Channel Quality-Based Optimal Status Update for Information Freshness in Internet of Things
<p>System model.</p> "> Figure 2
<p>An example of the AoI evolution with the channel state <math display="inline"><semantics> <msub> <mi>h</mi> <mi>t</mi> </msub> </semantics></math>, the action <math display="inline"><semantics> <msub> <mi>a</mi> <mi>t</mi> </msub> </semantics></math>, and the acknowledgment <math display="inline"><semantics> <msub> <mi>ACK</mi> <mi>t</mi> </msub> </semantics></math>. The asterisk stands for no acknowledgment from destination when the sensor keeps idle.</p> "> Figure 3
<p>An illustration of established Markov chain with two channel states.</p> "> Figure 4
<p>Optimal policy for different AoI and channel states (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.4</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>2</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>3</mn> </msub> <mo>=</mo> <mn>0.3</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>4</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p> "> Figure 5
<p>Optimal thresholds for two different channel states versus <math display="inline"><semantics> <mi>ω</mi> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p> "> Figure 6
<p>Comparison of the zero-wait policy, the periodic policy with period being 5, the numerical-based policy, and the optimal policy with respect to the weighting factor <math display="inline"><semantics> <mi>ω</mi> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>p</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.8</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p> "> Figure 7
<p>Comparison of the zero-wait policy, the periodic policy with period being 5, and the optimal policy with respect to <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p> "> Figure 8
<p>AoI comparison of the zero-wait policy, the periodic policy with period being 5, and the optimal policy with respect to <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p> "> Figure 9
<p>Energy consumption comparison of the zero-wait policy, the periodic policy with period being 5, and the optimal policy with respect to <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> (<math display="inline"><semantics> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mn>0.2</mn> <mo>,</mo> <mo> </mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mn>0.5</mn> <mo>,</mo> <mo> </mo> <mi>ω</mi> <mo>=</mo> <mn>10</mn> <mo>,</mo> <mo> </mo> <msub> <mi>C</mi> <mi>e</mi> </msub> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>).</p> ">
Abstract
:1. Introduction
- An average cost Markov decision process (MDP) is formulated to model this problem. Due to the infinite countable states and unbounded cost of the MDP, which makes analysis difficult, the discounted version of the original problem is first investigated, and the existence of the stationary and deterministic policy to the original problem is then proven. Furthermore, it is proven that the optimal policy is a threshold structure policy with respect to the AoI for each channel state by showing the monotonic property of the value function. We also prove that the threshold is a non-increasing function of channel state.
- By utilizing the threshold structure, a structure-aware policy iteration algorithm is proposed to efficiently obtain the optimal updating policy. Nevertheless, a numerical-based algorithm which directly computes the thresholds by non-linear fractional programming is also derived. Simulation results reveal the effects of system parameters and show that our proposed policy performs better than the zero-wait policy and periodic policy.
2. System Model and Problem Formulation
2.1. System Description
2.2. Channel Model
2.3. Age of Information
2.4. Problem Formulation
3. Optimal Updating Policy
3.1. MDP Formulation
- States: The state of the MDP in slot t is defined as , which takes values in . Hence, the state space is countable and infinite.
- Actions: The set of actions chosen in slot t is .
- Transition Probability: Let be the transition probability that the state in slot t transits to in slot after taking action . According to the evolution of AoI in (4), the transition probability is given by
- Cost: The instantaneous cost at state given action in slot t is
3.2. The Existence of Stationary and Deterministic Policy
3.3. Structural Analysis
Algorithm 1 Policy iteration algorithm (PIA) based on the threshold structure. |
|
3.4. Computing the Thresholds for a Special Case
Algorithm 2 Numerical computation of the optimal thresholds. |
Input: |
Output: |
|
4. Simulation Results and Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Lemma 2
Appendix A.1. Proof of Equation (16)
Appendix A.2. Proof of Equation (15)
Appendix B. Proof of Theorem 1
- (1): For every state and discount factor , the discount value function is finite.
- (2): There exists a non-negative value L such that for all and , where , and is a reference state.
- (3): There exists a non-negative value , such that for every and . For every , there exists an action such that .
- (4): The inequality holds for all and a.
Appendix C. Proof of Theorem 2
Appendix D. Proof of Theorem 3
References
- Kaul, S.; Yates, R.; Gruteser, M. Real-time status: How often should one update? In Proceedings of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 2731–2735. [Google Scholar]
- Abd-Elmagid, M.A.; Dhillon, H.S. Average peak age-of-information minimization in UAV-assisted IoT networks. IEEE Trans. Veh. Technol. 2018, 68, 2003–2008. [Google Scholar] [CrossRef] [Green Version]
- Farazi, S.; Klein, A.G.; Brown, D.R. Average age of information for status update systems with an energy harvesting server. In Proceedings of the IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, 15–19 April 2018; pp. 112–117. [Google Scholar]
- Costa, M.; Codreanu, M.; Ephremides, A. On the age of information in status update systems with packet management. IEEE Trans. Inf. Theory 2016, 62, 1897–1910. [Google Scholar] [CrossRef]
- Sun, Y.; Uysal-Biyikoglu, E.; Yates, R.D.; Koksal, C.E.; Shroff, N.B. Update or wait: How to keep your data fresh. IEEE Trans. Inf. Theory 2017, 63, 7492–7508. [Google Scholar] [CrossRef]
- Yun, J.; Joo, C.; Eryilmaz, A. Optimal real-time monitoring of an information source under communication costs. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami, FL, USA, 17–19 December 2018; pp. 4767–4772. [Google Scholar]
- Imer, O.C.; Basar, T. Optimal estimation with limited measurements. In Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, 15 December 2005; pp. 1029–1034. [Google Scholar]
- Rabi, M.; Moustakides, G.V.; Baras, J.S. Adaptive sampling for linear state estimation. Siam J. Control Optim. 2009, 50, 672–702. [Google Scholar] [CrossRef]
- Gao, X.; Akyol, E.; Başar, T. On remote estimation with multiple communication channels. In Proceedings of the 2016 American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016; pp. 5425–5430. [Google Scholar]
- Chakravorty, J.; Mahajan, A. Remote-state estimation with packet drop. IFAC-PapersOnLine 2016, 49, 7–12. [Google Scholar] [CrossRef]
- Lipsa, G.M.; Martins, N.C. Optimal state estimation in the presence of communication costs and packet drops. In Proceedings of the 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 30 September–2 October 2009; pp. 160–169. [Google Scholar]
- Huang, H.; Qiao, D.; Gursoy, M.C. Age-energy tradeoff in fading channels with packet-based transmissions. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 323–328. [Google Scholar]
- Chakravorty, J.; Mahajan, A. Remote estimation over a packet-drop channel with Markovian state. IEEE Trans. Autom. Control 2019, 65, 2016–2031. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Yi, H.; Luo, H.; Yu, H.; Wang, H. A novel CQI calculation scheme in LTE∖LTE-A systems. In Proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 9–11 November 2011; pp. 1–5. [Google Scholar]
- Toyserkani, A.T.; Strom, E.G.; Svensson, A. An analytical approximation to the block error rate in Nakagami-m non-selective block fading channels. IEEE Trans. Wirel. Commun. 2010, 9, 1543–1546. [Google Scholar] [CrossRef] [Green Version]
- Sennott, L.I. Average cost optimal stationary policies in infinite state Markov decision processes with unbounded costs. Oper. Res. 1989, 37, 626–633. [Google Scholar] [CrossRef]
- Dinkelbach, W. On nonlinear fractional programming. Manag. Sci. 1967, 13, 492–498. [Google Scholar] [CrossRef]
- Chandry, K.M. The Analysis and Solutions for General Queueing Networks; Citeseer: Princeton, NJ, USA, 1974. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Chen, X.; Wang, X. Channel Quality-Based Optimal Status Update for Information Freshness in Internet of Things. Entropy 2021, 23, 912. https://doi.org/10.3390/e23070912
Peng F, Chen X, Wang X. Channel Quality-Based Optimal Status Update for Information Freshness in Internet of Things. Entropy. 2021; 23(7):912. https://doi.org/10.3390/e23070912
Chicago/Turabian StylePeng, Fuzhou, Xiang Chen, and Xijun Wang. 2021. "Channel Quality-Based Optimal Status Update for Information Freshness in Internet of Things" Entropy 23, no. 7: 912. https://doi.org/10.3390/e23070912
APA StylePeng, F., Chen, X., & Wang, X. (2021). Channel Quality-Based Optimal Status Update for Information Freshness in Internet of Things. Entropy, 23(7), 912. https://doi.org/10.3390/e23070912