Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives
<p>Core structure of chalcone molecule.</p> "> Figure 2
<p>Claisen-Schmidt condensation reaction.</p> "> Figure 3
<p>Heterocyclic ring-containing chalcone using a phase transfer catalyst.</p> "> Figure 4
<p>The derivatives of Chalcones from natural sources.</p> "> Figure 5
<p>Chemical reactions from Chalcones derivatives.</p> "> Figure 6
<p>Semisynthetic derivatives of chalcones.</p> "> Figure 7
<p>Pharmacological properties of chalcone and its derivatives (Information was sourced from references [<a href="#B19-molecules-27-07062" class="html-bibr">19</a>,<a href="#B48-molecules-27-07062" class="html-bibr">48</a>,<a href="#B49-molecules-27-07062" class="html-bibr">49</a>,<a href="#B50-molecules-27-07062" class="html-bibr">50</a>,<a href="#B51-molecules-27-07062" class="html-bibr">51</a>,<a href="#B52-molecules-27-07062" class="html-bibr">52</a>,<a href="#B53-molecules-27-07062" class="html-bibr">53</a>].</p> "> Figure 8
<p>Antibacterial mechanisms of chalcone and its derivatives. Antibiotic resistance bacteria inhibit the function of antibiotic or antimicrobial agents by activating the efflux pump, modifying the active site of the enzyme, and degrading the enzyme. However, chalcone and its derivatives inhibit or block the functions of resistance plasmids through different mechanisms. Additionally, they inhibit DNA gyrase, DNA replication, and FtsZ. Therefore, bacteria cannot cell divide, and ultimately the bacteria die (Information was sourced from reference [<a href="#B61-molecules-27-07062" class="html-bibr">61</a>].</p> ">
Abstract
:1. Introduction
2. Chemistry of Chalcone and Its Derivatives
2.1. Claisen Schmidt Condensation
2.2. Aldol Condensation
2.3. Synthesisand Chemistry
2.4. Approach to Design of Chalcone Derivatives from the Natural Sources
2.4.1. Isoliquiritigenin
2.4.2. Licochalcone A
2.4.3. Xanthoangelol
2.4.4. Isobavachalcone
2.4.5. Xanthohumol
2.4.6. Nardoaristolone A
2.5. Role of Chalcone Moiety in Synthesis of Derivatives
2.5.1. Semi Synthetic Derivatives of Chalcones
2.5.2. Characterization of Chalcones
2.5.3. UV Spectrum
2.5.4. IR Spectrum
2.5.5. NMR Spectrum
2.5.6. Mass Spectrum
3. Basic Fragmentation Pathways of Chalcones Are Obtained by Loss of the Phenyl Group from the A or B Ring, and Loss of CO. Pharmacotherapeutic Activities
3.1. Anti-Bacterial Agent
3.2. Antibacterial Mechanisms
3.3. Anti-Fungal Agent
3.4. Anti-Malarial Agent
3.5. Anti-Protozoal and Anti-Filarial Agent
3.6. Anti-Inflammatory Agent
3.7. Anti-Cancer Agent
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matos, M.J.; Vazquez-Rodriguez, S.; Uriarte, E.; Santana, L. Potential pharmacological uses of chalcones: A patent review (from June 2011–2014). Expert Opin. Ther. Pat. 2015, 25, 351–366. [Google Scholar] [CrossRef] [PubMed]
- Chavan, B.B.; Gadekar, A.S.; Mehta, P.P.; Vawhal, P.K.; Kolsure, A.K.; Chabukswar, A.R. Synthesis and Medicinal Significance of Chalcones- A Review. Asian J. Biomed. Pharm. Sci. 2016, 6, 56. [Google Scholar]
- Bandgar, B.P.; Gawande, S.S. Synthesis and biological screening of a combinatorial library of beta-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents. Bioorg. Med. Chem. 2010, 18, 2060–2065. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Quispe, C.; Chamkhi, I.; El Omari, N.; Balahbib, A.; Sharifi-Rad, J.; Bouyahya, A.; Akram, M.; Iqbal, M.; Docea, A.O.; et al. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front. Pharmacol. 2021, 11, 592654. [Google Scholar] [CrossRef] [PubMed]
- Dan, W.; Dai, J. Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur. J. Med. Chem. 2020, 187, 111980. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, B.P.; Patil, S.A.; Gacche, R.N.; Korbad, B.L.; Hote, B.S.; Kinkar, S.N.; Jalde, S.S. Synthesis and biological evaluation of nitrogen-containing chalcones as possible anti-inflammatory and antioxidant agents. Bioorganic Med. Chem. Lett. 2010, 20, 730–733. [Google Scholar] [CrossRef]
- Alcaráz, L.E.; Blanco, S.E.; Puig, O.N.; Tomás, F.; Ferretti, F.H. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J. Biol. 2000, 205, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem. 2007, 42, 125–137. [Google Scholar] [CrossRef] [PubMed]
- Talia, J.M.; Debattista, N.B.; Pappano, N.B. New antimicrobial combinations: Substituted chalcones- oxacillin against methicillin resistant Staphylococcus aureus. Braz. J. Microbiol. 2011, 42, 470–475. [Google Scholar] [CrossRef] [Green Version]
- Williamson, E.M. Synergy and other interactions in phytomedicines. Phytomedicine 2001, 8, 401–409. [Google Scholar] [CrossRef]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Tran, T.D.; Nguyen, T.T.; Do, T.H.; Huynh, T.N.; Tran, C.D.; Thai, K.M. Synthesis and antibacterial activity of some heterocyclic chalcone analogues alone and in combination with antibiotics. Molecules 2012, 17, 6684–6696. [Google Scholar] [CrossRef]
- Gupta, D.; Jain, D.K. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity. J. Adv. Pharm. Technol. Res. 2015, 6, 114–117. [Google Scholar] [CrossRef]
- López, S.N.; Castelli, M.V.; Zacchino, S.A.; Domínguez, J.N.; Lobo, G.; Charris-Charris, J.; Cortés, J.C.; Ribas, J.C.; Devia, C.; Rodríguez, A.M.; et al. In vitro antifungal evaluation and structure-activity relationships of a new series of chalcone derivatives and synthetic analogues, with inhibitory properties against polymers of the fungal cell wall. Bioorg. Med. Chem. 2001, 9, 1999–2013. [Google Scholar] [CrossRef]
- Tsuchiya, H.; Sato, M.; Akagiri, M.; Takagi, N.; Tanaka, T.; Iinuma, M. Anti-Candida activity of synthetic hydroxychalcones. Pharmazie 1994, 49, 756–758. [Google Scholar] [PubMed]
- Sato, M.; Tsuchiya, H.; Akagiri, M.; Fujiwara, S.; Fujii, T.; Takagi, N.; Matsuura, N.; Iinuma, M. Growth inhibitory properties of chalcones to Candida. Lett. Appl. Microbiol. 1994, 18, 53–55. [Google Scholar] [CrossRef]
- Reddy, N.P.; Aparoy, P.; Reddy, T.C.; Achari, C.; Sridhar, P.R.; Reddanna, P. Design, synthesis, and biological evaluation of prenylated chalcones as 5-LOX inhibitors. Bioorg. Med. Chem. 2010, 18, 5807–5815. [Google Scholar] [CrossRef]
- Lahtchev, K.L.; Batovska, D.I.; Parushev, S.P.; Ubiyvovk, V.M.; Sibirny, A.A. Antifungal activity of chalcones: A mechanistic study using various yeast strains. Eur. J. Med. Chem. 2008, 43, 2220–2228. [Google Scholar] [CrossRef]
- Mahapatra, D.K.; Bharti, S.K.; Asati, V. Chalcone Derivatives: Anti-inflammatory Potential and Molecular Targets Perspectives. Curr. Top. Med. Chem. 2017, 17, 3146–3169. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, H.K.; Tsao, L.T.; Wang, J.P.; Lin, C.N. Synthesis and anti-inflammatory effect of chalcones. J. Pharm. Pharm. 2000, 52, 163–171. [Google Scholar] [CrossRef]
- Karthikeyan, C.; Moorthy, N.S.; Ramasamy, S.; Vanam, U.; Manivannan, E.; Karunagaran, D.; Trivedi, P. Advances in chalcones with anticancer activities. Recent Pat. Anticancer Drug Discov. 2015, 10, 97–115. [Google Scholar] [CrossRef]
- Sharma, V.; Kumar, V.; Kumar, P. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer Agents Med. Chem. 2013, 13, 422–432. [Google Scholar]
- León-González, A.J.; Acero, N.; Muñoz-Mingarro, D.; Navarro, I.; Martín-Cordero, C. Chalcones as Promising Lead Compounds on Cancer Therapy. Curr. Med. Chem. 2015, 22, 3407–3425. [Google Scholar] [CrossRef] [PubMed]
- Elkhalifa, D.; Al-Hashimi, I.; Al Moustafa, A.-E.; Khalil, A. A comprehensive review on the antiviral activities of chalcones. J. Drug Target. 2021, 29, 403–419. [Google Scholar] [CrossRef]
- Marinov, R.; Markova, N.; Krumova, S.; Yotovska, K.; Zaharieva, M.M.; Genova-Kalou, P. Antiviral properties of chalcones and their synthetic derivatives: A mini review. Pharmacia 2020, 67, 325. [Google Scholar] [CrossRef]
- Jasim, H.A.; Nahar, L.; Jasim, M.A.; Moore, S.A.; Ritchie, K.J.; Sarker, S.D. Chalcones: Synthetic chemistry follows where nature leads. Biomolecules 2021, 11, 1203. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, R.; Kaur, M. Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: A review. J. Coord. Chem. 2021, 74, 725–742. [Google Scholar] [CrossRef]
- Sun, Y.-F.; Cui, Y.-P. The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes Pigments 2008, 78, 65–76. [Google Scholar] [CrossRef]
- Gomes, M.N.; Muratov, E.N.; Pereira, M.; Peixoto, J.C.; Rosseto, L.P.; Cravo, P.V.L.; Andrade, C.H.; Neves, B.J. Chalcone Derivatives: Promising Starting Points for Drug Design. Molecules 2017, 22, 1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Synthesis of chalcones via Claisen–Schmidt condensation reaction catalyzed by acyclic acidic ionic liquids. Catal. Commun. 2008, 9, 1924–1927. [Google Scholar] [CrossRef]
- Wadey, B.L. Plasticizers. In Encyclopedia of Physical Science and Technology, 3rd ed.; Meyers, R.A., Ed.; Academic Press: New York, NY, USA, 2003; pp. 441–456. [Google Scholar]
- Larsen, R.D. 3.08-1,3-Selenazoles. In Comprehensive Heterocyclic Chemistry II; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Pergamon: Oxford, UK, 1996; pp. 493–510. [Google Scholar]
- Zhan, C.; Yang, J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res. 2006, 53, 303–309. [Google Scholar] [CrossRef]
- Furusawa, J.; Funakoshi-Tago, M.; Mashino, T.; Tago, K.; Inoue, H.; Sonoda, Y.; Kasahara, T. Glycyrrhiza inflata-derived chalcones, Licochalcone A, Licochalcone B and Licochalcone D, inhibit phosphorylation of NF-kappaB p65 in LPS signaling pathway. Int. Immunopharmacol. 2009, 9, 499–507. [Google Scholar] [CrossRef]
- Chen, M.; Christensen, S.B.; Blom, J.; Lemmich, E.; Nadelmann, L.; Fich, K.; Theander, T.G.; Kharazmi, A. Licochalcone A, a novel antiparasitic agent with potent activity against human pathogenic protozoan species of Leishmania. Antimicrob. Agents Chemother. 1993, 37, 2550–2556. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Christensen, S.B.; Theander, T.G.; Kharazmi, A. Antileishmanial activity of licochalcone A in mice infected with Leishmania major and in hamsters infected with Leishmania donovani. Antimicrob. Agents Chemother. 1994, 38, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Zhai, L.; Blom, J.; Chen, M.; Christensen, S.B.; Kharazmi, A. The antileishmanial agent licochalcone A interferes with the function of parasite mitochondria. Antimicrob. Agents Chemother. 1995, 39, 2742–2748. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, H.; Okada, Y.; Kamisako, T.; Baba, K. Beneficial effect of xanthoangelol, a chalcone compound from Angelica keiskei, on lipid metabolism in stroke-prone spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2007, 34, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qin, X.; Li, P.; Zhang, H.; Lin, T.; Miao, Z.; Ma, S. Isobavachalcone isolated from Psoralea corylifolia inhibits cell proliferation and induces apoptosis via inhibiting the AKT/GSK-3β/β-catenin pathway in colorectal cancer cells. Drug Des. Dev. Ther. 2019, 13, 1449–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinson, K.; Stueven, N.; Monte, A.; Huang, C. A Novel Stilbene-Like Compound That Reduces Melanin through Inhibiting Melanocyte Differentiation and Proliferation without Inhibiting Tyrosinase. Cosmetics 2018, 5, 45. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Li, H.; Kweon, M.; Choi, Y.; Kim, M.J.; Ryu, J.H. Isobavachalcone from Angelica keiskei Inhibits Adipogenesis and Prevents Lipid Accumulation. Int. J. Mol. Sci. 2018, 19, 1693. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Li, W.; Hu, B.; Wang, M.; Wang, J.; Guan, L. Identification of isobavachalcone as a potential drug for rice blast disease caused by the fungus Magnaporthe grisea. J. Biomol. Struct. Dyn. 2019, 37, 3399–3409. [Google Scholar] [CrossRef]
- Liu, M.; Yin, H.; Liu, G.; Dong, J.; Qian, Z.; Miao, J. Xanthohumol, a Prenylated Chalcone from Beer Hops, Acts as an α-Glucosidase Inhibitor in Vitro. J. Agric. Food Chem. 2014, 62, 5548–5554. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Oliveira, E.F.T.; Sousa, J.L.C.; Tomé, S.M.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. α-Glucosidase inhibition by flavonoids: An in vitro and in silico structure-activity relationship study. J Enzym. Inhib Med Chem 2017, 32, 1216–1228. [Google Scholar] [CrossRef]
- Rahman, M. Chalcone: A Valuable Insight into the Recent Advances and Potential Pharmacological Activities. Chem. Sci. 2011, 2011. [Google Scholar] [CrossRef]
- Liu, M.L.; Duan, Y.H.; Hou, Y.L.; Li, C.; Gao, H.; Dai, Y.; Yao, X.S. Nardoaristolones A and B, two terpenoids with unusual skeletons from Nardostachys chinensis Batal. Org. Lett. 2013, 15, 1000–1003. [Google Scholar] [CrossRef]
- El-Meligie, S.; Taher, A.T.; Kamal, A.M.; Youssef, A. Design, synthesis and cytotoxic activity of certain novel chalcone analogous compounds. Eur. J. Med. Chem. 2017, 126, 52–60. [Google Scholar] [CrossRef]
- Bukhari, S.N.; Jasamai, M.; Jantan, I. Synthesis and biological evaluation of chalcone derivatives (mini review). Mini Rev. Med. Chem. 2012, 12, 1394–1403. [Google Scholar]
- Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Der Pharm. 2020, 353, e1900350. [Google Scholar]
- Ouyang, Y.; Li, J.; Chen, X.; Fu, X.; Sun, S.; Wu, Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021, 11, 894. [Google Scholar] [CrossRef]
- Qin, H.L.; Zhang, Z.W.; Lekkala, R.; Alsulami, H.; Rakesh, K.P. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. Eur. J. Med. Chem. 2020, 193, 112215. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khan, J.; Dukhyil, A.A.B.; Alarousy, R.; Attah, E.I.; Sharma, T.; Khairnar, S.J.; Bendale, A.R. Chalcone Scaffolds, Bioprecursors of Flavonoids: Chemistry, Bioactivities, and Pharmacokinetics. Molecules 2021, 26, 7177. [Google Scholar] [CrossRef]
- Sahu, N.K.; Balbhadra, S.S.; Choudhary, J.; Kohli, D.V. Exploring pharmacological significance of chalcone scaffold: A review. Curr. Med. Chem. 2012, 19, 209–225. [Google Scholar] [CrossRef]
- Shaik, A.; Bhandare, R.R.; Palleapati, K.; Nissankararao, S.; Kancharlapalli, V.; Shaik, S. Antimicrobial, Antioxidant, and Anticancer Activities of Some Novel Isoxazole Ring Containing Chalcone and Dihydropyrazole Derivatives. Molecules 2020, 25, 1047. [Google Scholar] [CrossRef] [Green Version]
- Chu, W.-C.; Bai, P.-Y.; Yang, Z.-Q.; Cui, D.-Y.; Hua, Y.-G.; Yang, Y.; Yang, Q.-Q.; Zhang, E.; Qin, S. Synthesis and antibacterial evaluation of novel cationic chalcone derivatives possessing broad spectrum antibacterial activity. Eur. J. Med. Chem. 2018, 143, 905–921. [Google Scholar] [CrossRef]
- Sarig, H.; Rotem, S.; Ziserman, L.; Danino, D.; Mor, A. Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob. Agents Chemother. 2008, 52, 4308–4314. [Google Scholar] [CrossRef]
- Ávila, H.P.; Smânia, E.d.F.A.; Monache, F.D.; Smânia, A. Structure–activity relationship of antibacterial chalcones. Bioorganic Med. Chem. 2008, 16, 9790–9794. [Google Scholar] [CrossRef]
- Konduru, N.K.; Dey, S.; Sajid, M.; Owais, M.; Ahmed, N. Synthesis and antibacterial and antifungal evaluation of some chalcone based sulfones and bisulfones. Eur. J. Med. Chem. 2013, 59, 23–30. [Google Scholar] [CrossRef]
- Zheng, C.J.; Jiang, S.M.; Chen, Z.H.; Ye, B.J.; Piao, H.R. Synthesis and anti-bacterial activity of some heterocyclic chalcone derivatives bearing thiofuran, furan, and quinoline moieties. Arch. Der Pharm. 2011, 344, 689–695. [Google Scholar] [CrossRef]
- Tang, Y.L.; Li, Y.K.; Li, M.X.; Gao, H.; Yang, X.B.; Mao, Z.W. Synthesis of New Piperazine Substituted Chalcone Sulphonamides as Antibacterial Agents. Curr. Org. Synth. 2020, 17, 136–143. [Google Scholar] [CrossRef]
- Soto, S.M. Role of efflux pumps in the antibiotic resistance of bacteria embedded in a biofilm. Virulence 2013, 4, 223–229. [Google Scholar] [CrossRef] [Green Version]
- Du, D.; Wang-Kan, X.; Neuberger, A.; van Veen, H.W.; Pos, K.M.; Piddock, L.J.V.; Luisi, B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol. 2018, 16, 523–539. [Google Scholar] [CrossRef]
- Sun, J.; Deng, Z.; Yan, A. Bacterial multidrug efflux pumps: Mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun. 2014, 453, 254–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikaido, H. Antibiotic Resistance Caused by Gram-Negative Multidrug Efflux Pumps. Clin. Infect. Dis. 1998, 27, S32–S41. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.M.A.; Richmond, G.E.; Piddock, L.J.V. Multidrug efflux pumps in Gram-negative bacteria and their role in antibiotic resistance. Future Microbiol. 2014, 9, 1165–1177. [Google Scholar] [CrossRef] [PubMed]
- Alcalde-Rico, M.; Hernando-Amado, S.; Blanco, P.; Martínez, J.L. Multidrug Efflux Pumps at the Crossroad between Antibiotic Resistance and Bacterial Virulence. Front. Microbiol. 2016, 7, 1483. [Google Scholar] [CrossRef] [PubMed]
- Amaral, L.; Martins, A.; Spengler, G.; Molnar, J. Efflux pumps of Gram-negative bacteria: What they do, how they do it, with what and how to deal with them. Front. Pharmacol. 2014, 4, 168. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Gupta, V.K.; Pathania, R. Efflux pump inhibitors for bacterial pathogens: From bench to bedside. Indian J. Med. Res. 2019, 149, 129–145. [Google Scholar]
- Holler, J.G.; Slotved, H.-C.; Mølgaard, P.; Olsen, C.E.; Christensen, S.B. Chalcone inhibitors of the NorA efflux pump in Staphylococcus aureus whole cells and enriched everted membrane vesicles. Bioorganic Med. Chem. 2012, 20, 4514–4521. [Google Scholar] [CrossRef]
- Gaur, R.; Gupta, V.K.; Pal, A.; Darokar, M.P.; Bhakuni, R.S.; Kumar, B. In vitro and in vivo synergistic interaction of substituted chalcone derivatives with norfloxacin against methicillin resistant Staphylococcus aureus. Rsc Adv. 2015, 5, 5830–5845. [Google Scholar] [CrossRef]
- Vijay, K.; Karakavalasa, P.; Vasanthi, R. Synthesis, characterization and pharmacological evaluation of some novel quinoxaline derived chalcones. Der Pharma Chem. 2013, 5, 301–307. [Google Scholar]
- Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 2019, 91, 103133. [Google Scholar] [CrossRef]
- Kucerova-Chlupacova, M.; Kunes, J.; Buchta, V.; Vejsova, M.; Opletalova, V. Novel pyrazine analogs of chalcones: Synthesis and evaluation of their antifungal and antimycobacterial activity. Molecules 2015, 20, 1104–1117. [Google Scholar] [CrossRef] [Green Version]
- Boeck, P.; Leal, P.C.; Yunes, R.A.; Filho, V.C.; López, S.; Sortino, M.; Escalante, A.; Furlán, R.L.E.; Zacchino, S. Antifungal Activity and Studies on Mode of Action of Novel Xanthoxyline-Derived Chalcones. Arch. Der Pharm. 2005, 338, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.N.; León, C.; Rodrigues, J.; Gamboa de Domínguez, N.; Gut, J.; Rosenthal, P.J. Synthesis and evaluation of new antimalarial phenylurenyl chalcone derivatives. J. Med. Chem. 2005, 48, 3654–3658. [Google Scholar] [CrossRef]
- Sashidhara, K.V.; Kumar, M.; Modukuri, R.K.; Srivastava, R.K.; Soni, A.; Srivastava, K.; Singh, S.V.; Saxena, J.K.; Gauniyal, H.M.; Puri, S.K. Antiplasmodial activity of novel keto-enamine chalcone-chloroquine based hybrid pharmacophores. Bioorganic Med. Chem. 2012, 20, 2971–2981. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.; Dixit, S.K.; Bhattacharya, A.; Mishra, L.C.; Sharma, M.; Awasthi, S.K.; Bhasin, V.K. Antimalarial activity of newly synthesized chalcone derivatives in vitro. Chem. Biol. Drug Des. 2012, 80, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, J.N.; León, C.; Rodrigues, J.; de Domínguez, N.G.; Gut, J.; Rosenthal, P.J. Synthesis and antimalarial activity of sulfonamide chalcone derivatives. Il Farm. 2005, 60, 307–311. [Google Scholar] [CrossRef] [PubMed]
- Tomar, V.; Bhattacharjee, G.; Rajakumar, S.; Srivastava, K.; Puri, S.K. Synthesis of new chalcone derivatives containing acridinyl moiety with potential antimalarial activity. Eur. J. Med. Chem. 2010, 45, 745–751. [Google Scholar] [CrossRef]
- Awasthi, S.K.; Mishra, N.; Kumar, B.; Sharma, M.; Bhattacharya, A.; Mishra, L.C.; Bhasin, V.K. Potent antimalarial activity of newly synthesized substituted chalcone analogs in vitro. Med. Chem. Res. 2009, 18, 407–420. [Google Scholar] [CrossRef]
- Guantai, E.M.; Ncokazi, K.; Egan, T.J.; Gut, J.; Rosenthal, P.J.; Smith, P.J.; Chibale, K. Design, synthesis and in vitro antimalarial evaluation of triazole-linked chalcone and dienone hybrid compounds. Bioorganic Med. Chem. 2010, 18, 8243–8256. [Google Scholar] [CrossRef] [PubMed]
- Pingaew, R.; Saekee, A.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, biological evaluation and molecular docking of novel chalcone–coumarin hybrids as anticancer and antimalarial agents. Eur. J. Med. Chem. 2014, 85, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Kenyon, G.L.; Cohen, F.E.; Chen, X.; Gong, B.; Dominguez, J.N.; Davidson, E.; Kurzban, G.; Miller, R.E.; Nuzum, E.O. In vitro antimalarial activity of chalcones and their derivatives. J. Med. Chem. 1995, 38, 5031–5037. [Google Scholar] [CrossRef]
- Sinha, S.; Medhi, B.; Sehgal, R. Chalcones as an emerging lead molecule for antimalarial therapy: A review. J. Mod. Med. Chem 2013, 1, 64–77. [Google Scholar]
- Liu, M.; Wilairat, P.; Croft, S.L.; Tan, A.L.-C.; Go, M.-L. Structure–activity relationships of antileishmanial and antimalarial chalcones. Bioorganic Med. Chem. 2003, 11, 2729–2738. [Google Scholar] [CrossRef]
- Tadigoppula, N.; Korthikunta, V.; Gupta, S.; Kancharla, P.; Khaliq, T.; Soni, A.; Srivastava, R.K.; Srivastava, K.; Puri, S.K.; Raju, K.S.R. Synthesis and insight into the structure–activity relationships of chalcones as antimalarial agents. J. Med. Chem. 2013, 56, 31–45. [Google Scholar] [CrossRef]
- Hans, R.H.; Guantai, E.M.; Lategan, C.; Smith, P.J.; Wan, B.; Franzblau, S.G.; Gut, J.; Rosenthal, P.J.; Chibale, K. Synthesis, antimalarial and antitubercular activity of acetylenic chalcones. Bioorganic Med. Chem. Lett. 2010, 20, 942–944. [Google Scholar] [CrossRef]
- Domínguez, J.N.; Charris, J.E.; Lobo, G.; de Domínguez, N.G.; Moreno, M.a.M.; Riggione, F.; Sanchez, E.; Olson, J.; Rosenthal, P.J. Synthesis of quinolinyl chalcones and evaluation of their antimalarial activity. Eur. J. Med. Chem. 2001, 36, 555–560. [Google Scholar] [CrossRef]
- Insuasty, B.; Montoya, A.; Becerra, D.; Quiroga, J.; Abonia, R.; Robledo, S.; Vélez, I.D.; Upegui, Y.; Nogueras, M.; Cobo, J. Synthesis of novel analogs of 2-pyrazoline obtained from [(7-chloroquinolin-4-yl)amino]chalcones and hydrazine as potential antitumor and antimalarial agents. Eur. J. Med. Chem. 2013, 67, 252–262. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem. 2018, 158, 917–936. [Google Scholar] [CrossRef] [PubMed]
- Hayat, F.; Moseley, E.; Salahuddin, A.; Van Zyl, R.L.; Azam, A. Antiprotozoal activity of chloroquinoline based chalcones. Eur. J. Med. Chem. 2011, 46, 1897–1905. [Google Scholar] [CrossRef]
- Kayser, O.; Kiderlen, A.F. In vitro leishmanicidal activity of naturally occurring chalcones. Phytother. Res. 2001, 15, 148–152. [Google Scholar] [CrossRef]
- Nielsen, S.F.; Kharazmi, A.; Christensen, S.B. Modifications of the α, β-double bond in chalcones only marginally affect the antiprotozoal activities. Bioorganic Med. Chem. 1998, 6, 937–945. [Google Scholar] [CrossRef]
- de Mello, M.V.P.; Abrahim-Vieira, B.A.; Domingos, T.F.S.; de Jesus, J.B.; de Sousa, A.C.C.; Rodrigues, C.R.; Souza, A.M.T. A comprehensive review of chalcone derivatives as antileishmanial agents. Eur. J. Med. Chem. 2018, 150, 920–929. [Google Scholar] [CrossRef] [PubMed]
- de Brito, D.H.A.; Almeida-Neto, F.W.Q.; Ribeiro, L.R.; Magalhães, E.P.; de Menezes, R.R.P.P.B.; Sampaio, T.L.; Martins, A.M.C.; Bandeira, P.N.; Marinho, M.M.; Marinho, E.S.; et al. Synthesis, structural and spectroscopic analysis, and antiproliferative activity of chalcone derivate (E)-1-(4-aminophenyl)-3-(benzo[b]thiophen-2-yl)prop-2-en-1-one in Trypanosoma cruzi. J. Mol. Struct. 2022, 1253, 132197. [Google Scholar] [CrossRef]
- Sangshetti, J.N.; Shinde, D.B.; Kulkarni, A.; Arote, R. Two decades of antifilarial drug discovery: A review. RSC Adv. 2017, 7, 20628–20666. [Google Scholar] [CrossRef] [Green Version]
- Kotra, V.; Ganapaty, S.; Adapa, S.R. Synthesis of a new series of quinolinyl chalcones as anticancer and anti-inflammatory agents. Indian J. Chem. 2010, 49B, 1109–1116. [Google Scholar]
- Ali, M.; Khan, M.; Zaman, K.; Wadood, A.; Iqbal, M.; Alam, A.; Shah, S.; Ashfaq Ur, R.; Yousaf, M.; Rafique, R.; et al. Chalcones: As Potent α-amylase Enzyme Inhibitors; Synthesis, In Vitro, and In Silico Studies. Med. Chem. 2021, 17, 903–912. [Google Scholar] [CrossRef]
- Herencia, F.; Ferrándiz, M.L.; Ubeda, A.; Domínguez, J.N.; Charris, J.E.; Lobo, G.M.; Alcaraz, M.J. Synthesis and anti-inflammatory activity of chalcone derivatives. Bioorg. Med. Chem. Lett 1998, 8, 1169–1174. [Google Scholar] [CrossRef]
- Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi, F.; Yáñez, M.; Orallo, F.; Ortuso, F.; Alcaro, S. Chalcones: A Valid Scaffold for Monoamine Oxidases Inhibitors. J. Med. Chem. 2009, 52, 2818–2824. [Google Scholar] [CrossRef] [PubMed]
- Najafian, M.; Ebrahim-Habibi, A.; Hezareh, N.; Yaghmaei, P.; Parivar, K.; Larijani, B. Trans-chalcone: A novel small molecule inhibitor of mammalian alpha-amylase. Mol. Biol. Rep. 2011, 38, 1617–1620. [Google Scholar] [CrossRef]
- Abou-Zied, H.A.; Youssif, B.G.M.; Mohamed, M.F.A.; Hayallah, A.M.; Abdel-Aziz, M. EGFR inhibitors and apoptotic inducers: Design, synthesis, anticancer activity and docking studies of novel xanthine derivatives carrying chalcone moiety as hybrid molecules. Bioorganic Chem. 2019, 89, 102997. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Ozcan, S.; Balcioglu, S.; Gencel, M.; Noma, S.A.A.; Essiz, S.; Ates, B.; Algul, O. Synthesis, biological evaluation and molecular docking studies of bis-chalcone derivatives as xanthine oxidase inhibitors and anticancer agents. Bioorganic Chem. 2019, 91, 103149. [Google Scholar] [CrossRef] [PubMed]
- Castaño, L.F.; Cuartas, V.; Bernal, A.; Insuasty, A.; Guzman, J.; Vidal, O.; Rubio, V.; Puerto, G.; Lukáč, P.; Vimberg, V. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur. J. Med. Chem. 2019, 176, 50–60. [Google Scholar] [CrossRef]
- Chouiter, M.I.; Boulebd, H.; Pereira, D.M.; Valentão, P.; Andrade, P.B.; Belfaitah, A.; Silva, A.M.S. New chalcone-type compounds and 2-pyrazoline derivatives: Synthesis and caspase-dependent anticancer activity. Future Med. Chem. 2020, 12, 493–509. [Google Scholar] [CrossRef]
- Djemoui, A.; Naouri, A.; Ouahrani, M.R.; Djemoui, D.; Lahcene, S.; Lahrech, M.B.; Boukenna, L.; Albuquerque, H.M.T.; Saher, L.; Rocha, D.H.A. A step-by-step synthesis of triazole-benzimidazole-chalcone hybrids: Anticancer activity in human cells+. J. Mol. Struct. 2020, 1204, 127487. [Google Scholar] [CrossRef]
- Gao, F.; Huang, G.; Xiao, J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med. Res. Rev. 2020, 40, 2049–2084. [Google Scholar] [CrossRef]
- Hseu, Y.-C.; Chiang, Y.-C.; Vudhya Gowrisankar, Y.; Lin, K.-Y.; Huang, S.-T.; Shrestha, S.; Chang, G.-R.; Yang, H.-L. The in vitro and in vivo anticancer properties of chalcone flavokawain b through induction of ros-mediated apoptotic and autophagic cell death in human melanoma cells. Cancers 2020, 12, 2936. [Google Scholar] [CrossRef]
- Mirzaei, S.; Hadizadeh, F.; Eisvand, F.; Mosaffa, F.; Ghodsi, R. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J. Mol. Struct. 2020, 1202, 127310. [Google Scholar] [CrossRef]
- Peerzada, M.N.; Khan, P.; Ahmad, K.; Hassan, M.I.; Azam, A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur. J. Med. Chem. 2018, 155, 13–23. [Google Scholar] [CrossRef]
- Wang, G.; Liu, W.; Gong, Z.; Huang, Y.; Li, Y.; Peng, Z. Design, synthesis, biological evaluation and molecular docking studies of new chalcone derivatives containing diaryl ether moiety as potential anticancer agents and tubulin polymerization inhibitors. Bioorganic Chem. 2020, 95, 103565. [Google Scholar] [CrossRef]
- Yang, J.-L.; Ma, Y.-H.; Li, Y.-H.; Zhang, Y.-P.; Tian, H.-C.; Huang, Y.-C.; Li, Y.; Chen, W.; Yang, L.-J. Design, synthesis, and anticancer activity of novel trimethoxyphenyl-derived chalcone-benzimidazolium salts. ACS Omega 2019, 4, 20381–20393. [Google Scholar] [CrossRef]
- Yan, W.; Yang, T.; Yang, J.; Wang, T.; Yu, Y.; Wang, Y.; Chen, Q.; Bai, P.; Li, D.; Ye, H.; et al. SKLB060 Reversibly Binds to Colchicine Site of Tubulin and Possesses Efficacy in Multidrug-Resistant Cell Lines. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 47, 489–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kłósek, M.; Mertas, A.; Król, W.; Jaworska, D.; Szymszal, J.; Szliszka, E. Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand-Induced Apoptosis in Prostate Cancer Cells after Treatment with Xanthohumol-A Natural Compound Present in Humulus lupulus L. Int. J. Mol. Sci. 2016, 17, 837. [Google Scholar] [CrossRef] [Green Version]
- Sathish Kumar, K.; Kotra, V.; Phani Kumar, K.; Praveena Devi, C.B.; Anusha, N.; Hari Babu, B.; Adil, S.F.; Shaik, M.R.; Khan, M.; Al-Warthan, A.; et al. ZnCl2 catalyzed new coumarinyl-chalcones as cytotoxic agents. Saudi J. Biol. Sci. 2021, 28, 386–394. [Google Scholar] [CrossRef] [PubMed]
No. | Materials Tested | Antimicrobial Assay | Test Microorganism (MIC, µg/mL) | Antibiotic | Antimicrobial Effect | |||
---|---|---|---|---|---|---|---|---|
S. aureus ATCC 29213 | E. faecalis ATCC 29212 | E. coli ATCC 25922 | S. enterica ATCC 1307 | |||||
1 | (E)-N-(2-((4-cinnamoylphenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 1 | 2 | 3 | 4 | VAN, MEM | Strong |
2 | (E)-N-(2-((4-(3-(3-chlorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N dimethyloctan-1-aminium chloride | BMD | 2 | 2 | 4 | 8 | VAN, MEM | Strong |
3 | (E)-N-(2-((4-(3-(3-chlorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 2 | 1 | 4 | 4 | VAN, MEM | Strong |
4 | (E)-N-(2-((4-(3-(4-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 2 | 2 | 2 | 4 | VAN, MEM | Strong |
5 | (E)-N-(2-((4-(3-(3-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 32 | 64 | >128 | >128 | VAN, MEM | Not good |
6 | (E)-N-(2-((4-(3-(2-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethylbutan-1-aminium chloride | BMD | 16 | 16 | 64 | 128 | VAN, MEM | Good except S. enterica |
7 | (E)-N-(2-((4-(3-(2-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 0.5 | 1 | 2 | 4 | VAN, MEM | Strong |
8 | (E)-N-(2-((4-(3-(2-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyldodecan-1-aminium chloride | BMD | 4 | 8 | 16 | 32 | VAN, MEM | Good |
9 | (E)-N-(2-((4-(3-(2-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyltetradecan-1-aminium chloride | BMD | 8 | >128 | >128 | >128 | VAN, MEM | Effective against S. aureus only |
10 | (E)-N-(2-((4-(3-(2-fluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctadecan-1-aminium chloride | BMD | >128 | >128 | >128 | >128 | VAN, MEM | No activity |
11 | (E)-N-(2-((4-(3-(2,3-difluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 0.5 | 2 | 2 | 8 | VAN, MEM | Strong |
12 | (E)-N-(2-((4-(3-(2,4-difluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 2 | 2 | 4 | 4 | VAN, MEM | Strong |
13 | (E)-N-(2-((4-(3-(2,6-difluorophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 32 | 32 | 128 | 128 | VAN, MEM | Fair |
14 | (E)-N-(2-((4-(3-(2-ethoxy-5-nitrophenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 8 | 2 | >128 | >128 | VAN, MEM | Strong against S. aureus and E. faecalis |
15 | (E)-N-(2-((4-(3-(4-(tert-butyl)phenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N, N-dimethyloctan-1-aminium chloride | BMD | 2 | 4 | 8 | 16 | VAN, MEM | Strong |
16 | (E)-N,N-dimethyl-N-(2-oxo-2((4(3(2(trifluoromethyl)phenyl)acryloyl)phenyl)amino)ethyl)octan-1-aminium chloride | BMD | 2 | 4 | 16 | 16 | VAN, MEM | Strong |
17 | (E)-N,N-dimethyl-N-(2-oxo-2-((4-(3-(p-tolyl)acryloyl)phenyl)amino)ethyl)octan-1-aminium chloride | BMD | 1 | 1 | 4 | 8 | VAN, MEM | Strong |
18 | (E)-N-(2-((4-(3-(4-methoxyphenyl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 1 | 2 | 4 | 4 | VAN, MEM | Strong |
19 | (E)-N,N-dimethyl-N-(2-((4-(3-(naphthalen-2-yl)acryloyl)phenyl)amino)-2-oxoctan-1-aminium chloride | BMD | 2 | 2 | 8 | 8 | VAN, MEM | Strong |
20 | (E)-N,N-dimethyl-N-(2-oxo-2-((4-(3-(pyridin4yl)acryloyl)phenyl)amino)ethyl)butan-1-aminium chloride | BMD | 128 | 128 | >128 | >128 | VAN, MEM | Not good |
21 | (E)-N,N-dimethyl-N-(2-oxo-2-((4-(3-(pyridin-4yl)acryloyl)phenyl)amino)ethyl)octan-1-aminium chloride | BMD | 4 | 8 | 16 | 32 | VAN, MEM | Good |
22 | (E)-N,N-dimethyl-N-(2-oxo-2-((4-(3-(pyridin-3-yl)acryloyl)phenyl)amino)ethyl)octan-1-aminium chloride | BMD | 4 | 8 | 16 | 32 | VAN, MEM | Good |
23 | (E)-N,N-dimethyl-N-(2-oxo-2-((4-(3-(pyridinedin-2yl)acryloyl)phenyl)amino)ethyl)octan-1-aminium chloride | BMD | 4 | 8 | 16 | 32 | VAN, MEM | Good |
24 | (E)-N-(2-((4-(3-(6-bromopyridin-2-yl)acryloyl)phenyl)amino)-2-oxoethyl)-N, N-dimethyloctan-1-aminium chloride | BMD | 4 | 8 | 16 | 32 | VAN, MEM | Good |
25 | (E)-((2-((4-(3-(3-fluoropyridin-2-yl)acryloyl)phenyl)amino)-2-oxoethyl)(methyl)(octyl)-l4-azanyl)methylium chloride | BMD | 2 | 8 | 8 | 16 | VAN, MEM | Strong |
26 | (E)-N-(2-((4-(3-(furan-2-yl)acryloyl)phenyl)amino)-2-oxoethyl)-N,N-dimethyloctan-1-aminium chloride | BMD | 1 | 4 | 4 | 16 | VAN, MEM | Strong |
27 | (E)-N,N-dimethyl-N-(2-oxo-2-((4-(3-(thiophen-2-yl)acryloyl)phenyl)amino)ethyl)butan-1-aminium chloride | BMD | 0.5 | 1 | 4 | 8 | VAN, MEM | Strong |
28 | (E)-N, N-dimethyl-N-(2-oxo-2-((4-(3-(thiophen-2-yl)acryloyl)phenyl)amino)ethyl)octan-1-aminium chloride | BMD | 32 | 32 | 64 | 128 | VAN, MEM | Fair |
29 | (E)-N,N-dimethyl-N-(2-oxo-2-((3-(3-(thiophen2-yl)acryloyl)phenyl)amino)ethyl) octan-1-aminium chloride | BMD | 2 | 4 | 16 | 16 | VAN, MEM | Strong |
S. aureus ATCC 25923 | B. cereus ATCC 11778 | E. coli ATCC 25922 | P. aeruginosa ATCC 27853 | |||||
30 | 2,2′,4,4′,5,5′-hexamethoxychalcone | BMD | >2000 | >2000 | >2000 | 2000 | TET | Not active |
31 | 2′-hydroxy-4,4’,5′-trimethoxychalcone | BMD | 2000 | 1000 | 2000 | 1000 | TET | Not active |
32 | 3,4-methylenedloxy-2′-3′,4′,6′-tetramethoxychalcone | BMD | >2000 | 2000 | 2000 | 2000 | TET | Not active |
33 | 4,4′-dimethoxychalcone | BMD | >2000 | >2000 | >2000 | 2000 | TET | Not active |
34 | 3’,4′-dimethoxychalcone | BMD | 1000 | 1000 | 2000 | 1000 | TET | Not active |
35 | 2-hydroxy’-3’,4′-dimethoxychalcone | BMD | 1000 | 1000 | 1000 | 1000 | TET | Not active |
36 | 2′-acetoxy-3′-4′,4’,6′-tetramethoxychalcone | BMD | 2000 | 2000 | 1000 | 1000 | TET | Not active |
37 | 2,3′,4,4′,5-pentamethoxychalcone | BMD | 2000 | 2000 | 1000 | 2000 | TET | Not active |
38 | 2,2′,4′,5-tetramethoxychalcone | BMD | 1000 | 250 | 2000 | 2000 | TET | Active against B. cereus |
39 | 2,3,3′,4,4′,6-hexamethoxychalcone | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
40 | Cordoin | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
41 | 4-hydroxycordoin | BMD | 2000 | 1000 | 2000 | 2000 | TET | Not active |
42 | Isocordoin | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
43 | 4-hydroxyisocordoin | BMD | 31.2 | 31.2 | 1000 | 1000 | TET | Strong for S. aureus and B. cereus |
44 | Derricin | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
45 | 2-hydroxyderricin | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
46 | 3-hydroxyderricin | BMD | 2000 | 1000 | 2000 | 2000 | TET | Not active |
47 | 4-hydroxyderricin | BMD | 7.8 | 3.9 | 2000 | 2000 | TET | Strong |
48 | 4-methoxyderricin | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
49 | 2′,4,4′-trihydroxychalcone | BMD | 62.5 | 62.5 | 2000 | 2000 | TET | Strong |
50 | 2’, 4,4’-trihydroxy-3-preny’-3’geranylchalcone | BMD | 31.2 | 15.6 | 1000 | 1000 | TET | Strong |
51 | 2’, 4,4’-trihydroxy’-3’geranylchalcone | BMD | 31.2 | 15.6 | 1000 | 1000 | TET | Strong for S. aureus and B. cereus |
52 | 4-hydroxyisolonchocarpin | BMD | 1000 | 1000 | 2000 | 2000 | TET | Not active |
53 | Lonchocarpin | BMD | 2000 | 2000 | 1000 | 2000 | TET | Not active |
54 | 4-hydroxylonchocarpin | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
55 | 4-hydroxyisolonchocarpin | BMD | 2000 | 1000 | 2000 | 2000 | TET | Not active |
56 | Isolonchocarpin | BMD | 2000 | 2000 | 1000 | 1000 | TET | Not active |
57 | 4-hydroxy-4′-methoxychalcone | BMD | 500 | 500 | 2000 | 1000 | TET | Not active |
58 | 2-hydroxydihydrochalcone | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
59 | 2’,4,5′-trihydroxy-3,4-methylene-dioxy-dihydrochalcone | BMD | 2000 | 2000 | 2000 | 2000 | TET | Not active |
60 | 2’,4,5′-trihydroxy-dihydrochalcone | BMD | 250 | 250 | >2000 | 2000 | TET | Active against S. aureus and B. cereus |
S. aureus | B. subtilis | S. typhimurium | P. aeruginosa | |||||
61 | 1,3-Bis(4-chlorophenyl)-3-(phenylsulfonyl)propan-1-one | BMD | 250 | 15.62 | 125 | 125 | AMP, KMN | Strong |
62 | 1-Phenyl-3-(4-chlorophenyl)-3-(phenylsulfonyl)propane-1-one | BMD | 125 | 62.5 | 125 | 62.5 | AMP, KMN | Strong |
63 | 1-(4-Chlorophenyl)-3-(3-nitrophenyl)-3-phenylsulfonylprop-ane-1-one | BMD | 125 | 62.5 | 62.5 | 62.5 | AMP, KMN | Strong |
64 | 1-(4-Bromophenyl)-3-phenyl-3-(phenylsulfonyl) propane-1-one | BMD | 125 | 62.5 | 250 | 62.5 | AMP, KMN | Strong |
65 | 1-(4-Bromophenyl)-3-(3,4-dimethoxyphenyl)-3-(phenylsulfonyl)propane-1-one | BMD | 62.5 | 62.5 | 1.95 | 62.5 | AMP, KMN | Strong |
66 | 1-(4-Bromophenyl)-3-(3,4,5-trimethoxyphenyl)-3-(phenylsulfonyl) propane-1-one | BMD | 125 | 31.25 | 1.95 | 125 | AMP, KMN | Strong |
67 | 1-Phenyl-3-phenyl- 3-phenylsulfonylpropane-1-one | BMD | 62.5 | 31.25 | 1.95 | 125 | AMP, KMN | Strong |
68 | 1,5-Di(4-methylphenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 62.5 | 62.5 | 31.25 | 62.5 | AMP, KMN | Strong |
69 | 1,5-Di(4-chlorophenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 250 | 31.25 | 15.62 | 250 | AMP, KMN | Strong |
70 | 1,5-Di(phenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 62.5 | 125 | 250 | 62.5 | AMP, KMN | Strong |
71 | 1,5-Di(4-methoxyphenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 250 | 31.25 | 62.5 | 125 | AMP, KMN | Strong |
No. | Materials Tested Drug | Test Assay | Antifungal Strains (MIC μg/mL) | Standard Antifungal | Antifungal Effect | |
---|---|---|---|---|---|---|
A. niger | C. albicans | |||||
61 | 1,3-Bis(4-chlorophenyl)-3-(phenylsulfonyl)propan-1-one | BMD | 15.62 | 31.25 | AMP-B, NSN | Very strong |
62 | 1-Phenyl-3-(4-chlorophenyl)-3-(phenylsulfonyl)propane-1-one | BMD | 125 | 1.95 | AMP-B, NSN | Very strong |
63 | 1-(4-Chlorophenyl)-3-(3-nitrophenyl)-3-phenylsulfonylprop-ane-1-one | BMD | 62.5 | 1.95 | AMP-B, NSN | Very strong |
64 | 1-(4-Bromophenyl)-3-phenyl-3-(phenylsulfonyl) propane-1-one | BMD | 62.5 | 125 | AMP-B, NSN | Very strong |
65 | 1-(4-Bromophenyl)-3-(3,4-dimethoxyphenyl)-3-(phenylsulfonyl)propane-1-one | BMD | 15.62 | 15.62 | AMP-B, NSN | Very strong |
66 | 1-(4-Bromophenyl)-3-(3,4,5-trimethoxyphenyl)-3-(phenylsulfonyl) propane-1-one | BMD | 7.81 | 3.9 | AMP-B, NSN | Very strong |
67 | 1-Phenyl-3-phenyl- 3-phenylsulfonylpropane-1-one | BMD | 7.81 | 3.9 | AMP-B, NSN | Very strong |
68 | 1,5-Di(4-methylphenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 31.25 | 1.95 | AMP-B, NSN | Very strong |
69 | 1,5-Di(4-chlorophenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 125 | 1.95 | AMP-B, NSN | Very strong |
70 | 1,5-Di(phenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 125 | 250 | AMP-B, NSN | Strong |
71 | 1,5-Di(4-methoxyphenyl)-1,5-bis(phenylsulfonyl)pentan-3-one | BMD | 125 | 125 | AMP-B, NSN | Strong |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhaliwal, J.S.; Moshawih, S.; Goh, K.W.; Loy, M.J.; Hossain, M.S.; Hermansyah, A.; Kotra, V.; Kifli, N.; Goh, H.P.; Dhaliwal, S.K.S.; et al. Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives. Molecules 2022, 27, 7062. https://doi.org/10.3390/molecules27207062
Dhaliwal JS, Moshawih S, Goh KW, Loy MJ, Hossain MS, Hermansyah A, Kotra V, Kifli N, Goh HP, Dhaliwal SKS, et al. Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives. Molecules. 2022; 27(20):7062. https://doi.org/10.3390/molecules27207062
Chicago/Turabian StyleDhaliwal, Jagjit Singh, Said Moshawih, Khang Wen Goh, Mei Jun Loy, Md. Sanower Hossain, Andi Hermansyah, Vijay Kotra, Nurolaini Kifli, Hui Poh Goh, Sachinjeet Kaur Sodhi Dhaliwal, and et al. 2022. "Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives" Molecules 27, no. 20: 7062. https://doi.org/10.3390/molecules27207062
APA StyleDhaliwal, J. S., Moshawih, S., Goh, K. W., Loy, M. J., Hossain, M. S., Hermansyah, A., Kotra, V., Kifli, N., Goh, H. P., Dhaliwal, S. K. S., Yassin, H., & Ming, L. C. (2022). Pharmacotherapeutics Applications and Chemistry of Chalcone Derivatives. Molecules, 27(20), 7062. https://doi.org/10.3390/molecules27207062