.; Chen, X.M.; Shao, S.X.; Liao, L.H.; Wu, W.X.; Zhao, F.; Ye, N.X. Catechins and purine alkaloids in leaves located differently on a plant of various bitter teas in Fujian. Acta Tea Sin. 2022, 63, 65–72. [Google Scholar]
- Gorica, E.; Calderone, V. Arachidonic acid derivatives and neuroinflammation. CNS Neurol. Disord. Drug Targets 2022, 21, 118–129. [Google Scholar] [CrossRef]
- Chen, S.Y.; Hsu, Y.H.; Wang, S.Y.; Wang, S.Y.; Chen, Y.Y.; Hong, C.J.; Yen, G.C. Lucidone inhibits autophagy and MDR1 via HMGB1/RAGE/PI3K/Akt signaling pathway in pancreatic cancer cells. Phytother. Res. 2022, 36, 1664–1677. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.-L.; Yu, Y.-C.; Hsia, S.-M. Perspectives on the role of isoliquiritigenin in cancer. Cancers 2021, 13, 115. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Y.; Fu, X.M.; Mei, X.; Zhou, Y.; Du, B.; Tu, Y.Y.; Yang, Z.Y. Characterization of functional proteases from flowers of tea (Camellia sinensis) plants. J. Funct. Foods 2016, 25, 149–159. [Google Scholar] [CrossRef]
- Wu, Z.R.; Jiao, Y.; Jiang, X.F.; Li, C.; Sun, W.J.; Chen, Y.Q.; Yu, Z.; Ni, D.J. Effects of sun withering degree on black tea quality revealed via non-targeted metabolomics. Foods 2023, 12, 2430. [Google Scholar] [CrossRef]
- Yang, Z.Y.; Tu, Y.Y.; Baldermann, S.; Dong, F.; Xu, Y.; Watanabe, N. Isolation and identification of compounds from the ethanolic extract of flowers of the tea (Camellia sinensis) plant and their contribution to the antioxidant capacity. LWT Food Sci. Technol. 2009, 42, 1439–1443. [Google Scholar] [CrossRef]
- Shi, Y.B.; Yin, D. A good sugar, d-mannose, suppresses autoimmune diabetes. Cell Biosci. 2017, 7, 48. [Google Scholar] [CrossRef]
- Yasheen, J.; Henry, F.; Sabyasachi, D.; Liao, W.; Karen, D.; Christopher M., S. Comparative life cycle assessment and technoeconomic analysis of biomass-derived shikimic acid production. ACS Sustain. Chem. Eng. 2023, 11, 12218–12229. [Google Scholar]
- Zou, L.; Shen, S.S.; Wei, Y.M.; Jia, H.Y.; Li, T.H.; Yin, X.C.; Lu, C.Y.; Cui, Q.Q.; He, F.; Deng, W.W.; et al. Evaluation of the effects of solar withering on nonvolatile compounds in white tea through metabolomics and transcriptomics. Food Res. Int. 2022, 162 Pt B, 112088. [Google Scholar] [CrossRef]
- Sainz, F.; Navarro, D.; Mateo, E.; Torija, M.J.; Mas, A. Comparison of d-gluconic acid production in selected strains of acetic acid bacteria. Int. J. Food Microbiol. 2016, 222, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Park, J.S.; Rho, H.S.; Kim, D.H.; Chang, I.S. Enzymatic preparation of kaempferol from green tea seed and its antioxidant activity. J. Agric. Food Chem. 2006, 54, 2951–2956. [Google Scholar] [CrossRef] [PubMed]
- Kamisah, Y.; Jalil, J.; Yunos, N.M.; Zainalabidin, S. Cardioprotective properties of kaempferol: A review. Plants 2023, 12, 2096. [Google Scholar] [CrossRef]
- Obrador, E.; Salvador-Palmer, R.; Jihad-Jebbar, A.; López-Blanch, R.; Dellinger, T.H.; Dellinger, R.W.; Estrela, J.M. Pterostilbene in Cancer Therapy. Antioxidants 2021, 10, 492. [Google Scholar] [CrossRef]
- Liao, G.; Xu, Q.; Allan, A.C.; Xu, X.B. L-Ascorbic acid metabolism and regulation in fruit crops. Plant Physiol. 2023, 192, 1684–1695. [Google Scholar] [CrossRef] [PubMed]
- Dai, F.; Chen, W.F.; Zhou, B. Antioxidant synergism of green tea polyphenols with alpha-tocopherol and L-ascorbic acid in SDS micelles. Biochimie 2009, 90, 1499–1505. [Google Scholar] [CrossRef]
- Zeng, L.T.; Zhou, Y.; Fu, X.M.; Cheng, S.H.; Gui, F.D.; Dong, F.; Tang, J.C.; Ma, S.Z.; Yang, Z.Y. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chem. 2017, 237, 488–498. [Google Scholar] [CrossRef]
- Li, J.L.; Xiao, Y.Y.; Fan, Q.; Liao, Y.Y.; Wang, X.W.; Fu, X.M.; Gu, D.C.; Chen, Y.Y.; Zhou, B.; Tang, J.C.; et al. Transformation of salicylic acid and its distribution in tea plants (Camellia sinensis) at the tissue and subcellular levels. Plants 2021, 10, 282. [Google Scholar] [CrossRef]
- Liu, N.N.; Wang, Y.Y.; Li, K.Y.; Li, C.Y.; Liu, B.; Lei, Z.; Zhang, X.F.; Qu, F.F.; Gao, L.P.; Xia, T.; et al. Transcriptional analysis of tea plants (Camellia sinensis) in response to salicylic acid treatment. J. Agric. Food Chem. 2023, 71, 2377–2389. [Google Scholar] [CrossRef]
- Shevchuk, A.; Megías-Pérez, R.; Zemedie, Y.; Kuhnert, N. Evaluation of carbohydrates and quality parameters in six types of commercial teas by targeted statistical analysis. Food Res. Int. 2020, 133, 109122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.Y.; Chen, H.G.; Liu, L.; Xia, X.B.; Yan, X. JA-mediated MYC2/LOX/AOS feedback loop regulates osmotic stress response in tea plant. Hortic. Plant J. 2024, 10, 931–946. [Google Scholar] [CrossRef]
- Naranjo Pinta, M.; Montoliu, I.; Aura, A.M.; Seppänen-Laakso, T.; Barron, D.; Moco, S. In vitro gut metabolism of [U-13C]-quinic acid, the other hydrolysis product of chlorogenic acid. Mol. Nutr. Food Res. 2018, 62, e1800396. [Google Scholar] [CrossRef]
- Shirai, N. Organic Acid Analysis in Green Tea Leaves Using High-performance Liquid Chromatography. J. Oleo Sci. 2022, 71, 1413–1419. [Google Scholar] [CrossRef]
- Jeong, K.H.; Cho, S.Y.; Hong, Y.D.; Chung, J.O.; Kim, K.S.; Shim, S.M. Transport of gallocatechin gallate and catechin gallate in high-temperature-processed green tea extract from gastrointestinal tract to brain by an in vitro bio-mimic model system coupled with sequential cell cultures. J. Funct. Foods 2018, 47, 83–90. [Google Scholar] [CrossRef]
- Ikeda, I.; Kobayashi, M.; Hamada, T. Heat-epimerized tea catechins rich in gallocatechin gallate and catechin gallate are more effective to inhibit cholesterol absorption than tea catechins rich in epigallocatechin gallate and epicatechin gallate. J. Agric. Food Chem. 2003, 51, 7303–7307. [Google Scholar] [CrossRef]
- Castellano, J.M.; Ramos-Romero, S.; Perona, J.S. Oleanolic acid: Extraction, characterization and biological activity. Nutrients 2022, 14, 623. [Google Scholar] [CrossRef]
- Du, L.-L.; Fu, Q.-Y.; Xiang, L.-P.; Zheng, X.-Q.; Lu, J.-L.; Ye, J.-H.; Li, Q.-S.; Polito, C.; Liang, Y.-R. Tea polysaccharides and their bioactivities. Molecules 2016, 21, 1449. [Google Scholar] [CrossRef]
- Kordowska-Wiater, M.; Lisiecka, U.; Kostro, K. Improvement of Candida parapsilosis by genome shuffling for the efficient production of arabitol from L-arabinose. Food Sci. Biotechnol. 2018, 27, 1395–1403. [Google Scholar] [CrossRef]
- Zari, A.T.; Zari, T.A.; Hakeem, K.R. Anticancer properties of eugenol: A review. Molecules 2021, 26, 7407. [Google Scholar] [CrossRef]
- Zhao, M.Y.; Jin, J.Y.; Wang, J.M.; Gao, T.; Luo, Y.; Jing, T.T.; Hu, Y.T.; Pan, Y.T.; Lu, M.Q.; Schwab, W.; et al. Eugenol functions as a signal mediating cold and drought tolerance via UGT71A59-mediated glucosylation in tea plants. Plant J. 2022, 109, 1489–1506. [Google Scholar] [CrossRef] [PubMed]
Metabolites | Flavonoids | Polyphenols | Organic Acid | Steroids | Nucleotides | Amino Acids | Alkaloids | Vitamins | Xanthones | Lignans | Phenylpropanoids | Ketones, Aldehydes, Acids | Quinones | Sugars and Alcohols | Terpenoids | Coumarins | Lipid | Others |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roots | 13.83 × 107 ± 8.46 × 107 c | 6.43 × 106 ± 1.71 × 106 c | 27.32 × 107 ± 4.65 × 107 d | 9.07 × 105 ± 3.07 × 104 b | 2.97 × 106 ±5.43 × 105 b | 12.85 × 107 ± 6.52 × 107 a | 4.41 × 106 ± 0.99 × 106 bc | 3.03 × 105 ± 5.71 × 104 b | — | 3.00 × 104 ± 0.61 × 104 b | 7.13 × 106 ± 4.12 × 106 c | 1.39 × 106 ± 0.46 × 105 d | 7.58 × 106 ± 5.35 × 106 bc | 36.44 × 107 ± 0.51 × 107 c | 1.76 × 107 ± 1.75 × 106 c | 1.17 × 106 ± 1.73 × 105 c | 1.76 × 107 ± 4.84 × 106 c | 8.80 × 107 ± 8.33 × 106 a |
Flowers | 46.56 × 107 ± 5.10 × 107 a | 58.83 × 106 ± 2.62 × 106 a | 10.36 × 108 ± 5.39 × 107 a | 3.55 × 106 ± 3.06 × 106 a | 7.84 × 106 ± 1.64 × 106 a | 11.48 × 107 ± 4.13 × 106 a | 11.41 × 106 ± 1.26 × 106 b | 2.09 × 106 ± 1.03 × 106 b | — | 1.02 × 104 ± 0.29 × 104 b | 2.09 × 107 ± 4.78 × 106 b | 6.04 × 106 ± 5.71 × 105 cb | 15.81 × 106 ± 1.77 × 106 b | 65.27 × 107 ± 5.47 × 107 a | 1.75 × 107 ± 7.54 × 106 c | 5.88 × 105 ± 2.03 × 105 c | 8.65 × 107 ± 1.58 × 107 b | 5.27 × 107 ± 4.23 × 106 b |
Fruits | 4.78 × 107 ± 2.06 × 107 c | 3.38 × 106 ± 0.19 × 106 c | 42.96 × 107 ± 8.44 × 107 c | 3.34 × 105 ± 7.35 × 104 b | 6.79 × 106 ± 6.06 × 105 a | 15.35 × 107 ± 2.92 × 107 a | 23.58 × 106 ± 9.24 × 106 a | 20.89 × 106 ± 4.23 × 106 a | 0.13 × 104 ± 0.12 × 104 a | 5.57 × 104 ± 2.74 × 104 ab | 2.65 × 106 ± 9.66 × 105 c | 1.40 × 106 ± 1.88 × 105 cd | 2.35 × 106 ± 4.89 × 105 c | 49.10 × 107 ± 4.35 × 107 b | 9.68 × 106 ± 1.00 × 106 c | 1.03 × 105 ± 2.77 × 104 c | 2.12 × 107 ± 2.40 × 106 c | 2.64 × 107 ± 3.13 × 106 c |
Stems | 27.24 × 107 ± 4.95 × 107 b | 21.74 × 106 ± 5.28 × 106 b | 74.07 × 107 ± 15.12 × 107 b | 7.26 × 105 ± 2.96 × 105 b | 1.72 × 106 ± 1.49 × 105 b | 11.08 × 107 ± 3.02 × 107 a | 3.95 × 106 ± 0.59 × 106 bc | 6.55 × 105 ±3.54 × 104 b | — | 8.08 × 104 ± 3.29 × 104 a | 2.55 × 107 ± 2.96 × 106 b | 2.40 × 106 ± 6.03 × 105 c | 7.68 × 106 ± 5.79 × 106 bc | 28.79 × 107 ± 2.52 × 107 c | 5.46 × 107 ± 5.16 × 106 b | 6.98 × 106 ± 4.68 × 105 b | 2.36 × 107 ± 5.22 × 106 c | 5.70 × 107 ± 7.23 × 106 b |
Leaves | 31.38 × 107 ± 4.41 × 107 cb | 25.39 × 106 ± 1.11 × 106 b | 37.94 × 107 ± 4.27 × 107 cd | 6.20 × 105 ± 1.52 × 105 b | 1.49 × 106 ± 3.11 × 105 b | 2.67 × 107 ± 2.17 × 106 b | 2.37 × 106 ± 0.05 × 106 c | 6.50 × 105 ± 8.88 × 104 b | — | 6.54 × 104 ± 1.56 × 104 ab | 11.50 × 107 ± 1.02 × 107 a | 10.10 × 106 ± 5.35 × 106 a | 7.72 × 107 ± 8.26 × 106 a | 71.56 × 107 ± 6.57 × 107 a | 6.48 × 107 ± 5.50 × 106 a | 1.17 × 107 ± 1.46 × 106 a | 1.22 × 108 ± 9.14 × 106 a | 9.26 × 107 ± 1.59 × 107 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Liu, F.; Wu, G.; Liang, S.; Bai, X.; Liu, B.; Zhang, B.; Chen, H.; Yang, J. Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population. Molecules 2024, 29, 4754. https://doi.org/10.3390/molecules29194754
Yang W, Liu F, Wu G, Liang S, Bai X, Liu B, Zhang B, Chen H, Yang J. Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population. Molecules. 2024; 29(19):4754. https://doi.org/10.3390/molecules29194754
Chicago/Turabian StyleYang, Weicheng, Fen Liu, Gaoyin Wu, Sheng Liang, Xiaojie Bai, Bangyou Liu, Bingcheng Zhang, Hangdan Chen, and Jiao Yang. 2024. "Widely Targeted Metabolomics Analysis of the Roots, Stems, Leaves, Flowers, and Fruits of Camellia luteoflora, a Species with an Extremely Small Population" Molecules 29, no. 19: 4754. https://doi.org/10.3390/molecules29194754