Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells
<p>Schematic illustration of the procedure used for the synthesis and formulation of the FA-DEX-VBL-SPION nanostructure.</p> "> Figure 2
<p>Microscopic analysis and dynamic light scattering (DLS) studies of FA-DEX-VBL-SPION. FESEM image (<b>A</b>), HRTEM image (<b>B</b>), diameter size (<b>C</b>), and surface charge (<b>D</b>).</p> "> Figure 3
<p>(<b>A</b>) FTIR spectra analysis of DEX (I), SPION (II), VBL (III), FA (IV), DEX-SPION (V), and FA-DEX-VBL-SPION (VI). (<b>B</b>) Magnetization curve loop of SPION, DEX-SPION, DEX-VBL-SPION, and FA-DEX-VBL-SPION at 300 K.</p> "> Figure 4
<p>In vitro release profile of the FA-DEX-5-FU-SPION nanoformulation at pH 7.4 and pH 5.4. All experiments were performed at 37 °C. Data are presented as mean values ± SD (<span class="html-italic">n</span> = 3).</p> "> Figure 5
<p>Cell internalization study of FA-DEX-VBL-SPION in the PANC-1 cell line using fluorescence microscopy (400× magnification). Fluorescence microscopy image of VBL-treated cells (<b>A</b>). Optic microscopy image of FA-DEX-VBL-SPION-treated cells (<b>B</b>). Fluorescence microscopy image of FA-DEX-VBL-SPION-treated cells (<b>C</b>).</p> "> Figure 6
<p>MTT assay of FA-DEX-VBL-SPION, free VBL, and FA-DEX-SPION at 24 h and 48 h on PANC-1 and H6c7 cells.</p> "> Figure 7
<p>Apoptosis induction by FA-DEX-VBL-SPION nanoformulation. The PANC-1 cell line was treated with (<b>A</b>) FA-DEX-VBL-SPION, (<b>B</b>) free FA-DEX-SPION, and (<b>C</b>) free VBL. The number of PANC-1 cells undergoing apoptosis increased after treatment with the FA-DEX-VBL-SPION nanoformulation. Moreover, treatment of PANC-1 cells with bare FA-DEX-SPION and free VBL separately showed that neither of the treatments yielded a remarkable apoptosis induction.</p> "> Figure 8
<p>Real-time PCR gene expression analysis of PANC-1 cells treated with void VBL, FA-DEX-VBL-SPION, and FA-DEX-SPION, as assessed using two-way ANOVA and Bonferroni post-test. The values in the graph represent the mean ± SD. *** <span class="html-italic">p</span> < 0.001, **** <span class="html-italic">p</span> < 0.0001 indicate significant differences between the control (untreated) and other treatments.</p> ">
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Synthesized Nanoparticles
Morphology and Size of the FA-DEX-VBL-SPION Nanoparticles
2.2. FTIR and Magnetization Studies
2.3. In Vitro Drug Loading and Release Studies
2.4. Cellular Internalization
2.5. MTT Assay
2.6. Gene Expression
3. Materials and Methods
3.1. Materials
3.2. Fabrication of DEX-SPION
3.3. Preparation of VBL-Loaded FA-DEX-SPION
3.4. Characterization of NPs
3.5. Measurement of Drug Release
3.6. Cell Culture Conditions
3.7. Cell Internalization Assay
3.8. MTT Assay
3.9. Apoptosis Assay by Flow Cytometry
3.10. RT-PCR
3.11. Real-Time PCR
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Haque, A.; Rahman, M.A.; Faizi, M.S.H.; Khan, M.S. Next generation antineoplastic agents: A review on structurally modified vinblastine (VBL) analogues. Curr. Med. Chem. 2018, 25, 1650–1662. [Google Scholar] [CrossRef]
- Luchsinger, C.; Aguilar, M.; Burgos, P.V.; Ehrenfeld, P.; Mardones, G.A. Functional disruption of the Golgi apparatus protein ARF1 sensitizes MDA-MB-231 breast cancer cells to the antitumor drugs Actinomycin D and Vinblastine through ERK and AKT signaling. PLoS ONE 2018, 13, e0195401. [Google Scholar] [CrossRef] [Green Version]
- Corona, G.; Vaccher, E.; Spina, M.; Toffoli, G. Potential hazard drug-drug interaction between boosted protease inhibitors and vinblastine in HIV patients with Hodgkin’s lymphoma. AIDS 2013, 27, 1033–1035. [Google Scholar] [CrossRef]
- Kipper, F.C.; Silva, A.O.; Marc, A.L.; Confortin, G.; Junqueira, A.V.; Neto, E.P.; Lenz, G. Vinblastine and antihelmintic mebendazole potentiate temozolomide in resistant gliomas. Invest. New Drugs 2018, 36, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Shiraishi, T.; Nakamura, T.; Ukimura, O.; Cancer Registration Committee of the Japanese Urological Association. Chemotherapy for metastatic testicular cancer: The first nationwide multi-institutional study by the Cancer Registration Committee of the Japanese Urological Association. Int. J. Urol. 2018, 25, 730–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nurcahyanti, A.D.; Wink, M. Cytotoxic potentiation of vinblastine and paclitaxel by l-canavanine in human cervical cancer and hepatocellular carcinoma cells. Phytomedicine 2015, 22, 1232–1237. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.; del Pilar Rodriguez-Torres, M.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Millart, E.; Lesieur, S.; Faivre, V. Superparamagnetic lipid-based hybrid nanosystems for drug delivery. Expert Opin. Drug Deliv. 2018, 15, 523–540. [Google Scholar] [CrossRef]
- Prabha, G.; Raj, V. Preparation and characterization of chitosan-polyethylene glycol-polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles as carrier system: Drug loading and in vitro drug release study. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 808–816. [Google Scholar] [CrossRef]
- Badman, R.P.; Moore, S.L.; Killian, J.L.; Feng, T.; Cleland, T.A.; Hu, F.; Wang, M.D. Dextran-coated iron oxide nanoparticle-induced nanotoxicity in neuron cultures. Sci. Rep. 2020, 10, 11239. [Google Scholar] [CrossRef]
- Albukhaty, S.; Naderi-Manesh, H.; Tiraihi, T.; Sakhi Jabir, M. Poly-l-lysine-coated superparamagnetic nanoparticles: A novel method for the transfection of pro-BDNF into neural stem cells. Artif. Cells Nanomed. Biotechnol. 2018, 46, S125–S132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janko, C.; Ratschker, T.; Nguyen, K.; Zschiesche, L.; Tietze, R.; Lyer, S.; Alexiou, C. Functionalized superparamagnetic iron oxide nanoparticles (SPIONs) as platform for the targeted multimodal tumor therapy. Front. Oncol. 2019, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.A.; Yang, K.; Feng, L.Z.; Liu, Z. In vitro and in vivo behaviors of dextran functionalized graphene. Carbon 2011, 49, 4040–4049. [Google Scholar] [CrossRef]
- Huang, S.; Huang, G. Preparation and drug delivery of dextran-drug complex. Drug Deliv. 2019, 26, 252–261. [Google Scholar] [CrossRef] [Green Version]
- Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C.M.; Molina, A.M.; Torres, A.; Milián, M.; Griebenow, K. Smart targeting to improve cancer therapeutics. Drug Des. Devel. Ther. 2019, 13, 3753–3772. [Google Scholar] [CrossRef] [Green Version]
- Unterweger, H.; Dézsi, L.; Matuszak, J.; Janko, C.; Poettler, M.; Jordan, J.; Bäuerle, T.; Szebeni, J.; Fey, T.; Boccaccini, A.R.; et al. Dextran-coated superparamagnetic iron oxide nanoparticles for magnetic resonance imaging: Evaluation of size-dependent imaging properties, storage stability and safety. Int. J. Nanomed. 2018, 13, 1899–1915. [Google Scholar] [CrossRef] [Green Version]
- Al-Musawi, S.; Hadi, A.J.; Hadi, S.J.; Hindi, N.K.K. Preparation and characterization of folated chitosan-magnetic nanocarrier for 5-fluorouracil drug delivery and studying its effect in bladder cancer therapy. J. Global Pharma Tech. 2019, 11, 628–637. [Google Scholar]
- Sun, S.B.; Liu, P.; Shao, F.M.; Miao, Q.L. Formulation and evaluation of PLGA nanoparticles loaded capecitabine for prostate cancer. Int. J. Clin. Exp. Med. 2015, 8, 19670–19681. [Google Scholar] [PubMed]
- Wang, Z.; Zhu, J.; Chen, Y.; Geng, K.; Qian, N.; Cheng, L.; Lu, Z.; Pan, Y.; Guo, L.; Li, Y.; et al. Folic acid modified superparamagnetic iron oxide nanocomposites for targeted hepatic carcinoma MR imaging. RSC Adv. 2014, 4, 7483–7490. [Google Scholar] [CrossRef]
- Islam, M.S.; Haque, P.; Rashid, T.U.; Khan, M.N.; Mallik, A.K.; Khan, M.N.; Khan, M.; Rahman, M.M. Core-shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. J. Mater. Sci. Mater. Med. 2017, 28, 55. [Google Scholar] [CrossRef]
- Huang, K.S.; Yang, C.H.; Wang, Y.C.; Wang, W.T.; Lu, Y.Y. Microfluidic synthesis of vinblastine-loaded multifunctional particles for magnetically responsive controlled drug release. Pharmaceutics 2019, 11, 212. [Google Scholar] [CrossRef] [Green Version]
- Khalkhali, M.; Sadighian, S.; Rostamizadeh, K.; Khoeini, F.; Naghibi, M.; Bayat, N.; Habibizadeh, M.; Hamidi, M. Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. Bioimpacts 2015, 5, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Yang, L.; Huang, D.; Zhu, Q. Molecularly imprinted nanoparticles and their releasing properties, bio-distribution as drug carriers. Asian J. Pharm. Sci. 2017, 12, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Pinelli, F.; Perale, G.; Rossi, F. Coating and functionalization strategies for nanogels and nanoparticles for selective drug delivery. Gels 2020, 6, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glasgow, M.D.; Chougule, M.B. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J. Biomed. Nanotechnol. 2015, 11, 1859–1898. [Google Scholar] [CrossRef]
- Dong, S.; Cho, H.J.; Lee, Y.W.; Roman, M. Synthesis and cellular uptake of folic acid-conjugated cellulose nanocrystals for cancer targeting. Biomacromolecules 2014, 15, 1560–1567. [Google Scholar] [CrossRef]
- Wong, R.S. Apoptosis in cancer: From pathogenesis to treatment. J. Exp. Clin. Cancer Res. 2011, 30, 87. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Li, Y.; Shen, Y.; Li, Q.; Wang, Q.; Feng, L. Apoptosis and inhibition of proliferation of cancer cells induced by cordycepin. Oncol. Lett. 2015, 10, 595–599. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Okamoto-Katsuyama, M.; Suwa, T.; Maeda, R.; Tamura, T.A.; Yamaguchi, Y. TLP-mediated global transcriptional repression after double-strand DNA breaks slows down DNA repair and induces apoptosis. Sci. Rep. 2019, 9, 4868. [Google Scholar] [CrossRef]
- Li, C.; Tian, Z.N.; Cai, J.P.; Chen, K.X.; Zhang, B.; Feng, M.Y.; Shi, Q.T.; Li, R.; Qin, Y.; Geng, J.S. Panax ginseng polysaccharide induces apoptosis by targeting Twist/AKR1C2/NF-1 pathway in human gastric cancer. Carbohydr. Polym. 2014, 102, 103–109. [Google Scholar] [CrossRef]
- Siu, E.H.; Chan, A.W.; Chong, C.C.; Chan, S.L.; Lo, K.W.; Cheung, S.T. Treatment of advanced hepatocellular carcinoma: Immunotherapy from checkpoint blockade to potential of cellular treatment. Transl. Gastroenterol. Hepatol. 2018, 3, 89. [Google Scholar] [CrossRef]
- Al-Musawi, S.; Kadhim, M.J.; Hindi, N.K.K. Folated-nanocarrier for paclitaxel drug delivery in leukemia cancer therapy. J. Pharm. Sci. Res. 2018, 10, 749–754. [Google Scholar]
- Al-Kinani, M.A.; Haider, A.J.; Al-Musawi, S. Design, construction and characterization of intelligence polymer coated core-shell nanocarrier for curcumin drug encapsulation and delivery in lung cancer therapy purposes. J. Inorg. Organomet. Polym. 2020. [Google Scholar] [CrossRef]
- Al-Awady, M.J.; Balakit, A.A.; Al-Musawi, S.; Alsultani, M.J.; Ahmed Kamil Alabbasi, M. Investigation of anti-MRSA and anticancer activity of eco-friendly synthesized silver nanoparticles from palm dates extract. Nano Biomed. Eng. 2019, 11, 157–169. [Google Scholar] [CrossRef]
- Zhou, P.; Qin, J.; Li, Y.; Li, G.; Wang, Y.; Zhang, N.; Chen, P.; Li, C. Combination therapy of PKCζ and COX-2 inhibitors synergistically suppress melanoma metastasis. J. Exp. Clin. Cancer Res. 2017, 36, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, C.; Lee, J.H.; Park, M.J.; Kim, J.W.; Yang, J.; Yoo, Y.M.; Jeung, E.B. Cytostatic effects of plant essential oils on human skin and lung cells. Exp. Ther. Med. 2020, 19, 2008–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajoedi, A.; Al Azhar, M.; Nadliroh, S.; Hartini, S.; Andalusia, R.; Witarto, A.B. The mRNA expression profile of PD-1 and PD-L1 in peripheral blood of colorectal cancer patients. Indones. J. Cancer 2019, 13, 80–85. [Google Scholar] [CrossRef] [Green Version]
- Hawes, J.J.; Tuskan, R.G.; Reilly, K.M. Nf1 expression is dependent on strain background: Implications for tumor suppressor haploinsufficiency studies. Neurogenetics 2007, 8, 121–130. [Google Scholar] [CrossRef]
- Saha, S.K.; Yin, Y.; Chae, H.S.; Cho, S.G. Opposing regulation of cancer properties via KRT19-mediated differential modulation of Wnt/β-catenin/notch signaling in breast and colon cancers. Cancers (Basel) 2019, 11, 99. [Google Scholar] [CrossRef] [Green Version]
Primer Name | Primer Sequence Oligo Sequence F (5’→3’) | Primer Sequence Oligo Sequence R (5’→3’) | Ref. |
---|---|---|---|
β-actin | CTGGCACCCAGCACAATG | GCCGATCCACACGGAGTACT | [35] |
Caspase-3 | CATACTCCACAGCACCTGGTTA | CGCAAAGTGACTGGATGAACC | [36] |
PD-L1 | TGTGAAAGTCAATGCCCCAT | TGTCAGTTCATGTTCAGAGGT | [37] |
NF-1 | CGCAGCAGCACCCACATTTAC | ACTGTGGCGGGGACTCCTCA | [38] |
H-ras | TTCTACACGTTGGTGCGTGA | CACAAGGGAGGCTGCTGAC | [39] |
Sample Availability: Samples of the compounds are available from the authors. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albukhaty, S.; Al-Musawi, S.; Abdul Mahdi, S.; Sulaiman, G.M.; Alwahibi, M.S.; Dewir, Y.H.; Soliman, D.A.; Rizwana, H. Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells. Molecules 2020, 25, 4721. https://doi.org/10.3390/molecules25204721
Albukhaty S, Al-Musawi S, Abdul Mahdi S, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H. Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells. Molecules. 2020; 25(20):4721. https://doi.org/10.3390/molecules25204721
Chicago/Turabian StyleAlbukhaty, Salim, Sharafaldin Al-Musawi, Salih Abdul Mahdi, Ghassan M. Sulaiman, Mona S. Alwahibi, Yaser Hassan Dewir, Dina A. Soliman, and Humaira Rizwana. 2020. "Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells" Molecules 25, no. 20: 4721. https://doi.org/10.3390/molecules25204721
APA StyleAlbukhaty, S., Al-Musawi, S., Abdul Mahdi, S., Sulaiman, G. M., Alwahibi, M. S., Dewir, Y. H., Soliman, D. A., & Rizwana, H. (2020). Investigation of Dextran-Coated Superparamagnetic Nanoparticles for Targeted Vinblastine Controlled Release, Delivery, Apoptosis Induction, and Gene Expression in Pancreatic Cancer Cells. Molecules, 25(20), 4721. https://doi.org/10.3390/molecules25204721