Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L.
<p>Sampling locations of soils and plants used in the study. In each station one soil sample and three plant species have been collected.</p> "> Figure 2
<p>Soil clustering after principal component analysis (PCA). The input data were the soil variables of granulometry, OM, IM, and total heavy metals concentration.</p> "> Figure 3
<p>(<b>A</b>) Table: Linear regression between total Ni concentration in soil and Ni in <span class="html-italic">P. annua</span> shoots. Plot: recalculated total soil Ni by the model, input data derived from the linear relation between total Ni in soil, and Ni in plant. Blue dots: forecasted soil Ni concentrations in calibration mode (all soil data were used as input). Red dots: forecasted soil Ni concentrations in cross-validation mode, excluding one soil data at a time (leave-one-out mode). (<b>B</b>) <a href="#molecules-24-02813-t002" class="html-table">Table 2</a>: Linear regression between bioavailable Ni concentration in soil and Ni in <span class="html-italic">P. annua</span> shoots. Plot: Recalculated total soil Ni by the model; input data are derived from the linear relation between total Ni in soil and Ni in plant. Blue dots: forecasted soil Ni concentrations in calibration mode (all soil data were used as input). Red dots: forecasted soil Ni concentrations in cross-validation mode, excluding one soil data at a time (leave-one-out mode).</p> "> Figure 4
<p>(<b>A</b>) Table: Linear regression between total Ni concentration in soil and Ni in <span class="html-italic">S. vulgaris</span> shoots. Plot: recalculated total soil Ni by the model, input data derived from the linear relation between total Ni in soil and Ni in plant. Blue dots: forecasted soil Ni concentrations in calibration mode (all soil data were used as input). Red dots: forecasted soil Ni concentrations in cross-validation mode, excluding one soil data at a time (leave-one-out mode). (<b>B</b>) Table: Linear regression between bioavailable Ni concentration in soil and Ni in <span class="html-italic">S. vulgaris</span> shoots. Plot: Recalculated total soil Ni by the model; input data are derived from the linear relation between total Ni in soil and Ni in plant. Blue dots: forecasted soil Ni concentrations in calibration mode (all soil data were used as input). Red dots: forecasted soil Ni concentrations in cross-validation mode, excluding one soil data at a time (leave-one-out mode).</p> "> Figure 5
<p>(<b>A</b>) <span class="html-italic">Senecio vulgaris</span> growing at a busy street crossing in Bologna. (<b>B</b>) <span class="html-italic">Poa annua</span> growing on the sidewalk in Milan.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Collection
- (1)
- Senecio vulgaris L. (groundsel) is an annual plant of the Asteraceae family. Originally having an Eurasiatic distribution, today it has become subcosmopolitan worldwide. The species is common everywhere, and it grows prolifically in disturbed habitats like road margins, arable fields, and gardens. It preferably grows on clayey soil rich in nitrogen and organic matter.
- (2)
- Poa annua L. (annual bluegrass) is an annual plant of the Poaceae family. Originally having an Eurasiatic distribution, today it is widely naturalized in the temperate areas of the globe. It is a pioneer species that grows in trampled areas, gardens, and roads margins, in nitrogen-rich soils.
- (3)
- Polygonum aviculare L. (common knotgrass) is an annual plant of the Polygonaceae family. The species is cosmopolitan, and because of its high variability it is adaptable to several habitats. It grows on all soil types and it is resistant to trampling. It is widespread in urban areas, arable fields, but also woodland margins.
2.2. Soil Digestion
2.3. Plant Digestion
2.4. Extraction of Bioavailable Metal Fraction from Soil
2.5. Determination of Metal Concentration in Soils and Plants
2.6. Determination of Organic Matter and Granulometry of Soil
2.7. Data Analysis
3. Results
3.1. Heavy Metals in Soil
3.2. Species and Metal Selection
3.3. Bioindication of Ni Using P. annua
3.4. Bioindication of Ni Using S. vulgaris
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations:
Atomic Absorption Spectroscopy = AAS; |
Bioaccumulation Factor = BAF; |
Bioaccumulation Factor calculated on bioavailable metal in soil = BAF_BM; |
Bioaccumulation Factor calculated on total metal in soil = BAF_TM; |
Bioavailable soil metal concentration = BM; |
Heavy metals = HMs; |
Inorganic matter = IM; |
leave-one-out cross-validation = LOO-CV; |
Limit of detection = LoD; |
Organic matter = OM; Plant metal concentration = PM; |
Total soil metal concentration = TM. |
References
- Wang, Z.; Yao, L.; Liu, G.; Liu, W. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake. China. Ecotox. Environ. Saf. 2014, 107, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Reshi, Z.A.; Shah, M.A.; Rashid, I.; Ara, R.; Andrabi, S.M.A. Heavy metal accumulation in the leaves of Potamogeton natans and Ceratophyllum demersum in a Himalayan RAMSAR site: Management implications. Wetlands Ecol. Manag. 2016, 24, 469–475. [Google Scholar] [CrossRef]
- Charlesworth, S.; De Miguel, E.; Ordóñez, A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health 2011, 33, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Melucci, D.; Locatelli, M.; Locatelli, C.; Zappi, A.; De Laurentiis, F.; Carradori, S.; Campestre, C.; Leporini, L.; Zengin, G.; Picot, C.M.N.; et al. A comparative assessment of biological effects and chemical profile of Italian asphodeline lutea extracts. Molecules 2018, 23, 461. [Google Scholar] [CrossRef] [PubMed]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. In Molecular, Clinical and Environmental Toxicology; Luch, A., Ed.; Springer: New York, NY, USA, 2012; p. 573. [Google Scholar]
- He, Z.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, Y.; Yin, W.; Gan, H.; Zhang, C.; Deng, X.; Deng, X.; Lian, J. Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangz-hou, China. Environ. Monit. Assess. 2009, 153, 365–375. [Google Scholar] [CrossRef]
- Szyczewski, P.; Siepak, J.; Niedzielski, P.; Sobczyński, T. Research on heavy metals in Poland. Pol. J. Environ. Stud. 2009, 5, 755–768. [Google Scholar]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: Berlin, Germany, 2007. [Google Scholar]
- Norgate, T.E.; Jahanshahi, S.; Rankin, W.J. Assessing the environmental impact of metal production processes. J. Clean. Prod. 2007, 15, 838–848. [Google Scholar] [CrossRef]
- Markert, B.; Wunschmann, S.; Franzle, S.; Graciana Figuereido, A.M.; Ribeirao, A.; Wang, M. Bioindication of atmospheric trace metals-with special reference to megacities. Environ. Pollut. 2011, 159, 1991–1995. [Google Scholar] [CrossRef]
- Wiseman, C.L.S.; Zereini, F.; Puttmann, W. Traffic-related trace element fate and uptake by plants cultivated in roadside soils in Toronto, Canada. Sci. Total Environ. 2013, 442, 86–95. [Google Scholar] [CrossRef]
- Zereini, F.; Wiseman, C.L.S.; Puttmann, W. Changes in palladium, platinum, and rhodium concentrations, and their spatial distribution in soils along a major highway in Germany from 1994 to 2004. Environ. Sci. Technol. 2007, 41, 451–456. [Google Scholar] [CrossRef] [PubMed]
- Lough, G.; Schauer, J.J.; Park, J.S.; Shafer, M.M.; Deminter, J.T.; Weinstein, J. Emissions of metals associated with motor vehicle roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Zereini, F.; Alsenz, H.; Wiseman, C.L.S.; Puttmann, W.; Reimer, E.; Schleyer, R.; Bieber, E.; Wallasch, M. Platinum group elements (Pt, Pd, Rh) in airborne particulate matter in rural vs. urban areas of Germany: Concentrations and spatial patterns of distribution. Sci. Total Environ. 2012, 416, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Onder, S.; Dursun, S. Air borne heavy metal pollution of Cedrus libani (A. Rich) in the city centre of Konya (Turkey). Atmos. Environ. 2006, 40, 1122–1133. [Google Scholar] [CrossRef]
- Jozic, M.; Peer, T.; Turk, R. The impact of the tunnel exhausts in terms of heavy metals to the surrounding ecosystem. Environ. Monit. Assess. 2009, 150, 261–271. [Google Scholar] [CrossRef]
- Locatelli, C.; Melucci, D. Voltammetric determination of ultra-trace total mercury and toxic metals in meals. Food. Chem. 2012, 30, 460–466. [Google Scholar] [CrossRef]
- Locatelli, C.; Melucci, D. Voltammetric method for ultra-trace determination of total mercury and toxic metals in vegetables. Comparison with spectroscopy. Cent. Eur. J. Chem. 2013, 11, 790–800. [Google Scholar] [CrossRef]
- Malizia, D.; Giuliano, A.; Ortaggi, G.; Masotti, A. Common plants as alternative analytical tools to monitor heavy metals in soil. Chem. Cent. J. 2012, 6, S6. [Google Scholar] [CrossRef]
- Jenkis, D.A. Trace elements in saxicolous lichens. In Pollutant Transport and Fate in Ecosystems; Coughtrey, P.J., Martin, M.H., Unsworth, M.H., Eds.; Blackwell Sci.: Oxford, UK, 1987; p. 422. [Google Scholar]
- Jiang, Y.; Fan, M.; Hu, R.; Zhao, J.; Wu, J. Mosses are better than leaves of vascular plants in monitoring atmospheric heavy metal pollution in urban areas. Int. J. Environ. Res. Public Health 2018, 15, 1105. [Google Scholar] [CrossRef]
- Galal, T.M.; Shehata, H.S. Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol. Indic. 2015, 48, 244–251. [Google Scholar] [CrossRef]
- Rule, J.H. Use of small plants as trace elements phytomonitors, with emphasis on the common dandelion, taraxacum officinale. In Biogeochemistry of Trace Element; Adriano, D.C., Chen, Z.S., Yang, S.S., Iskandar, I.K., Eds.; Science Reviews: Wales, UK, 1997; 432p. [Google Scholar]
- Fröhlichová, A.; Száková, J.; Najmanová, J.; Tlustoš, P. An assessment of the risk of element contamination of urban and industrial areas using Taraxacum sect. Ruderalia as a bioindicator. Environ. Monit. Assess. 2018, 190, 150–163. [Google Scholar] [CrossRef]
- Wittig, R. General aspects of biomonitoring heavy metals by plants. In Plants as Biomonitors; Market, B., Ed.; VCH: Weinheim, Germany, 1993. [Google Scholar]
- Lin, Y.X.; Zhang, X.M. Accumulation of heavy metals and the variation of amino acids and protein in Eichhornia crassipes (Mart.) Solms in the Dianchi Lake. Oceanol. Limnol. Sinica 1990, 21, 179–184. [Google Scholar]
- Keane, B.; Collier, M.; Shann, J.R.; Rogstad, S.H. Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. Sci. Total Environ. 2001, 281, 63–78. [Google Scholar] [CrossRef]
- Karlsson, N. On molybdenum in Swedish soil and vegetation and some related questions. Medd. 23 Stat. LantbrKem. Kontrollanst. Stockholm 1961, 234–247. [Google Scholar]
- Kashem, M.A.; Singh, B.R. Metal availability in contaminated soils: I. Effects of flooding and organic matter on changes in Eh, pH and solubility of Cd, Ni and Zn. Nutr. Cycl. Agroecosyst. 2001, 61, 247–255. [Google Scholar] [CrossRef]
- Antoniadis, V.; Robinson, J.S.; Alloway, B.J. Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 2008, 71, 759–764. [Google Scholar] [CrossRef]
- Dai, J.; Becquer, T.; Rouiller, J.H.; Reversat, G.; Reversat, F.B.; Lavelle, P. Influence of heavy metals on C and N mineralization and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils. Appl. Soil Ecol. 2004, 25, 99–109. [Google Scholar] [CrossRef]
- Ghosh, M.; Singh, S.P. A review on phytoremediation of heavy metals and utilization of its byproducts. Appl. Ecol. Environ. Res. 2005, 3, 1–18. [Google Scholar] [CrossRef]
- Nanda, S.; Abraham, A. Remediation of heavy metal contaminated soil. Afr. J. Biotechnol. 2013, 12, 3099–3109. [Google Scholar]
- Huang, C.Y.; Schulte, E.E. Digestion of plant tissue for analysis by ICP emission spectroscopy. Commun. Soil Sci. Plant Anal. 1985, 16, 943–958. [Google Scholar] [CrossRef]
- Quevauviller, P. Operationally-defined extraction procedures for soil and sediment analysis. Part 3: New CRMs for trace-element extractable contents. TrAC 2002, 21, 774–785. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry; Pearson Education: London, UK, 2010. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Storer, D.A. A simple high sample volume ashing procedure for determining soil organic matter. Commun. Soil Sci. Plant Anal. 1984, 15, 759–772. [Google Scholar] [CrossRef]
- Brereton, R.G. Applied Chemometrics for Scientists; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Gibson, M.G.; Farmer, J.G. Multi-step chemical extraction of heavy metals from urban soils. Environ. Pollut. B 1986, 11, 117–135. [Google Scholar] [CrossRef]
- Kelly, J.; Thornton, I.; Simpson, P.R. Urban geochemistry: A study of influence of anthropogenic activity on heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl. Geochem. 1996, 11, 363–370. [Google Scholar] [CrossRef]
- Markus, J.A.; McBratney, A.B. An urban soil study: Heavy metals in Glebe, Australia. Aust. J. Soil Res. 1996, 34, 453–465. [Google Scholar] [CrossRef]
- Wilcke, W.; Muller, S.; Kanchanakool, N.; Zech, W. Urban soil contamination in Bangkok: Heavy metal and aluminium portioning in topsoils. Geoderma 1998, 86, 211–228. [Google Scholar] [CrossRef]
- Hulskotte, J.H.; van der Gon, H.A.; Visschedijk, A.J.; Schaap, M. Brake wear from vehicles as an important source of diffuse copper pollution. Water Sci. Technol. 2007, 56, 223–231. [Google Scholar] [CrossRef]
- Kierczak, J.; Neel, C.; Bril, H.; Puziewicz, J. Effect of mineralogy and pedoclimatic variations on Ni and Cr distribution in serpentine soils under temperate climate. Geoderma 2007, 142, 165–177. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; Taylor & Francis Group: Milton Park, UK, 2011. [Google Scholar]
- Yang, J.; Ye, Z. Metal accumulation and tolerance in wetland plants. Front. Biol. China 2009, 4, 282–288. [Google Scholar] [CrossRef]
- Curlık, J.; Kolesar, M.; Durza, O.; Hiller, E. Dandelion (Taraxacum officinale) and Agrimony (Agrimonia eupatoria) as Indicators of Geogenic Contamination of Flysch Soils in Eastern Slovakia. Arch. Environ. Contam. Toxicol. 2016, 70, 475–486. [Google Scholar] [CrossRef]
- Smillie, C. Salicornia spp. as a biomonitor of Cu and Zn in salt marsh sediments. Ecol. Indic. 2015, 56, 70–78. [Google Scholar] [CrossRef]
- Ralph, P.J.; Burchett, M.D. Photosynthetic responses of Halophila ovalis to heavy metals stress. Environ. Pollut. 1998, 103, 91–101. [Google Scholar] [CrossRef]
- Weis, J.S.; Glover, T.; Weis, P. Interactions of metals affect their distribution in tissues of Phragmites australis. Environ. Poll. 2004, 131, 409–415. [Google Scholar] [CrossRef]
- Weis, J.S.; Weis, P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ. Int. 2004, 30, 685–700. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar]
- Stoltz, E.; Greger, M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environ. Exp. Bot. 2002, 47, 271–280. [Google Scholar] [CrossRef]
- Llagostera, I.; Pérez, M.; Romero, J. Trace metal content in the seagrass Cymodocea nodosa: Differential accumulation in plant organs. Aquat. Bot. 2011, 95, 124–128. [Google Scholar] [CrossRef]
- Phillips, D.P.; Human, L.R.D.; Adams, J.B. Wetland plants as indicators of heavy metal contamination. Marine Pollut. Bull. 2015, 92, 227–232. [Google Scholar] [CrossRef]
- Van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H. Hyperaccumulators of metal and metalloid trace elements: Facts and fiction. Plant Soil 2012, 362, 319–334. [Google Scholar] [CrossRef]
- EPA. Framework for Metal Risk Assessment; U.S Environmental Protection Agency; Office of the Science Advisor: Washington, DC, USA, 2007.
- Yusuf, M.; Fariduddin, Q.; Hayat, S.; Ahmad, A. Nickel: An overview of uptake, essentiality and toxicity in plants. Bull. Environ. Contam. Toxicol. 2011, 86, 1–17. [Google Scholar] [CrossRef]
- Kleckerová, A.; Dočekalová, H. Dandelion Plants as a Biomonitor of Urban Area Contamination by Heavy Metals. Int. J. Environ. Res. 2014, 8, 157–164. [Google Scholar]
Sample Availability: All samples are available from the authors. |
Element | Wavelength (nm) | Slit (nm) | Drying Temperature (°C) | Pyrolisis Temperature (°C) | Atomization Temperature (°C) |
---|---|---|---|---|---|
Zn (II) | 213.9 | 0.70 | 110 | 700 | 1800 |
Cu (II) | 324.8 | 0.80 | 110 | 1000 | 2300 |
Pb (II) | 283.3 | 1.05 | 110 | 950 | 1800 |
Cr (VI) | 357.9 | 0.80 | 110 | 1650 | 2500 |
Cd (II) | 228.8 | 1.35 | 110 | 850 | 1650 |
Ni (II) | 232.0 | 1.35 | 110 | 1400 | 2500 |
0.3<correlation<0.5 | significant |
0.5<correlation<0.7 | relevant |
0.7<correlation<0.9 | high |
0.9<correlation<1 | excellent |
Soil | pH | OM(%) | Zn (ppm) | Cu (ppm) | Pb (ppm) | Cr (ppm) | Cd (ppm) | Ni (ppm) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Bioavail. | Total | Bioavail. | Total | Bioavail. | Total | Bioavail. | Total | Bioavail. | Total | Bioavail. | |||
MI3 | 7.73 | 13.1 | 1200 ± 300 | N.A. | 390 ± 30 | 36 ± 3 | 530 ± 50 | 28 ± 2 | 229 ± 10 | 0.48 ± 0.03 | 0.48 ± 0.01 | 0.03 ± 0.01 | 175 ± 5 | 3.80 ± 0.02 |
MI4 | 7.75 | 9.40 | 1200 ± 200 | N.A. | 540 ± 40 | 113 ± 7 | 135 ± 2 | 5.5 ± 0.3 | 75 ± 1 | 0.61 ± 0.06 | 0.39 ± 0.01 | 0.08 ± 0.01 | 70 ± 10 | 3.5 ± 0.1 |
MI9 | 8.81 | 9.48 | 270 ± 40 | N.A. | 60 ± 10 | N.A. | 22 ± 3 | N.A. | 100 ± 70 | N.A. | 0.40 ± 0.2 | N.A. | 60 ± 30 | N.A. |
BO7 | 9.04 | 7.90 | 410 ± 70 | N.A. | 133 ± 7 | 11 ± 1 | 110 ± 20 | 4.3 ± 0.4 | 40 ± 10 | 0.15 ± 0.01 | 0.29 ± 0.01 | 0.08 ± 0.01 | 39 ± 4 | 1.5 ± 0.1 |
BO8 | 8.91 | 6.59 | 510 ± 40 | N.A. | 110 ± 10 | 2.6 ± 0.2 | 120 ± 20 | 4.6 ± 0.4 | 150 ± 60 | 0.19 ± 0.01 | 0.6 ± 0.1 | 0.06 ± 0.01 | 130 ± 90 | 1.4 ± 0.1 |
NAT1 | 7.42 | 11.8 | 56 ± 3 | N.A. | 12 ± 2 | 2.6 ± 0.2 | 12 ± 4 | 2.8 ± 0.1 | 19 ± 1 | 0.83 ± 0.03 | 0.10 ± 0.05 | 0.19 ± 0.02 | 11 ± 3 | 0.9 ± 0.1 |
NAT5 | 8.79 | 4.57 | 184 ± 6 | N.A. | 50 ± 5 | 3.9 ± 0.4 | 19 ± 5 | 0.53 ± 0.01 | 22 ± 5 | 0.07 ± 0.01 | 0.33 ± 0.04 | 0.04 ± 0.01 | 49 ± 4 | 4.3 ± 0.3 |
NAT8 | 8.79 | 2.70 | 110 ± 10 | N.A. | 19 ± 2 | N.A. | 8 ± 4 | N.A. | 570 ± 50 | N.A. | 0.38 ± 0.03 | N.A. | 1900 ± 300 | N.A. |
Correlation BAF_TM/BAF_BM | Zn | Cu | Pb | Cr | Cd | Ni |
---|---|---|---|---|---|---|
P. annua | N.A. | 0.33 | 0.79 | −0.03 | 0.10 | 0.87 |
P. aviculare | N.A. | 0.00 | 0.78 | 0.94 | 0.83 | 0.81 |
S. vulgaris | N.A. | 0.97 | 1.00 | −0.22 | 0.98 | 0.97 |
Species | Soil | Zn (ppm) | Cu (ppm) | Pb (ppm) | Cr (ppm) | Cd (ppm) | Ni (ppm) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Plant | BAF | Plant | BAF | Plant | BAF | Plant | BAF | Plant | BAF | Plant | BAF | ||||||||||||||
S. vulgaris | Mi3 | 17.9 | ± | 0.7 | 0.01 | 0.78 | ± | 0.05 | 0.02 | <LoD | N.D. | <LoD | N.D. | 0.05 | ± | 0.01 | 0.02 | 0.39 | ± | 0.03 | 0.02 | ||||
S. vulgaris | Mi4 | 471 | ± | 40 | 0.32 | 9.8 | ± | 0.9 | 0.39 | <LoD | N.D. | 0.16 | ± | 0.01 | 0.02 | 0.05 | ± | 0.01 | 0.02 | 0.67 | ± | 0.03 | 0.03 | ||
S. vulgaris | Mi9 | 70 | ± | 1 | 0.39 | 8.6 | ± | 0.5 | 0.28 | 0.36 | ± | 0.02 | 0.09 | 0.51 | ± | 0.01 | 0.16 | 0.21 | ± | 0.02 | 0.01 | 0.64 | ± | 0.03 | 0.02 |
S. vulgaris | Bo7 | 99 | ± | 4 | 0.17 | 7.3 | ± | 0.5 | 0.07 | 0.77 | ± | 0.02 | 0.01 | 0.49 | ± | 0.02 | 0.02 | 0.21 | ± | 0.01 | 2.49 | 1.25 | ± | 0.01 | 0.04 |
S. vulgaris | Bo8 | 5.4 | ± | 0.5 | 0.01 | 0.08 | ± | 0.01 | 0.01 | <LoD | N.D. | 0.02 | ± | 0.01 | 0.02 | 0.06 | ± | 0.01 | 0.09 | 0.25 | ± | 0.02 | 0.02 | ||
S. vulgaris | Nat8 | 17 | ± | 1 | 0.16 | 2.9 | ± | 0.2 | 0.16 | 0.48 | ± | 0.03 | 0.03 | 1.14 | ± | 0.07 | 0.03 | 0.73 | ± | 0.02 | 1.86 | 5.1 | ± | 0.3 | 0.02 |
S. vulgaris | Nat1 | 54 | ± | 4 | 1.02 | 8.26 | ± | 0.03 | 0.69 | 0.42 | ± | 0.03 | 0.02 | 0.7 | ± | 0.01 | 0.05 | 0.76 | ± | 0.03 | 0.01 | 3.07 | ± | 0.06 | 0.06 |
S. vulgaris | Nat5 | 22.7 | ± | 0.6 | 0.13 | 5.7 | ± | 0.2 | 0.14 | 4.96 | ± | 0.03 | 0.31 | 0.16 | ± | 0.01 | 0.01 | 14.6 | ± | 0.4 | 0.02 | 2.4 | ± | 0.1 | 0.06 |
P. aviculare | Mi3 | 47 | ± | 3 | 0.03 | 14 | ± | 1 | 0.04 | 0.82 | ± | 0.03 | 0.02 | 1.7 | ± | 0.1 | 0.01 | 0.17 | ± | 0.01 | 0.36 | 1.93 | ± | 0.08 | 0.01 |
P. aviculare | Mi4 | 56 | ± | 2 | 0.04 | 13.7 | ± | 0.7 | 0.03 | 1.03 | ± | 0.08 | 0.01 | 1.58 | ± | 0.08 | 0.02 | 0.17 | ± | 0.01 | 0.44 | 0.62 | ± | 0.01 | 0.01 |
P. aviculare | Mi9 | 30 | ± | 3 | 0.16 | 21 | ± | 1 | 0.22 | 0.63 | ± | 0.05 | 0.02 | 3.52 | ± | 0.07 | 0.13 | 0.24 | ± | 0.01 | 1.86 | 1.8 | ± | 0.2 | 0.15 |
P. aviculare | Bo7 | 57 | ± | 3 | 0.13 | 19.8 | ± | 0.2 | 0.15 | 0.81 | ± | 0.01 | 0.01 | 2.5 | ± | 0.2 | 0.12 | 0.47 | ± | 0.04 | 5.48 | 0.65 | ± | 0.03 | 0.02 |
P. aviculare | Bo8 | 46 | ± | 5 | 0.20 | 7.8 | ± | 0.7 | 0.14 | 1.02 | ± | 0.08 | 0.01 | 1.3 | ± | 0.1 | 0.08 | 4.04 | ± | 0.07 | 1.72 | 1.23 | ± | 0.05 | 0.02 |
P. aviculare | Nat8 | 32 | ± | 2 | 0.31 | 39 | ± | 1 | 2.17 | 0.12 | ± | 0.01 | 0.01 | 0.22 | ± | 0.03 | 0.02 | 0.16 | ± | 0.01 | 0.42 | 2.2 | ± | 0.2 | 0.02 |
P. aviculare | Nat1 | 40 | ± | 2 | 0.75 | 3.6 | ± | 0.1 | 0.30 | 0.11 | ± | 0.02 | N.D. | 0.17 | ± | 0.01 | 0.01 | 0.35 | ± | 0.01 | 5.01 | 1.2 | ± | 0.1 | 0.06 |
P. aviculare | Nat5 | 27.4 | ± | 0.6 | 0.29 | 3.15 | ± | 0.09 | 0.14 | 0.13 | ± | 0.01 | N.D. | 0.12 | ± | 0.01 | 0.01 | 0.33 | ± | 0.02 | 1.43 | 1.6 | ± | 0.2 | 0.03 |
P. annua | Mi3 | 220 | ± | 10 | 0.15 | 1.80 | ± | 0.01 | 0.01 | <LoD | N.D. | <LoD | N.D. | 0.35 | ± | 0.01 | 0.71 | 4.1 | ± | 0.3 | 0.03 | ||||
P. annua | Mi4 | 108 | ± | 8 | 0.20 | 14.0 | ± | 0.6 | 0.07 | 0.08 | ± | 0.01 | 0.01 | 2.33 | ± | 0.01 | 0.07 | 0.46 | ± | 0.04 | 1.92 | 5.8 | ± | 0.4 | 0.07 |
P. annua | Mi9 | 84.0 | ± | 0.4 | 0.47 | 14.2 | ± | 0.1 | 0.15 | 0.54 | ± | 0.02 | 0.02 | 4.14 | ± | 0.05 | 0.14 | 0.42 | ± | 0.02 | 3.31 | 6.8 | ± | 0.6 | 0.20 |
P. annua | Bo7 | 29 | ± | 2 | 0.10 | 11.0 | ± | 0.8 | 0.08 | 0.17 | ± | 0.03 | 0.01 | 0.45 | ± | 0.02 | 0.01 | 0.13 | ± | 0.01 | 0.48 | 0.82 | ± | 0.01 | 0.06 |
P. annua | Bo8 | 119 | ± | 9 | 0.26 | 20.2 | ± | 0.3 | 0.19 | 0.25 | ± | 0.02 | 0.01 | 1.52 | ± | 0.06 | 0.07 | 0.23 | ± | 0.02 | 0.48 | 2.00 | ± | 0.07 | 0.14 |
P. annua | Nat8 | 4.0 | ± | 0.4 | 0.04 | 4.1 | ± | 0.4 | 0.23 | 0.54 | ± | 0.02 | 0.03 | 0.38 | ± | 0.01 | 0.01 | 1.53 | ± | 0.01 | 3.89 | 17.2 | ± | 0.2 | 0.02 |
P. annua | Nat1 | 98 | ± | 5 | 1.85 | 5.2 | ± | 0.3 | 0.43 | 1.7 | ± | 0.1 | 0.08 | 3.1 | ± | 0.1 | 0.21 | 0.61 | ± | 0.06 | 8.57 | 3.5 | ± | 0.3 | 0.19 |
P. annua | Nat5 | 34 | ± | 1 | 0.37 | 7.7 | ± | 0.7 | 0.33 | 0.41 | ± | 0.03 | 0.01 | 1.6 | ± | 0.1 | 0.06 | 0.23 | ± | 0.01 | 1.01 | 6.27 | ± | 0.03 | 0.17 |
Correlation TM/PM | Zn | Cu | Pb | Cr | Cd | Ni |
---|---|---|---|---|---|---|
P. annua | 0.64 | 0.15 | −0.47 | −0.47 | −0.05 | 0.87 |
P. aviculare | 0.59 | −0.05 | 0.50 | −0.27 | 0.61 | 0.62 |
S. vulgaris | 0.56 | 0.04 | −0.28 | 0.54 | −0.02 | 0.73 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salinitro, M.; Tassoni, A.; Casolari, S.; de Laurentiis, F.; Zappi, A.; Melucci, D. Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L. Molecules 2019, 24, 2813. https://doi.org/10.3390/molecules24152813
Salinitro M, Tassoni A, Casolari S, de Laurentiis F, Zappi A, Melucci D. Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L. Molecules. 2019; 24(15):2813. https://doi.org/10.3390/molecules24152813
Chicago/Turabian StyleSalinitro, Mirko, Annalisa Tassoni, Sonia Casolari, Francesco de Laurentiis, Alessandro Zappi, and Dora Melucci. 2019. "Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L." Molecules 24, no. 15: 2813. https://doi.org/10.3390/molecules24152813
APA StyleSalinitro, M., Tassoni, A., Casolari, S., de Laurentiis, F., Zappi, A., & Melucci, D. (2019). Heavy Metals Bioindication Potential of the Common Weeds Senecio vulgaris L., Polygonum aviculare L. and Poa annua L. Molecules, 24(15), 2813. https://doi.org/10.3390/molecules24152813