Winsorization for Robust Bayesian Neural Networks
<p>Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction and light blue points are the predictions in several individual runs.</p> "> Figure 2
<p>Crop yield predictions for Minnesota and Illinois. Sub-plot (<b>f</b>) shows us the legend. Darker blue shade represents lower yield predictions and lighter shade represents higher yield predictions. Methods for better predictive performance (concrete dropout, mixture density network, and exact gp) are able to correctly predict the whole range of observed yield. Flipout and VGP-based Bayesian neural networks are unable to predict well especially in Minnesota counties.</p> "> Figure 3
<p>Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction and epistemic uncertainty estimates is shown in turquoise.</p> "> Figure 4
<p>Winsorization results from 0 to 25 percentile limits on crop yield dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases on the training set, the model performance in terms of mean squared error for the untouched test set is shown in the sub-plots.</p> "> Figure 5
<p>Winsorization results from 0 to 25 percentile limits on California housing dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases in the training dataset, the model performance in terms of mean squared error for the untouched test set is shown in the picture.</p> "> Figure 6
<p>Winsorization results from 0 to 25 percentile limits on Mauna dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases in the training set, the model performance in terms of mean squared error in the untouched test set is shown in the sub-plots.</p> "> Figure 7
<p>Winsorization results from 0 to 25 percentile limits on forest fires dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases in the training set, the model performance in terms of Mean Squared Error in the untouched test set is show in the sub-plots.</p> "> Figure 7 Cont.
<p>Winsorization results from 0 to 25 percentile limits on forest fires dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases in the training set, the model performance in terms of Mean Squared Error in the untouched test set is show in the sub-plots.</p> "> Figure 8
<p>Winsorization results from 0 to 25 percentile limits on GDSC dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases in the training set, the model performance in terms of mean squared error in the untouched test set is shown in the sub-plots.</p> "> Figure 9
<p>Relative efficiencies (REs) of Winsorized MSE with non-Winsorized MSE for different noise sites. The black dashed line represents an RE of one. RE values greater than one represent improvement in performance with Winsorized training and validation data and vice versa. (<b>a</b>) RE for noise free case in crop yield data. (<b>b</b>) RE for noise in target in crop yield data. (<b>c</b>) RE for noise in features in crop yield data. (<b>d</b>) RE for noise in target and features in crop yield data. (<b>e</b>) RE for noise free case in California data. (<b>f</b>) RE for noise in target in California data. (<b>g</b>) RE for noise in features in California data. (<b>h</b>) RE for noise in target and features in California data. (<b>i</b>) RE for noise free case in GDSC data. (<b>j</b>) RE for noise in target in GDSC data. (<b>k</b>) RE for noise in features in GDSC data. (<b>l</b>) RE for noise in target and features in GDSC data. (<b>m</b>) RE for noise free case in forest fires data. (<b>n</b>) RE for noise in target in forest fires data. (<b>o</b>) RE for noise in features in forest fires data. (<b>p</b>) RE for noise in target and features in forest fires data. (<b>q</b>) RE for noise free case in Mauna data. (<b>r</b>) RE for noise in target in Mauna data. (<b>s</b>) RE for noise in features in Mauna data. (<b>t</b>) RE for noise in target and features in Mauna data.</p> "> Figure 9 Cont.
<p>Relative efficiencies (REs) of Winsorized MSE with non-Winsorized MSE for different noise sites. The black dashed line represents an RE of one. RE values greater than one represent improvement in performance with Winsorized training and validation data and vice versa. (<b>a</b>) RE for noise free case in crop yield data. (<b>b</b>) RE for noise in target in crop yield data. (<b>c</b>) RE for noise in features in crop yield data. (<b>d</b>) RE for noise in target and features in crop yield data. (<b>e</b>) RE for noise free case in California data. (<b>f</b>) RE for noise in target in California data. (<b>g</b>) RE for noise in features in California data. (<b>h</b>) RE for noise in target and features in California data. (<b>i</b>) RE for noise free case in GDSC data. (<b>j</b>) RE for noise in target in GDSC data. (<b>k</b>) RE for noise in features in GDSC data. (<b>l</b>) RE for noise in target and features in GDSC data. (<b>m</b>) RE for noise free case in forest fires data. (<b>n</b>) RE for noise in target in forest fires data. (<b>o</b>) RE for noise in features in forest fires data. (<b>p</b>) RE for noise in target and features in forest fires data. (<b>q</b>) RE for noise free case in Mauna data. (<b>r</b>) RE for noise in target in Mauna data. (<b>s</b>) RE for noise in features in Mauna data. (<b>t</b>) RE for noise in target and features in Mauna data.</p> "> Figure 10
<p>Crop yield dataset result: Relative Efficiencies (RE) comparing performance of Winsorized results with standard Cauchy noise in the features with original performance on noise free data without Winsorization. Black dashed line represents RE of one. REs above one represent improvement in performance due to Winsorization on contaminated data.</p> "> Figure 11
<p>Summarizing Winsorization results: The subplots show average of evaluation metrics over all methodologies used for cases when artificial perturbation is introduced in the datasets. The MSE and Median AE plot legends also convey the mean and standard error of the evaluation metric in the respective sub-plots for each dataset.</p> "> Figure 12
<p>Apart from predictive performance in terms of accurate prediction, the precision can also be compared in terms of uncertainty estimates. On the y-axis, we measure the average standard error in prediction. (<b>a</b>) Uncertainty estimate for noise free case in crop yield data. (<b>b</b>) Uncertainty estimate for noise in target in crop yield data. (<b>c</b>) Uncertainty estimate for noise in features in crop yield data. (<b>d</b>) Uncertainty estimate for noise in target and features in crop yield data. (<b>e</b>) Uncertainty estimate for noise free case in California data. (<b>f</b>) Uncertainty estimate for noise in target in California data. (<b>g</b>) Uncertainty estimate for noise in features in California data. (<b>h</b>) Uncertainty estimate for noise in target and features in California data. (<b>i</b>) Uncertainty estimate for noise free case in GDSC data. (<b>j</b>) RE for noise in target in GDSC data. (<b>k</b>) Uncertainty estimate for noise in features in GDSC data. (<b>l</b>) Uncertainty estimate for noise in target and features in GDSC data. (<b>m</b>) Uncertainty estimate for noise free case in forest fires data. (<b>n</b>) Uncertainty estimate for noise in target in forest fires data. (<b>o</b>) Uncertainty estimate for noise in features in forest fires data. (<b>p</b>) Uncertainty estimate for noise in target and features in forest fires data. (<b>q</b>) Uncertainty estimate for noise free case in Mauna data. (<b>r</b>) Uncertainty estimate for noise in target in Mauna data. (<b>s</b>) Uncertainty estimate for noise in features in Mauna data. (<b>t</b>) Uncertainty estimate for noise in target and features in Mauna data.</p> "> Figure 12 Cont.
<p>Apart from predictive performance in terms of accurate prediction, the precision can also be compared in terms of uncertainty estimates. On the y-axis, we measure the average standard error in prediction. (<b>a</b>) Uncertainty estimate for noise free case in crop yield data. (<b>b</b>) Uncertainty estimate for noise in target in crop yield data. (<b>c</b>) Uncertainty estimate for noise in features in crop yield data. (<b>d</b>) Uncertainty estimate for noise in target and features in crop yield data. (<b>e</b>) Uncertainty estimate for noise free case in California data. (<b>f</b>) Uncertainty estimate for noise in target in California data. (<b>g</b>) Uncertainty estimate for noise in features in California data. (<b>h</b>) Uncertainty estimate for noise in target and features in California data. (<b>i</b>) Uncertainty estimate for noise free case in GDSC data. (<b>j</b>) RE for noise in target in GDSC data. (<b>k</b>) Uncertainty estimate for noise in features in GDSC data. (<b>l</b>) Uncertainty estimate for noise in target and features in GDSC data. (<b>m</b>) Uncertainty estimate for noise free case in forest fires data. (<b>n</b>) Uncertainty estimate for noise in target in forest fires data. (<b>o</b>) Uncertainty estimate for noise in features in forest fires data. (<b>p</b>) Uncertainty estimate for noise in target and features in forest fires data. (<b>q</b>) Uncertainty estimate for noise free case in Mauna data. (<b>r</b>) Uncertainty estimate for noise in target in Mauna data. (<b>s</b>) Uncertainty estimate for noise in features in Mauna data. (<b>t</b>) Uncertainty estimate for noise in target and features in Mauna data.</p> "> Figure A1
<p>Winsorization results from 0 to 25 percentile limits on Mauna dataset. Mean Squared Error is shown on the y-axis and the Winsorization limits are shown on the x-axis. Different lines represent different methods: Concrete dropout is shown as blue dashed line, exact GP is shown as green dotted line, mixture density network with 2 components is shown in red solid line, and mixture density network with 4 components is shown in magenta dashed-dotted line. As Winsorization limit increases in the training set, the model performance in terms of Mean Squared Error in the untouched test set is shown in the sub-plots.</p> "> Figure A2
<p>Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction, and aleatoric uncertainty estimates are shown in turquoise.</p> "> Figure A2 Cont.
<p>Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction, and aleatoric uncertainty estimates are shown in turquoise.</p> "> Figure A3
<p>Crop yield predictions. X-axis shows arbitrary county indices which are sorted by the observed yield in ascending order. Y-axis represents the yield value. Black points are the observed yield. Navy blue line is the mean prediction and point predictions are shown in turquoise.</p> ">
Abstract
:1. Introduction
2. Related Literature
3. Methodology
3.1. Exact Gaussian Processes
3.2. Variational Gaussian Processes
3.3. Concrete Dropout
3.4. Flipout Estimator
3.5. Mixture Density Networks
3.6. Winsorization
4. Results
4.1. Datasets
4.1.1. Precision Agriculture Case Study: Crop Yield Prediction in the US Midwest
4.1.2. California Housing Data
4.1.3. Data on Forest Fires in Portugal
4.1.4. Mauna Loa CO Data
4.1.5. Data on Genomics of Drug Sensitivity in Cancer
4.2. Architecture
Evaluation Metrics
4.3. Results
4.3.1. Crop Yield Estimation
4.3.2. California Housing Data
4.3.3. Mauna Loa CO Data
4.4. Forest Fires Data
GDSC Data
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Loss Functions for Mixture Density Networks
Appendix A.1. Loss Function Definitions
Appendix A.1.1. Negative Log Likelihood
Appendix A.1.2. KL Divergence
Appendix A.1.3. Heteroscedastic Loss
Appendix A.1.4. Logarithm of Cos h
Appendix A.2. Experiment Results
Loss | NLL (Default) | MSE | LC | NLL + LC | HL | NLL + KL | Median AE |
---|---|---|---|---|---|---|---|
MSE (Noise-free) | 2.88 | 2.73 | 2.38 | 4.07 | 2.51 | 2.50 | 4.77 |
MSE (Cauchy in features) | 72.27 | 3.69 | 3.83 | 58.14 | 3.97 | 72.27 | 4.51 |
MSE (Cauchy in target) | 23.19 | 422.82 | 7.20 | 10.41 | 10.45 | 60.58 | 5.73 |
MSE (Cauchy in target and features) | 35.92 | 14.32 | 9.17 | 72.27 | 7.81 | 39.92 | 5.39 |
Appendix B. Adjusting for Long-Term Trend and Seasonality in the Mauna CO2 Dataset
Model | Test MSE | R | Run Time | Test Median Absolute Error |
---|---|---|---|---|
Concrete Dropout | 1318 | −0.60 | 23 s | 25 |
VGP | 69 | 0.62 | 60 s | 4.48 |
Exact GP | 1.41 | 0.99 | 34 s | 0.97 |
MDN | 10.79 | 0.98 | 16 s | 2.67 |
Flipout | 1899 | −12.9 | 225 s | 29.74 |
Noise Site | Optimal Limit | Model | MSE | MSE | R | R | Median AE | Median AE | MAE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
None | 0.05 | Concrete Dropout | 1.26 × | 1.28 × | −140.24 | −141.94 | 349.94 | 352.14 | 354.61 | 356.74 |
None | 0.05 | Exact GP | 1.88 | 1.88 | 0.99 | 0.99 | 1.06 | 1.06 | 1.12 | 1.12 |
None | 0.05 | MDN | 10.07 | 91.06 | 0.98 | 0.89 | 2.49 | 6.20 | 2.68 | 7.59 |
None | 0.05 | MDN (4) | 1.24 × | 8.48 | −128.89 | 0.99 | 343.47 | 2.15 | 352.04 | 2.41 |
Untouched Test Set | ||||||||||
Target | 0.01 | Concrete Dropout | 1.27 × | 1.25 × | −141.10 | −139.14 | 350.95 | 348.62 | 355.69 | 353.23 |
Target | 0.01 | Exact GP | 1.28 × | 21.31 | −142.01 | 0.97 | 352.15 | 1.76 | 356.83 | 1.76 |
Target | 0.01 | MDN | 2 × | 24.40 | −24.31 | 0.97 | 91.41 | 3.49 | 116.75 | 3.97 |
Target | 0.01 | MDN (4) | 1.28 × | 12.81 | −142.01 | 0.98 | 352.14 | 2.44 | 356.83 | 2.89 |
Features | 0.2 | Concrete Dropout | 1.27 × | 1.25 × | −140.93 | −139.08 | 350.74 | 348.55 | 355.48 | 353.14 |
Features | 0.2 | Exact GP | 792.49 | 940.82 | 0.11 | −0.04 | 18.76 | 19.01 | 22.22 | 23.77 |
Features | 0.2 | MDN | 546.45 | 851.44 | 0.39 | 0.05 | 14.90 | 23.47 | 18.5 | 24.85 |
Features | 0.2 | MDN (4) | 1.28 × | 827.14 | −142.01 | 0.07 | 352.14 | 22.46 | 356.83 | 23.77 |
Target and Features | 0.1 | Concrete Dropout | 1.27 × | 1.26 × | −141.21 | −140.01 | 351.28 | 349.29 | 355.82 | 354.31 |
Target and Features | 0.1 | Exact GP | 947.30 | 763.98 | −0.05 | 0.14 | 21.21 | 20.13 | 24.36 | 22.34 |
Target and Features | 0.1 | MDN | 1.28 × | 886.47 | −142.01 | 0.01 | 352.15 | 23.63 | 356.83 | 25.3 |
Target and Features | 0.1 | MDN (4) | 1.28 × | 1.28 × | −142.01 | −137.05 | 352.14 | 352.14 | 356.83 | 356.83 |
Contaminated Test Set | ||||||||||
Target | 0.01 | Concrete Dropout | 1.25 × | 1.27 × | −138.70 | −141.29 | 348.10 | 351.31 | 352.65 | 355.93 |
Target | 0.01 | Exact GP | 1.88 | 2.11 | 0.99 | 0.99 | 1.07 | 1.11 | 1.12 | 1.17 |
Target | 0.01 | MDN | 101.57 | 6.25 | 0.88 | 0.99 | 9.37 | 1.67 | 9.38 | 1.97 |
Target | 0.01 | MDN (4) | 8450.96 | 6.79 | −8.42 | 0.99 | 88.47 | 1.71 | 87.14 | 2.06 |
Features | 0.25 | Concrete Dropout | 1.27 × | 1.23 × | −140.90 | −127.07 | 350.82 | 349.42 | 355.44 | 354.32 |
Features | 0.25 | Exact GP | 1.88 | 803.73 | 0.99 | 0.10 | 1.06 | 2.72 | 1.12 | 15.17 |
Features | 0.25 | MDN | 313.79 | 723.44 | 0.65 | 0.19 | 12.66 | 8.97 | 14.33 | 18.65 |
Features | 0.25 | MDN (4) | 1.28 × | 503.59 | −142.01 | 0.43 | 352.14 | 10.78 | 356.83 | 16.60 |
Target and Features | 0.01 | Concrete Dropout | 1.25 × | 1.27 × | −138.93 | −141.44 | 348.23 | 351.39 | 352.96 | 356.11 |
Target and Features | 0.01 | Exact GP | 1.88 | 3.26 | 0.99 | 0.99 | 1.06 | 1.11 | 1.12 | 1.27 |
Target and Features | 0.01 | MDN | 22.92 | 1410.19 | 0.97 | −0.57 | 3.58 | 36.79 | 3.90 | 36.80 |
Target and Features | 0.01 | MDN (4) | 5.13 | 9.55 | 0.99 | 0.98 | 1.83 | 1.94 | 1.90 | 2.44 |
Appendix C. Aleatoric Uncertainty
References
- Yuan, K.H.; Bentler, P.M. Effect of outliers on estimators and tests in covariance structure analysis. Br. J. Math. Stat. Psychol. 2001, 54, 161–175. [Google Scholar] [CrossRef]
- Huggins, R. A robust approach to the analysis of repeated measures. Biometrics 1993, 49, 715–720. [Google Scholar] [CrossRef]
- Leeb, H.; Pötscher, B.M. Model selection and inference: Facts and fiction. Econom. Theory 2005, 21, 21–59. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; Vinyals, O. Understanding deep learning (still) requires rethinking generalization. Commun. ACM 2021, 64, 107–115. [Google Scholar] [CrossRef]
- Bartlett, P.L.; Long, P.M.; Lugosi, G.; Tsigler, A. Benign overfitting in linear regression. Proc. Natl. Acad. Sci. USA 2020, 117, 30063–30070. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Zhu, J.; Yuan, S.; Su, H. Sparse adversarial perturbations for videos. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 8973–8980. [Google Scholar]
- Wallace, E.; Stern, M.; Song, D. Imitation attacks and defenses for black-box machine translation systems. arXiv 2020, arXiv:2004.15015. [Google Scholar]
- Eykholt, K.; Evtimov, I.; Fernandes, E.; Li, B.; Rahmati, A.; Xiao, C.; Prakash, A.; Kohno, T.; Song, D. Robust physical-world attacks on deep learning visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1625–1634. [Google Scholar]
- Wang, W.; Wang, R.; Wang, L.; Wang, Z.; Ye, A. Towards a robust deep neural network in texts: A survey. arXiv 2019, arXiv:1902.07285. [Google Scholar]
- Samanta, S.; Mehta, S. Towards crafting text adversarial samples. arXiv 2017, arXiv:1707.02812. [Google Scholar]
- Papernot, N.; McDaniel, P.; Swami, A.; Harang, R. Crafting adversarial input sequences for recurrent neural networks. In Proceedings of the MILCOM 2016—2016 IEEE Military Communications Conference, Baltimore, MD, USA, 1–3 November 2016; pp. 49–54. [Google Scholar]
- Ren, S.; Deng, Y.; He, K.; Che, W. Generating natural language adversarial examples through probability weighted word saliency. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, 28 July–2 August 2019; pp. 1085–1097. [Google Scholar]
- Jin, D.; Jin, Z.; Zhou, J.T.; Szolovits, P. Is bert really robust? A strong baseline for natural language attack on text classification and entailment. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 8018–8025. [Google Scholar]
- Garg, S.; Ramakrishnan, G. Bae: Bert-based adversarial examples for text classification. arXiv 2020, arXiv:2004.01970. [Google Scholar]
- Li, L.; Ma, R.; Guo, Q.; Xue, X.; Qiu, X. Bert-attack: Adversarial attack against bert using bert. arXiv 2020, arXiv:2004.09984. [Google Scholar]
- Li, J.; Ji, S.; Du, T.; Li, B.; Wang, T. Textbugger: Generating adversarial text against real-world applications. arXiv 2018, arXiv:1812.05271. [Google Scholar]
- Zhou, Y.; Jiang, J.Y.; Chang, K.W.; Wang, W. Learning to discriminate perturbations for blocking adversarial attacks in text classification. arXiv 2019, arXiv:1909.03084. [Google Scholar]
- Wang, X.; Jin, H.; He, K. Natural language adversarial attacks and defenses in word level. arXiv 2019, arXiv:1909.06723. [Google Scholar]
- Shafahi, A.; Najibi, M.; Ghiasi, A.; Xu, Z.; Dickerson, J.; Studer, C.; Davis, L.S.; Taylor, G.; Goldstein, T. Adversarial training for free! arXiv 2019, arXiv:1904.12843. [Google Scholar]
- Liu, H.; Zhang, Y.; Wang, Y.; Lin, Z.; Chen, Y. Joint character-level word embedding and adversarial stability training to defend adversarial text. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 8384–8391. [Google Scholar]
- Jones, E.; Jia, R.; Raghunathan, A.; Liang, P. Robust encodings: A framework for combating adversarial typos. arXiv 2020, arXiv:2005.01229. [Google Scholar]
- Jia, R.; Raghunathan, A.; Göksel, K.; Liang, P. Certified robustness to adversarial word substitutions. arXiv 2019, arXiv:1909.00986. [Google Scholar]
- Katz, G.; Huang, D.A.; Ibeling, D.; Julian, K.; Lazarus, C.; Lim, R.; Shah, P.; Thakoor, S.; Wu, H.; Zeljić, A.; et al. The marabou framework for verification and analysis of deep neural networks. In Proceedings of the International Conference on Computer Aided Verification, New York, NY, USA, 15–18 July 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 443–452. [Google Scholar]
- Fazlyab, M.; Morari, M.; Pappas, G.J. Safety verification and robustness analysis of neural networks via quadratic constraints and semidefinite programming. IEEE Trans. Autom. Control 2020. [Google Scholar] [CrossRef]
- Raghunathan, A.; Steinhardt, J.; Liang, P. Certified defenses against adversarial examples. arXiv 2018, arXiv:1801.09344. [Google Scholar]
- Dvijotham, K.; Gowal, S.; Stanforth, R.; Arandjelovic, R.; O’Donoghue, B.; Uesato, J.; Kohli, P. Training verified learners with learned verifiers. arXiv 2018, arXiv:1805.10265. [Google Scholar]
- Huang, P.S.; Stanforth, R.; Welbl, J.; Dyer, C.; Yogatama, D.; Gowal, S.; Dvijotham, K.; Kohli, P. Achieving verified robustness to symbol substitutions via interval bound propagation. arXiv 2019, arXiv:1909.01492. [Google Scholar]
- Rice, L.; Wong, E.; Kolter, Z. Overfitting in adversarially robust deep learning. In Proceedings of the International Conference on Machine Learning, Virtual Event, 12–18 July 2020; pp. 8093–8104. [Google Scholar]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Robey, A.; Hassani, H.; Pappas, G.J. Model-Based Robust Deep Learning: Generalizing to Natural, Out-of-Distribution Data. arXiv 2020, arXiv:2005.10247. [Google Scholar]
- Taori, R.; Dave, A.; Shankar, V.; Carlini, N.; Recht, B.; Schmidt, L. Measuring robustness to natural distribution shifts in image classification. arXiv 2020, arXiv:2007.00644. [Google Scholar]
- Rivest, L.P. Statistical properties of Winsorized means for skewed distributions. Biometrika 1994, 81, 373–383. [Google Scholar] [CrossRef]
- Wu, M.; Zuo, Y. Trimmed and Winsorized means based on a scaled deviation. J. Stat. Plan. Inference 2009, 139, 350–365. [Google Scholar] [CrossRef]
- Yale, C.; Forsythe, A.B. Winsorized regression. Technometrics 1976, 18, 291–300. [Google Scholar] [CrossRef]
- Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.; Madry, A. Adversarial examples are not bugs, they are features. arXiv 2019, arXiv:1905.02175. [Google Scholar]
- Bastounis, A.; Hansen, A.C.; Vlačić, V. The mathematics of adversarial attacks in AI–Why deep learning is unstable despite the existence of stable neural networks. arXiv 2021, arXiv:2109.06098. [Google Scholar]
- Shibzukhov, Z. Robust neural networks learning: New approaches. In Proceedings of the International Symposium on Neural Networks, Minsk, Belarus, 25–28 June 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 247–255. [Google Scholar]
- Suleman, H.; Maulud, A.S.; Man, Z. Reconciliation of outliers in CO 2-alkanolamine-H 2 O datasets by robust neural network winsorization. Neural Comput. Appl. 2017, 28, 2621–2632. [Google Scholar] [CrossRef]
- Nyitrai, T.; Virág, M. The effects of handling outliers on the performance of bankruptcy prediction models. Socio-Econ. Plan. Sci. 2019, 67, 34–42. [Google Scholar] [CrossRef]
- Chen, Z. Trimmed and Winsorized M- and Z-Estimators, with Applications to Robust Estimation in Neural Network Models; The University of Texas at Dallas: Richardson, TX, USA, 2000. [Google Scholar]
- Rasmussen, C.E. Gaussian processes in machine learning. In Summer School on Machine Learning; Springer: Berlin/Heidelberg, Germany, 2003; pp. 63–71. [Google Scholar]
- Snelson, E.; Ghahramani, Z. Local and global sparse Gaussian process approximations. In Proceedings of the Artificial Intelligence and Statistics, San Juan, Puerto Rico, 21–24 March 2007; pp. 524–531. [Google Scholar]
- Lawrence, N.; Seeger, M.; Herbrich, R. Fast sparse Gaussian process methods: The informative vector machine. In Proceedings of the 16th Annual Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 9–11 December 2003; pp. 609–616. [Google Scholar]
- Tran, D.; Ranganath, R.; Blei, D.M. The variational Gaussian process. arXiv 2015, arXiv:1511.06499. [Google Scholar]
- Hensman, J.; Fusi, N.; Lawrence, N.D. Gaussian processes for big data. arXiv 2013, arXiv:1309.6835. [Google Scholar]
- Titsias, M.; Lawrence, N.D. Bayesian Gaussian process latent variable model. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 844–851. [Google Scholar]
- Hoffman, M.D.; Blei, D.M.; Wang, C.; Paisley, J. Stochastic variational inference. J. Mach. Learn. Res. 2013, 14, 303–1347. [Google Scholar]
- Titsias, M. Variational learning of inducing variables in sparse Gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Clearwater, FL, USA, 16–18 April 2009; pp. 567–574. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 1050–1059. [Google Scholar]
- Gal, Y.; Hron, J.; Kendall, A. Concrete dropout. arXiv 2017, arXiv:1705.07832. [Google Scholar]
- Damianou, A.; Lawrence, N.D. Deep gaussian processes. In Proceedings of the Artificial Intelligence and Statistics, Scottsdale, AZ, USA, 29 April–1 May 2013; pp. 207–215. [Google Scholar]
- Hanson, S.; Pratt, L. Comparing biases for minimal network construction with back-propagation. Adv. Neural Inf. Process. Syst. 1988, 1, 177–185. [Google Scholar]
- Kang, G.; Li, J.; Tao, D. Shakeout: A new regularized deep neural network training scheme. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016. [Google Scholar]
- Li, Y.; Liu, F. Whiteout: Gaussian adaptive noise regularization in deep neural networks. arXiv 2016, arXiv:1612.01490. [Google Scholar]
- Goodfellow, I.; Warde-Farley, D.; Mirza, M.; Courville, A.; Bengio, Y. Maxout networks. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1319–1327. [Google Scholar]
- Graves, A. Practical variational inference for neural networks. Adv. Neural Inf. Process. Syst. 2011, 24, 2348–2356. [Google Scholar]
- Wan, L.; Zeiler, M.; Zhang, S.; Le Cun, Y.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1058–1066. [Google Scholar]
- Kingma, D.P.; Salimans, T.; Welling, M. Variational dropout and the local reparameterization trick. Adv. Neural Inf. Process. Syst. 2015, 28, 2575–2583. [Google Scholar]
- Blundell, C.; Cornebise, J.; Kavukcuoglu, K.; Wierstra, D. Weight uncertainty in neural network. In Proceedings of the International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1613–1622. [Google Scholar]
- Friston, K.; Mattout, J.; Trujillo-Barreto, N.; Ashburner, J.; Penny, W. Variational free energy and the Laplace approximation. Neuroimage 2007, 34, 220–234. [Google Scholar] [CrossRef]
- Jaakkola, T.S.; Jordan, M.I. Bayesian parameter estimation via variational methods. Stat. Comput. 2000, 10, 25–37. [Google Scholar] [CrossRef]
- Yedidia, J.S.; Freeman, W.T.; Weiss, Y. Generalized belief propagation. In Proceedings of the Neural Information Processing Systems 2000 (NIPS 2000), Denver, CO, USA, 1 January 2000; Volume 13, pp. 689–695. [Google Scholar]
- Neal, R.M.; Hinton, G.E. A view of the EM algorithm that justifies incremental, sparse, and other variants. In Learning in Graphical Models; Springer: Berlin/Heidelberg, Germany, 1998; pp. 355–368. [Google Scholar]
- Plappert, M.; Houthooft, R.; Dhariwal, P.; Sidor, S.; Chen, R.Y.; Chen, X.; Asfour, T.; Abbeel, P.; Andrychowicz, M. Parameter space noise for exploration. arXiv 2017, arXiv:1706.01905. [Google Scholar]
- Salimans, T.; Ho, J.; Chen, X.; Sidor, S.; Sutskever, I. Evolution strategies as a scalable alternative to reinforcement learning. arXiv 2017, arXiv:1703.03864. [Google Scholar]
- Fortunato, M.; Azar, M.G.; Piot, B.; Menick, J.; Osband, I.; Graves, A.; Mnih, V.; Munos, R.; Hassabis, D.; Pietquin, O.; et al. Noisy networks for exploration. arXiv 2017, arXiv:1706.10295. [Google Scholar]
- Wen, Y.; Vicol, P.; Ba, J.; Tran, D.; Grosse, R. Flipout: Efficient pseudo-independent weight perturbations on mini-batches. arXiv 2018, arXiv:1803.04386. [Google Scholar]
- Sun, Y.; Wierstra, D.; Schaul, T.; Schmidhuber, J. Efficient natural evolution strategies. In Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, Portland, OR, USA, 7–11 July 2009; pp. 539–546. [Google Scholar]
- Wierstra, D.; Schaul, T.; Glasmachers, T.; Sun, Y.; Peters, J.; Schmidhuber, J. Natural evolution strategies. J. Mach. Learn. Res. 2014, 15, 949–980. [Google Scholar]
- Bishop, C.M. Mixture Density Networks. 1994. Available online: https://publications.aston.ac.uk/id/eprint/373/1/NCRG_94_004.pdf (accessed on 1 September 2021).
- Bishop, C.M. Pattern recognition. Mach. Learn. 2006, 128, 272–276. [Google Scholar]
- Riha, S.J.; Wilks, D.S.; Simoens, P. Impact of temperature and precipitation variability on crop model predictions. Clim. Chang. 1996, 32, 293–311. [Google Scholar] [CrossRef]
- McCown, R.L.; Hammer, G.L.; Hargreaves, J.N.G.; Holzworth, D.P.; Freebairn, D.M. APSIM: A novel software system for model development, model testing and simulation in agricultural systems research. Agric. Syst. 1996, 50, 255–272. [Google Scholar] [CrossRef]
- Jones, P.G.; Thornton, P.K. The potential impacts of climate change on maize production in Africa and Latin America in 2055. Glob. Environ. Chang. 2003, 13, 51–59. [Google Scholar] [CrossRef]
- McDermid, S.P.; Ruane, A.C.; Rosenzweig, C.; Hudson, N.I.; Morales, M.D.; Agalawatte, P.; Ahmad, S.; Ahuja, L.; Amien, I.; Anapalli, S.S.; et al. The AgMIP coordinated climate-crop modeling project (C3MP): Methods and protocols. In Handbook of Climate Change and Agroecosystems: The Agricultural Model Intercomparison and Improvement Project Integrated Crop and Economic Assessments, Part 1; World Scientific: Singapore, 2015; pp. 191–220. [Google Scholar]
- Liu, X.; Chen, F.; Barlage, M.; Zhou, G.; Niyogi, D. Noah-MP-Crop: Introducing dynamic crop growth in the Noah-MP land surface model. J. Geophys. Res. Atmos. 2016, 121, 13–953. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to US crop yields under climate change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheehy, J.E.; Mitchell, P.L.; Ferrer, A.B. Decline in rice grain yields with temperature: Models and correlations can give different estimates. Field Crops Res. 2006, 98, 151–156. [Google Scholar] [CrossRef]
- Lin, T.; Zhong, R.; Wang, Y.; Xu, J.; Jiang, H.; Xu, J.; Ying, Y.; Rodriguez, L.; Ting, K.; Li, H. DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation. Environ. Res. Lett. 2020, 15, 034016. [Google Scholar] [CrossRef]
- Ruß, G.; Kruse, R.; Schneider, M.; Wagner, P. Data mining with neural networks for wheat yield prediction. In Proceedings of the Industrial Conference on Data Mining, Leipzig, Germany, 16–18 July 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 47–56. [Google Scholar]
- Baral, S.; Tripathy, A.K.; Bijayasingh, P. Yield prediction using artificial neural networks. In Proceedings of the International Conference on Advances in Communication, Network, and Computing, Bangalore, India, 10–11 March 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 315–317. [Google Scholar]
- Mkhabela, M.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Fernandes, J.L.; Ebecken, N.F.F.; Esquerdo, J.C.D.M. Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble. Int. J. Remote Sens. 2017, 38, 4631–4644. [Google Scholar] [CrossRef]
- Pantazi, X.E.; Moshou, D.; Mouazen, A.M.; Kuang, B.; Alexandridis, T. Application of supervised self organising models for wheat yield prediction. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications and Innovations, Rhodos, Greece, 19–21 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 556–565. [Google Scholar]
- Rahman, M.M.; Haq, N.; Rahman, R.M. Machine learning facilitated rice prediction in Bangladesh. In Proceedings of the 2014 Annual Global Online Conference on Information and Computer Technology, Louisville, KY, USA, 3–5 December 2014; pp. 1–4. [Google Scholar]
- Ahamed, A.M.S.; Mahmood, N.T.; Hossain, N.; Kabir, M.T.; Das, K.; Rahman, F.; Rahman, R.M. Applying data mining techniques to predict annual yield of major crops and recommend planting different crops in different districts in Bangladesh. In Proceedings of the 2015 IEEE/ACIS 16th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD), Takamatsu, Japan, 1–3 June 2015; pp. 1–6. [Google Scholar]
- Crane-Droesch, A. Machine learning methods for crop yield prediction and climate change impact assessment in agriculture. Environ. Res. Lett. 2018, 13, 114003. [Google Scholar] [CrossRef] [Green Version]
- Matsumura, K.; Gaitan, C.F.; Sugimoto, K.; Cannon, A.J.; Hsieh, W.W. Maize yield forecasting by linear regression and artificial neural networks in Jilin, China. J. Agric. Sci. 2015, 153, 399–410. [Google Scholar] [CrossRef]
- Kouadio, L.; Deo, R.C.; Byrareddy, V.; Adamowski, J.F.; Mushtaq, S. Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Comput. Electron. Agric. 2018, 155, 324–338. [Google Scholar] [CrossRef]
- Goldstein, A.; Fink, L.; Meitin, A.; Bohadana, S.; Lutenberg, O.; Ravid, G. Applying machine learning on sensor data for irrigation recommendations: Revealing the agronomist’s tacit knowledge. Precis. Agric. 2018, 19, 421–444. [Google Scholar] [CrossRef]
- Zhong, H.; Li, X.; Lobell, D.; Ermon, S.; Brandeau, M.L. Hierarchical modeling of seed variety yields and decision making for future planting plans. Environ. Syst. Decis. 2018, 38, 458–470. [Google Scholar] [CrossRef] [Green Version]
- Romero, J.R.; Roncallo, P.F.; Akkiraju, P.C.; Ponzoni, I.; Echenique, V.C.; Carballido, J.A. Using classification algorithms for predicting durum wheat yield in the province of Buenos Aires. Comput. Electron. Agric. 2013, 96, 173–179. [Google Scholar] [CrossRef]
- Everingham, Y.; Sexton, J.; Skocaj, D.; Inman-Bamber, G. Accurate prediction of sugarcane yield using a random forest algorithm. Agron. Sustain. Dev. 2016, 36, 27. [Google Scholar] [CrossRef] [Green Version]
- Shekoofa, A.; Emam, Y.; Shekoufa, N.; Ebrahimi, M.; Ebrahimie, E. Determining the most important physiological and agronomic traits contributing to maize grain yield through machine learning algorithms: A new avenue in intelligent agriculture. PLoS ONE 2014, 9, e97288. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.M.; Gerber, J.S.; Reddy, V.R.; et al. Random forests for global and regional crop yield predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef] [PubMed]
- Ruß, G.; Kruse, R. Regression models for spatial data: An example from precision agriculture. In Proceedings of the Industrial Conference on Data Mining, Berlin, Germany, 12–14 July 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 450–463. [Google Scholar]
- González Sánchez, A.; Frausto Solís, J.; Ojeda Bustamante, W. Predictive ability of machine learning methods for massive crop yield prediction. Span. J. Agric. Res. 2014, 12, 313–328. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, N.; Armstrong, L.J.; Petkar, O.; Tripathy, A.K. Rice crop yield prediction in India using support vector machines. In Proceedings of the 2016 13th International Joint Conference on Computer Science and Software Engineering (JCSSE), Khon Kaen, Thailand, 13–15 July 2016; pp. 1–5. [Google Scholar]
- van Klompenburg, T.; Kassahun, A.; Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 2020, 177, 105709. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef] [Green Version]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; West, P.C.; Clark, M.; Gerber, J.S.; Prishchepov, A.V.; Chatterjee, S. Climate change has likely already affected global food production. PLoS ONE 2019, 14, e0217148. [Google Scholar] [CrossRef] [PubMed]
- PSL. CPC Global Temperature Data Provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from Their Web Site. Available online: https://psl.noaa.gov/ (accessed on 1 September 2021).
- USDA Maize Yield Data. Available online: https://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS (accessed on 1 September 2021).
- Pace, R.K.; Barry, R. Sparse spatial autoregressions. Stat. Probab. Lett. 1997, 33, 291–297. [Google Scholar] [CrossRef]
- Cortez, P.; Morais, A.d.J.R. A Data Mining Approach to Predict Forest Fires Using Meteorological Data. In Proceedings of the 13th EPIA 2007—Portuguese Conference on Artificial Intelligence, Guimaraes, Portugal, 3–7 December 2007; pp. 512–523. [Google Scholar]
- Keeling, C.D.; Bacastow, R.B.; Bainbridge, A.E.; Ekdahl, C.A., Jr.; Guenther, P.R.; Waterman, L.S.; Chin, J.F. Atmospheric carbon dioxide variations at Mauna Loa observatory, Hawaii. Tellus 1976, 28, 538–551. [Google Scholar]
- Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau, K.W.; Greninger, P.; Thompson, I.R.; Luo, X.; Soares, J.; et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Gonçalves, E.; Barthorpe, S.; Lightfoot, H.; et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016, 166, 740–754. [Google Scholar]
- Frazier, P.I. A tutorial on bayesian optimization. arXiv 2018, arXiv:1807.02811. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Duvenaud, D.; Rippel, O.; Adams, R.; Ghahramani, Z. Avoiding pathologies in very deep networks. In Proceedings of the Artificial Intelligence and Statistics, Reykjavik, Iceland, 22–25 April 2014; pp. 202–210. [Google Scholar]
- Lu, C.K.; Yang, S.C.H.; Hao, X.; Shafto, P. Interpretable deep Gaussian processes with moments. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Palermo, Italy, 26–28 August 2020; pp. 613–623. [Google Scholar]
- Lien, D.; Balakrishnan, N. On regression analysis with data cleaning via trimming, winsorization, and dichotomization. Commun. Stat. Comput. 2005, 34, 839–849. [Google Scholar] [CrossRef]
- Tarasov, I.E. A Mathematical Method for Determining the Parameters of Functional Dependencies Using Multiscale Probability Distribution Functions. Mathematics 2021, 9, 1085. [Google Scholar] [CrossRef]
- Postels, J.; Ferroni, F.; Coskun, H.; Navab, N.; Tombari, F. Sampling-free epistemic uncertainty estimation using approximated variance propagation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 2931–2940. [Google Scholar]
- Hüllermeier, E.; Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: An introduction to concepts and methods. Mach. Learn. 2021, 110, 457–506. [Google Scholar]
- Fox, C.R.; Ülkümen, G. Distinguishing two dimensions of uncertainty. In Essays in Judgment and Decision Making; Brun, W., Kirkebøen, G., Montgomery, H., Eds.; Universitetsforlaget: Oslo, Norway, 2011. [Google Scholar]
Model | Test MSE | R |
---|---|---|
Linear Regression ( Lasso) | 2.3432 | 0.7205 |
Random Forest | 2.1113 | 0.7481 |
Support Vector Regression (rbf kernel) | 2.3 | 0.7246 |
Support Vector Regression (polynomial kernel, degree: 8) | 4.2943 | 0.4878 |
Concrete Dropout, 3-layer ANN | 3.0001 | 0.6379 |
Neural Network | 1.9224 | 0.7684 |
Model | Test MSE | R | Run Time | Test Median Absolute Error | Number of Parameters |
---|---|---|---|---|---|
Concrete Dropout | 2.33 | 0.62 | 19 s | 1.09 | 1,106,952 |
Variation GP | 51.09 | −7.38 | 75 s | 6.50 | 1,108,167 |
Flipout | 10,349 | −15,544 | 464 s | 73.63 | 2,213,872 |
Flipout (early 5 layers) | 2.72 | 0.47 | 215 s | 1.30 | 1,481,959 |
Flipout (mid 5 layers) | 2.53 | 0.60 | 166 s | 0.75 | 1,309,563 |
Flipout (final 5 layers) | 2.70 | 0.31 | 232 s | 0.85 | 1,635,316 |
MDN (2 components) | 2.95 | 0.66 | 56 s | 1.01 | 1,108,748 |
MDN (3 components) | 2.24 | 0.69 | 52 s | 0.73 | 1,110,107 |
MDN (4 components) | 2.15 | 0.71 | 54 s | 0.71 | 1,111,466 |
Exact GP | 2.22 | 0.69 | 3.6 s | 0.69 | 2 |
Noise Site | Optimal Limit | Model | MSE | MSE | R | R | Median AE | Median AE | MAE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
None | 0.1 | Concrete Dropout | 3.25 | 2.63 | 0.55 | 0.64 | 1.55 | 1.16 | 1.51 | 1.33 |
None | 0.1 | Exact GP | 2.21 | 2.21 | 0.69 | 0.69 | 0.69 | 0.69 | 1.13 | 1.13 |
None | 0.1 | MDN | 2.72 | 2.46 | 0.63 | 0.66 | 1.05 | 0.72 | 1.28 | 1.15 |
None | 0.1 | MDN (4) | 2.61 | 2.14 | 0.64 | 0.70 | 0.91 | 0.50 | 1.19 | 1.01 |
Untouched Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 22.27 | 6.02 | −2.02 | 0.18 | 4.37 | 1.55 | 4.16 | 1.97 |
Target | 0.25 | Exact GP | 12.94 | 6.31 | −0.75 | 0.14 | 1.74 | 1.26 | 2.45 | 1.89 |
Target | 0.25 | MDN | 9.29 | 3.49 | −0.26 | 0.52 | 1.49 | 1.40 | 2.25 | 1.56 |
Target | 0.25 | MDN (4) | 13.84 | 6.15 | −0.87 | 0.17 | 2.44 | 1.12 | 2.91 | 1.79 |
Features | 0.15 | Concrete Dropout | 6.15 | 3.69 | 0.16 | 0.50 | 1.98 | 1.26 | 2.07 | 1.52 |
Features | 0.15 | Exact GP | 72.27 | 72.27 | −8.79 | −8.79 | 8.6 | 8.6 | 8.05 | 8.05 |
Features | 0.15 | MDN | 4.78 | 2.67 | 0.35 | 0.63 | 1.87 | 0.98 | 1.86 | 1.32 |
Features | 0.15 | MDN (4) | 72.27 | 2.34 | −8.79 | 0.68 | 8.60 | 0.96 | 8.05 | 1.21 |
Target and Features | 0.25 | Concrete Dropout | 112.62 | 6.03 | −14.26 | 0.18 | 9.93 | 1.17 | 10.33 | 1.82 |
Target and Features | 0.25 | Exact GP | 72.27 | 72.27 | −8.79 | −8.79 | 8.60 | 8.60 | 8.05 | 8.05 |
Target and Features | 0.25 | MDN | 35.55 | 8.88 | −3.81 | −0.20 | 5.44 | 2.48 | 5.52 | 2.46 |
Target and Features | 0.25 | MDN (4) | 72.27 | 7.42 | −8.79 | −0.01 | 8.60 | 1.31 | 8.05 | 1.98 |
Contaminated Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 2.85 | 3.04 | 0.61 | 0.58 | 1.37 | 1.47 | 1.40 | 1.49 |
Target | 0.25 | Exact GP | 2.21 | 2.91 | 0.69 | 0.60 | 0.69 | 1.49 | 1.13 | 1.46 |
Target | 0.25 | MDN | 3.05 | 2.73 | 0.58 | 0.62 | 1.49 | 1.69 | 1.44 | 1.44 |
Target | 0.25 | MDN (4) | 2.37 | 2.93 | 0.67 | 0.60 | 0.81 | 0.95 | 1.14 | 1.32 |
Features | 0.05 | Concrete Dropout | 2.51 | 2.27 | 0.65 | 0.69 | 1.19 | 1.08 | 1.33 | 1.17 |
Features | 0.05 | Exact GP | 2.21 | 2.39 | 0.69 | 0.68 | 1.13 | 1.23 | 0.62 | 0.61 |
Features | 0.05 | MDN | 2.39 | 2.71 | 0.67 | 0.63 | 0.70 | 1.02 | 1.09 | 1.28 |
Features | 0.05 | MDN (4) | 2.47 | 2.55 | 0.66 | 0.65 | 1.02 | 0.84 | 1.18 | 1.26 |
Target and Features | 0.25 | Concrete Dropout | 3.08 | 3.38 | 0.58 | 0.54 | 1.35 | 1.64 | 1.52 | 1.58 |
Target and Features | 0.25 | Exact GP | 2.21 | 5.89 | 0.69 | 0.20 | 0.69 | 1.98 | 1.13 | 2.12 |
Target and Features | 0.25 | MDN | 2.60 | 2.09 | 0.64 | 0.71 | 0.87 | 1.23 | 1.20 | 1.20 |
Target and Features | 0.25 | MDN (4) | 4.12 | 2.69 | 0.44 | 0.63 | 1.44 | 1.07 | 1.63 | 1.36 |
Model | Test MSE | R | Run Time | Test Median Absolute Error | Number of Parameters |
---|---|---|---|---|---|
Concrete Dropout | 0.44 | 0.63 | 28 s | 0.26 | 1,050,168 |
Variational GP | 1.74 | −2.39 | 36 s | 0.71 | 1,050,143 |
Exact GP | 0.28 | 0.69 | 73.34 s | 0.21 | 2 |
Flipout | 0.64 | −0.54 | 392 s | 0.45 | 2,100,304 |
MDN (2 components) | 0.31 | 0.66 | 52 s | 0.23 | 1,051,964 |
Noise Site | Optimal Limit | Model | MSE | MSE | R | R | Median AE | Median AE | MAE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
None | 0.05 | Concrete Dropout | 0.35 | 0.30 | 0.62 | 0.67 | 0.25 | 0.24 | 0.38 | 0.36 |
None | 0.05 | Exact GP | 0.30 | 0.30 | 0.67 | 0.67 | 0.20 | 0.20 | 0.34 | 0.34 |
None | 0.05 | MDN | 0.35 | 0.32 | 0.62 | 0.65 | 0.23 | 0.22 | 0.36 | 0.35 |
None | 0.05 | MDN (4) | 0.31 | 0.29 | 0.66 | 0.68 | 0.18 | 0.20 | 0.33 | 0.34 |
Untouched Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 3.91 | 2.65 | −3.18 | −1.84 | 0.80 | 1.58 | 1.26 | 1.51 |
Target | 0.25 | Exact GP | 5.72 | 2.18 | −5.12 | −1.33 | 1.97 | 1.32 | 2.18 | 1.34 |
Target | 0.25 | MDN | 134.64 | 2.29 | −142.85 | −1.44 | 2.45 | 1.15 | 6.89 | 1.27 |
Target | 0.25 | MDN (4) | 22.29 | 2.18 | −22.82 | −1.33 | 1.45 | 1.33 | 2.56 | 1.32 |
Features | 0.1 | Concrete Dropout | 0.66 | 0.59 | 0.28 | 0.36 | 0.56 | 0.40 | 0.64 | 0.57 |
Features | 0.1 | Exact GP | 0.67 | 0.62 | 0.27 | 0.33 | 0.56 | 0.42 | 0.62 | 0.55 |
Features | 0.1 | MDN | 0.82 | 0.67 | 0.12 | 0.28 | 0.51 | 0.45 | 0.67 | 0.58 |
Features | 0.1 | MDN (4) | 5.72 | 0.61 | −5.12 | 0.34 | 1.97 | 0.36 | 2.18 | 0.54 |
Target and Features | 0.25 | Concrete Dropout | 23.10 | 2.21 | −23.68 | −1.37 | 4.55 | 1.43 | 4.48 | 1.33 |
Target and Features | 0.25 | Exact GP | 4.77 | 2.47 | −4.10 | −1.64 | 2.07 | 1.53 | 2.01 | 1.42 |
Target and Features | 0.25 | MDN | 12.47 | 2.82 | −12.32 | −2.01 | 2.32 | 1.31 | 2.84 | 1.37 |
Target and Features | 0.25 | MDN (4) | 5.72 | 3.09 | −5.12 | −2.31 | 1.97 | 1.18 | 2.18 | 1.36 |
Contaminated Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 0.31 | 0.60 | 0.65 | 0.35 | 0.23 | 0.40 | 0.36 | 0.55 |
Target | 0.25 | Exact GP | 0.30 | 0.57 | 0.67 | 0.38 | 0.20 | 0.37 | 0.34 | 0.51 |
Target | 0.25 | MDN | 0.32 | 0.58 | 0.65 | 0.37 | 0.19 | 0.36 | 0.33 | 0.53 |
Target | 0.25 | MDN (4) | 0.32 | 0.56 | 0.65 | 0.39 | 0.17 | 0.35 | 0.32 | 0.52 |
Features | 0.01 | Concrete Dropout | 0.28 | 0.33 | 0.69 | 0.64 | 0.23 | 0.27 | 0.34 | 0.37 |
Features | 0.01 | Exact GP | 0.30 | 0.30 | 0.67 | 0.67 | 0.20 | 0.20 | 0.34 | 0.34 |
Features | 0.01 | MDN | 0.32 | 0.27 | 0.65 | 0.71 | 0.20 | 0.21 | 0.35 | 0.33 |
Features | 0.01 | MDN (4) | 0.33 | 0.30 | 0.64 | 0.67 | 0.21 | 0.22 | 0.35 | 0.34 |
Target and Features | 0.25 | Concrete Dropout | 0.30 | 0.38 | 0.67 | 0.59 | 0.22 | 0.33 | 0.34 | 0.44 |
Target and Features | 0.25 | Exact GP | 0.30 | 0.60 | 0.67 | 0.35 | 0.20 | 0.39 | 0.34 | 0.54 |
Target and Features | 0.25 | MDN | 0.31 | 1.41 | 0.66 | −0.51 | 0.21 | 0.60 | 0.34 | 0.80 |
Target and Features | 0.25 | MDN (4) | 0.35 | 1.37 | 0.62 | −0.41 | 0.19 | 0.63 | 0.34 | 0.81 |
Model | Test MSE | R | Run Time | Test Median Absolute Error |
---|---|---|---|---|
Concrete Dropout | 3.24 | 0.82 | 25 s | 0.99 |
VGP | 18.44 | −0.04 | 3 s | 31.45 |
Exact GP | 0.08 | 0.99 | 34 s | 0.17 |
MDN | 0.42 | 0.97 | 23 s | 0.38 |
Flipout | 19.68 | −0.85 | 4 s | 211.83 |
Noise Site | Optimal Limit | Model | MSE | MSE | R | R | Median AE | Median AE | MAE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
None | 0.2 | Concrete Dropout | 3.16 | 3.28 | 0.82 | 0.81 | 1.03 | 1.46 | 1.35 | 1.52 |
None | 0.2 | Exact GP | 0.08 | 0.08 | 0.99 | 0.99 | 0.17 | 0.17 | 0.22 | 0.22 |
None | 0.2 | MDN | 0.77 | 0.38 | 0.95 | 0.98 | 0.50 | 0.31 | 0.67 | 0.46 |
None | 0.2 | MDN (4) | 0.42 | 1.55 | 0.97 | 0.91 | 0.33 | 0.57 | 0.47 | 0.88 |
Untouched Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 27.89 | 9.71 | −0.54 | 0.46 | 5.24 | 2.84 | 4.84 | 2.80 |
Target | 0.25 | Exact GP | 18.08 | 18.08 | −0.001 | −0.001 | 3.15 | 3.15 | 3.58 | 3.58 |
Target | 0.25 | MDN | 263.51 | 13.34 | −13.58 | 0.26 | 3.37 | 3.12 | 8.24 | 3.14 |
Target | 0.25 | MDN (4) | 107.36 | 7.35 | −4.94 | 0.59 | 5.59 | 2.49 | 6.92 | 2.43 |
Features | 0.25 | Concrete Dropout | 18.18 | 18.19 | −0.006 | −0.007 | 2.97 | 2.95 | 3.53 | 3.53 |
Features | 0.25 | Exact GP | 18.06 | 18.06 | −0.003 | −0.0003 | 3.15 | 3.15 | 3.57 | 3.57 |
Features | 0.25 | MDN | 18.76 | 19.68 | −0.03 | −0.08 | 3.20 | 2.98 | 3.60 | 3.65 |
Features | 0.25 | MDN (4) | 20.19 | 20.82 | −0.11 | −0.15 | 2.88 | 3.09 | 3.64 | 3.75 |
Target & Features | 0.25 | Concrete Dropout | 25.33 | 18.99 | −0.40 | −0.05 | 5.33 | 4.17 | 4.61 | 3.92 |
Target & Features | 0.25 | Exact GP | 18.06 | 20.89 | −3e−3 | −0.002 | 3.15 | 3.15 | 3.57 | 3.58 |
Target & Features | 0.25 | MDN | 30.60 | 20.89 | −0.69 | −0.15 | 4.66 | 4.13 | 4.72 | 4.12 |
Target & Features | 0.25 | MDN (4) | 30.94 | 20.01 | −0.71 | −0.11 | 4.72 | 3.98 | 4.75 | 3.93 |
Contaminated Test Set | ||||||||||
Target | 0.05 | Concrete Dropout | 3.13 | 2.95 | 0.82 | 0.83 | 0.87 | 0.98 | 1.27 | 1.27 |
Target | 0.05 | Exact GP | 0.08 | 0.15 | 0.99 | 0.99 | 0.17 | 0.17 | 0.22 | 0.26 |
Target | 0.05 | MDN | 0.70 | 0.82 | 0.96 | 0.95 | 0.48 | 0.49 | 0.64 | 0.68 |
Target | 0.05 | MDN (4) | 1.77 | 0.49 | 0.90 | 0.97 | 0.42 | 0.35 | 0.84 | 0.51 |
Features | 0.05 | Concrete Dropout | 3.46 | 3.21 | 0.80 | 0.82 | 0.89 | 1.11 | 1.34 | 1.37 |
Features | 0.05 | Exact GP | 0.08 | 1.65 | 0.99 | 0.90 | 0.17 | 0.19 | 0.22 | 0.59 |
Features | 0.05 | MDN | 1.03 | 1.14 | 0.94 | 0.93 | 0.45 | 0.49 | 0.68 | 0.74 |
Features | 0.05 | MDN (4) | 0.80 | 4.21 | 0.95 | 0.76 | 0.47 | 0.78 | 0.63 | 1.33 |
Target and Features | 0.01 | Concrete Dropout | 3.48 | 3.51 | 0.80 | 0.80 | 1.18 | 0.93 | 1.42 | 1.36 |
Target and Features | 0.01 | Exact GP | 0.08 | 0.13 | 0.99 | 0.99 | 0.17 | 0.17 | 0.22 | 0.24 |
Target and Features | 0.01 | MDN | 0.44 | 0.43 | 0.97 | 0.98 | 0.41 | 0.34 | 0.50 | 0.43 |
Target and Features | 0.01 | MDN (4) | 3.46 | 6.33 | 0.80 | 0.64 | 0.95 | 1.56 | 1.29 | 1.87 |
Model | Test MSE | R | Run Time | Test Median Absolute Error |
---|---|---|---|---|
Concrete Dropout | 12.93 | −0.11 | 100 s | 3.25 |
Flipout | 2015.67 | −192.80 | 1162 s | 3.66 |
VGP | 21.93 | −0.73 | 372 s | 3.71 |
Exact GP | 14.66 | −0.19 | 4 s | 3.46 |
MDN | 21.44 | −0.74 | 95 s | 3.52 |
Noise Site | Optimal Limit | Model | MSE | MSE | R | R | Median AE | Median AE | MAE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
None | 0.01 | Concrete Dropout | 14.10 | 12.85 | −0.15 | −0.04 | 3.39 | 3.25 | 3.40 | 3.22 |
None | 0.01 | Exact GP | 14.75 | 14.75 | −0.2 | −0.20 | 3.51 | 3.51 | 3.39 | 3.39 |
None | 0.01 | MDN | 26.24 | 25.71 | −1.14 | −1.09 | 3.76 | 3.57 | 4.28 | 4.03 |
None | 0.01 | MDN (4) | 24.97 | 26.74 | −1.03 | −1.18 | 3.91 | 3.83 | 4.05 | 4.17 |
Untouched Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 55.19 | 16.95 | −3.51 | −0.38 | 4.86 | 2.96 | 5.98 | 3.51 |
Target | 0.25 | Exact GP | 55.73 | 18.78 | −3.55 | −0.53 | 3.84 | 3.04 | 5.34 | 3.66 |
Target | 0.25 | MDN | 94.78 | 31.60 | −6.73 | −1.57 | 5.27 | 3.99 | 6.99 | 4.70 |
Target | 0.25 | MDN (4) | 273.36 | 29.05 | −21.31 | −1.37 | 5.16 | 4.21 | 8.55 | 4.62 |
Features | 0.15 | Concrete Dropout | 13.61 | 16.39 | −0.11 | −0.33 | 2.97 | 2.68 | 3.41 | 3.31 |
Features | 0.15 | Exact GP | 12.56 | 17.15 | −0.02 | −0.40 | 3.16 | 3.51 | 3.29 | 3.62 |
Features | 0.15 | MDN | 12.59 | 21.26 | −0.02 | −0.73 | 3.23 | 3.39 | 3.08 | 3.75 |
Features | 0.15 | MDN (4) | 165.53 | 23.41 | −12.51 | −0.91 | 11.18 | 3.56 | 12.38 | 3.91 |
Target and Features | 0.25 | Concrete Dropout | 51.78 | 19.42 | −3.22 | −0.58 | 6.57 | 3.40 | 6.04 | 3.77 |
Target and Features | 0.25 | Exact GP | 70.21 | 21.73 | −4.73 | −0.77 | 6.55 | 3.95 | 7.06 | 8.06 |
Target and Features | 0.25 | MDN | 165.53 | 21.39 | −12.51 | −0.74 | 11.18 | 3.42 | 12.38 | 3.71 |
Target and Features | 0.25 | MDN (4) | 23.44 | 22.49 | −0.91 | −0.65 | 3.89 | 3.55 | 4.01 | 3.81 |
Contaminated Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 13.68 | 12.95 | −0.11 | −0.05 | 3.33 | 3.04 | 3.36 | 3.23 |
Target | 0.25 | Exact GP | 14.75 | 14.91 | −0.20 | −0.21 | 3.50 | 3.41 | 3.39 | 3.45 |
Target | 0.25 | MDN | 23.89 | 14.91 | −0.95 | −0.84 | 3.72 | 3.41 | 4.06 | 3.45 |
Target | 0.25 | MDN (4) | 22.49 | 20.38 | −0.83 | −0.66 | 3.74 | 3.11 | 3.93 | 3.68 |
Features | 0.05 | Concrete Dropout | 14.23 | 14.71 | −0.16 | −0.20 | 3.10 | 3.16 | 3.40 | 3.37 |
Features | 0.05 | Exact GP | 14.75 | 15.80 | −0.65 | −0.29 | 3.50 | 3.43 | 3.39 | 3.45 |
Features | 0.05 | MDN | 20.30 | 23.54 | −0.65 | −0.92 | 3.05 | 3.72 | 3.64 | 4.02 |
Features | 0.05 | MDN (4) | 27.00 | 29.38 | −1.20 | −1.39 | 4.01 | 3.85 | 4.25 | 4.40 |
Target and Features | 0.25 | Concrete Dropout | 13.78 | 46.52 | −0.12 | −2.79 | 3.29 | 5.17 | 3.37 | 5.73 |
Target and Features | 0.25 | Exact GP | 14.75 | 39.99 | −0.20 | −2.26 | 3.50 | 4.08 | 3.39 | 4.08 |
Target and Features | 0.25 | MDN | 25.54 | 202.67 | −1.08 | −15.54 | 3.85 | 7.58 | 4.21 | 10.52 |
Target and Features | 0.25 | MDN (4) | 21.82 | 221.33 | −0.78 | −17.06 | 3.91 | 8.15 | 3.94 | 11.31 |
Model | Test MSE | R | Run Time | Test Median Absolute Error |
---|---|---|---|---|
Concrete Dropout | 7.77 | −0.10 | 32 s | 1.46 |
Exact GP | 15.59 | −1.25 | 3.8 s | 3.75 |
MDN | 7.78 | −0.13 | 119 s | 1.26 |
Flipout | 80.67 | −26.07 | 970 s | 5.95 |
VGP | 6.15 | 0.08 | 295 s | 1.46 |
Noise Site | Optimal Limit | Model | MSE | MSE | R | R | Median AE | Median AE | MAE | MAE |
---|---|---|---|---|---|---|---|---|---|---|
None | 0.05 | Concrete Dropout | 7.49 | 7.49 | −0.08 | −0.08 | 2.57 | 2.35 | 2.36 | 2.40 |
None | 0.05 | Exact GP | 15.59 | 15.59 | −1.25 | −1.25 | 3.75 | 3.75 | 3.40 | 3.40 |
None | 0.05 | MDN | 7.99 | 7.11 | −0.15 | −0.02 | 1.64 | 1.60 | 2.12 | 2.11 |
None | 0.05 | MDN (4) | 7.71 | 6.76 | −0.11 | 0.02 | 1.73 | 1.62 | 2.06 | 1.98 |
Untouched Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 16.38 | 11.89 | −1.37 | −0.72 | 3.88 | 3.51 | 3.48 | 2.97 |
Target | 0.25 | Exact GP | 15.59 | 15.59 | −1.25 | −1.25 | 3.75 | 3.75 | 3.40 | 3.40 |
Target | 0.25 | MDN | 24.82 | 9.85 | −2.59 | −0.42 | 2.08 | 2.03 | 3.36 | 2.43 |
Target | 0.25 | MDN (4) | 20.86 | 10.32 | −2.01 | −0.49 | 2.91 | 2.80 | 3.58 | 2.79 |
Features | 0.2 | Concrete Dropout | 8.08 | 7.58 | −0.16 | −0.09 | 2.46 | 2.50 | 2.51 | 2.45 |
Features | 0.2 | Exact GP | 15.59 | 15.59 | −1.25 | −1.25 | 3.75 | 3.75 | 3.40 | 3.40 |
Features | 0.2 | MDN | 9.34 | 7.11 | −0.35 | −0.03 | 1.44 | 1.95 | 2.33 | 2.22 |
Features | 0.2 | MDN (4) | 6.11 | 8.78 | 0.11 | −0.27 | 1.57 | 2.26 | 2.00 | 2.54 |
Target and Features | 0.25 | Concrete Dropout | 12.65 | 13.18 | −0.83 | −0.90 | 3.54 | 3.69 | 3.08 | 3.15 |
Target and Features | 0.25 | Exact GP | 15.59 | 15.59 | −1.25 | −1.25 | 3.75 | 3.75 | 3.40 | 3.40 |
Target and Features | 0.25 | MDN | 11.26 | 10.95 | −0.63 | −0.58 | 3.25 | 3.28 | 2.96 | 2.69 |
Target and Features | 0.25 | MDN (4) | 15.59 | 15.13 | −1.25 | −1.19 | 3.75 | 3.51 | 3.40 | 3.37 |
Contaminated Test Set | ||||||||||
Target | 0.25 | Concrete Dropout | 7.55 | 5.99 | −0.09 | 0.13 | 2.31 | 2.19 | 2.32 | 2.12 |
Target | 0.25 | Exact GP | 15.59 | 15.59 | −1.25 | −1.25 | 3.75 | 3.75 | 3.40 | 3.40 |
Target | 0.25 | MDN | 12.23 | 6.67 | −0.77 | 0.03 | 2.14 | 1.68 | 2.78 | 2.08 |
Target | 0.25 | MDN (4) | 5.96 | 6.36 | 0.13 | 0.07 | 1.49 | 1.93 | 1.84 | 2.16 |
Features | 0.25 | Concrete Dropout | 7.79 | 7.61 | −0.12 | −0.10 | 2.52 | 2.43 | 2.40 | 2.41 |
Features | 0.25 | Exact GP | 15.59 | 8.70 | −1.25 | −0.26 | 3.75 | 2.55 | 3.40 | 2.54 |
Features | 0.25 | MDN | 7.99 | 8.14 | −0.15 | −0.17 | 2.08 | 1.99 | 2.37 | 2.34 |
Features | 0.25 | MDN (4) | 10.77 | 20.3 | −0.55 | −1.94 | 2.09 | 2.42 | 2.77 | 3.52 |
Target and Features | 0.25 | Concrete Dropout | 7.22 | 6.71 | −0.04 | 0.02 | 2.41 | 1.95 | 2.33 | 2.22 |
Target and Features | 0.25 | Exact GP | 15.59 | 7.18 | −1.25 | −0.03 | 3.75 | 2.29 | 3.4 | 2.38 |
Target and Features | 0.25 | MDN | 5.24 | 7.45 | 0.24 | −0.07 | 1.76 | 1.62 | 1.95 | 2.11 |
Target and Features | 0.25 | MDN (4) | 9.03 | 7.32 | −0.30 | −0.05 | 1.95 | 2.53 | 2.44 | 2.40 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Chatterjee, S. Winsorization for Robust Bayesian Neural Networks. Entropy 2021, 23, 1546. https://doi.org/10.3390/e23111546
Sharma S, Chatterjee S. Winsorization for Robust Bayesian Neural Networks. Entropy. 2021; 23(11):1546. https://doi.org/10.3390/e23111546
Chicago/Turabian StyleSharma, Somya, and Snigdhansu Chatterjee. 2021. "Winsorization for Robust Bayesian Neural Networks" Entropy 23, no. 11: 1546. https://doi.org/10.3390/e23111546
APA StyleSharma, S., & Chatterjee, S. (2021). Winsorization for Robust Bayesian Neural Networks. Entropy, 23(11), 1546. https://doi.org/10.3390/e23111546