Dynamics of Phase Synchronization between Solar Polar Magnetic Fields Assessed with Van Der Pol and Kuramoto Models
<p>Polar faculae data for northern (blue curve) and southern (red curve) hemispheres.</p> "> Figure 2
<p>The relationship between coupling <math display="inline"><semantics> <mi>μ</mi> </semantics></math>, <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ω</mi> </mrow> </semantics></math>, and the correlation <math display="inline"><semantics> <mi>ρ</mi> </semantics></math> between two coupled van der Pol oscillators; <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ω</mi> <mo><</mo> <mi>μ</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Reconstruction scheme described in details in steps (A)–(C).</p> "> Figure 4
<p><b>Top panel</b>: Reconstructed coupling with the Kuramoto (<math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>μ</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; green) and van der Pol (<math display="inline"><semantics> <mrow> <msub> <mover accent="true"> <mi>μ</mi> <mo>^</mo> </mover> <mi>v</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>; orange) models found with <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ω</mi> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>. <b>Bottom panel</b>: ratio <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>ω</mi> </mrow> </msub> <mrow> <mo>[</mo> <msub> <mover accent="true"> <mi>μ</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> <msub> <mover accent="true"> <mi>μ</mi> <mo>^</mo> </mover> <mi>v</mi> </msub> <mo>]</mo> </mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> defined by (<a href="#FD14-entropy-22-00945" class="html-disp-formula">14</a>) exhibiting the proximity of the reconstructions. Grey figure background means that the reconstruction of the coupling involves either negative correlation between the series (in the middle) or the computation of the correlation on smaller windows (at the left and right); <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ω</mi> <mo>=</mo> <mn>0.1</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.2</mn> <mo>,</mo> <mspace width="0.166667em"/> <mn>0.3</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>The minimal (blue) and maximal (red curve) values of <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>ω</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> obtained with different <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mi>ω</mi> </mrow> </semantics></math> vs. time.</p> "> Figure 6
<p>Reconstructed normalized natural frequency, <math display="inline"><semantics> <mrow> <mn>1</mn> <mo>+</mo> <mo>Δ</mo> <mi>ω</mi> </mrow> </semantics></math>, associated with the signals coming from the northern solar hemisphere. The reconstruction rule is inferred from the assumption that the Kuramoto and VdP reconstruction of the coupling result in the time-independent values of <math display="inline"><semantics> <mrow> <msub> <mi>r</mi> <mrow> <mo>Δ</mo> <mi>ω</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> fixed to <math display="inline"><semantics> <mrow> <mn>0.86</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Data
3. Method: Reconstruction of the Coupling with Two Models
3.1. Kuramoto Model
3.2. Van Der Pol Model
3.3. Reconstruction Scheme
- (A)
- Given time series , , and the model parameter , we reconstruct the coupling with both models. These series exhibit the solar cycle; years is used in the paper to assign a single number to the variable length of the cycle. The time axis is initially stretched by to transform the estimate of the cycle length into and set the correspondence between the time axis in the models and observations. Clearly, the linear transform does not affect either the correlation between the series and or the variability of the solar cycle. The Kuramoto reconstruction is performed with (8) and denoted . The VdP reconstruction is performed with (12) and denoted . These two procedures are schematically displayed in the left two blocks of Figure 3. The both reconstructions and , in general, depend on time, since the input series represent the observations instead of the solutions of the model equations. The mathematical expectation of the input series is switched into the mean when the correlation is computed.
- (B)
- (C)
- Finally, we repeat the reconstruction of the coupling from the time series and the phase difference (the first block from the right in Figure 3). Equation (8) is applied for the both types of the input to get and from and respectively; has been fixed during the steps (A)–(C). This part involves the dynamics of the equations into the reconstruction. Namely, the addressed question is how the dynamics of the coupling in the direct problem affects reconstruction. We end up with the reverse transform of the time axis and restore years as the units of the reconstructions found in the paper and displayed on the Figures.
3.4. Comparison of the Reconstructions
4. Results
4.1. Reconstructed Couplings and Relation between Two Models
4.2. Reconstruction of the Frequencies
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Charbonneau, P. Solar Dynamo Theory. Annu. Rev. Astron. Astrophys. 2014, 52, 251–290. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, D.H. The Solar Cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar] [CrossRef]
- Nagovitsyn, Y.A.; Kuleshova, A.I. North–South asymmetry of solar activity on a long timescale. Geomagn. Aeron. 2015, 55, 887–891. [Google Scholar] [CrossRef]
- Shetye, J.; Tripathi, D.; Dikpati, M. Observations and modeling of north-south asymmetries using a flux transport dynamo. Astrophys. J. 2015, 799, 220. [Google Scholar] [CrossRef]
- Donner, R.; Thiel, M. Scale-resolved phase coherence analysis of hemispheric sunspot activity: A new look at the north-south asymmetry. Astron. Astrophys. 2007, 475, L33–L36. [Google Scholar] [CrossRef]
- Temmer, M.; Rybák, J.; Bendík, P.; Veronig, A.; Vogler, F.; Otruba, W.; Pötzi, W.; Hanslmeier, A. Hemispheric sunspot numbers and from 1945–2004: Catalogue and NS asymmetry analysis for solar cycles 18–23. Astron. Astrophys. 2006, 447, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Hathaway, D.H.; Wilson, R.M. What the sunspot record tells us about space climate. Sol. Phys. 2004, 224, 5–19. [Google Scholar] [CrossRef] [Green Version]
- Zolotova, N.V.; Ponyavin, D.I.; Arlt, R.; Tuominen, I. Secular variation of hemispheric phase differences in the solar cycle. Astron. Nachr. 2010, 331, 765–771. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, S.W.; Leamon, R.J.; Gurman, J.B.; Olive, J.P.; Cirtain, J.W.; Hathaway, D.H.; Burkepile, J.; Miesch, M.; Markel, R.S.; Sitongia, L. Hemispheric asymmetries of solar photospheric magnetism: Radiative, particulate, and heliospheric impacts. Astrophys. J. 2013, 765, 146. [Google Scholar] [CrossRef] [Green Version]
- Norton, A.A.; Charbonneau, P.; Passos, D. Hemispheric coupling: Comparing dynamo simulations and observations. In The Solar Activity Cycle; Springer: Berlin/Heidelberg, Germany, 2015; pp. 251–283. [Google Scholar] [CrossRef] [Green Version]
- Blanter, E.; Le Mouël, J.L.; Shnirman, M.; Courtillot, V. Reconstruction of the North–South Solar Asymmetry with a Kuramoto Model. Sol. Phys. 2017, 292, 54. [Google Scholar] [CrossRef]
- Hazra, G.; Choudhuri, A.R. Explaining the variation of the meridional circulation with the solar cycle. Proc. Int. Astron. Union 2018, 13, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Bogart, R.S.; Kosovichev, A.G.; Duvall, T.L., Jr.; Hartlep, T. Detection of equatorward meridional flow and evidence of double-cell meridional circulation inside the Suna. Astrophys. J. Lett. 2013, 774, L29. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, J. A comprehensive method to measure solar meridional circulation and the center-to-limb effect using time–distance helioseismology. Astrophys. J. 2017, 849, 144. [Google Scholar] [CrossRef]
- Böning, V.G.; Roth, M.; Jackiewicz, J.; Kholikov, S. Inversions for deep solar meridional flow using spherical born kernels. Astrophys. J. 2017, 845, 2. [Google Scholar] [CrossRef]
- Choudhuri, A.R.; Schussler, M.; Dikpati, M. The solar dynamo with meridional circulation. Astron. Astrophys. 1995, 303, L29–L32. [Google Scholar]
- Brun, A.S.; Browning, M.K. Magnetism, dynamo action and the solar-stellar connection. Living Rev. Sol. Phys. 2017, 14, 4. [Google Scholar] [CrossRef] [PubMed]
- Mandal, K.; Hanasoge, S.M.; Rajaguru, S.P.; Antia, H.M. Helioseismic Inversion to Infer the Depth Profile of Solar Meridional Flow Using Spherical Born Kernels. Astrophys. J. 2018, 863, 39. [Google Scholar] [CrossRef]
- Turck-Chieze, S.; Couvidat, S. Solar neutrinos, helioseismology and the solar internal dynamics. Rep. Prog. Phys. 2011, 74, 086901. [Google Scholar] [CrossRef] [Green Version]
- Brun, A.S.; Browning, M.K.; Dikpati, M.; Hotta, H.; Strugarek, A. Recent advances on solar global magnetism and variability. Space Sci. Rev. 2015, 196, 101–136. [Google Scholar] [CrossRef]
- Acebrón, J.A.; Bonilla, L.L.; Vicente, C.J.P.; Ritort, F.; Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 2005, 77, 137. [Google Scholar] [CrossRef] [Green Version]
- Cumin, D.; Unsworth, C.P. Generalising the Kuramoto model for the study of neuronal synchronisation in the brain. Phys. D Nonlinear Phenom. 2007, 226, 181–196. [Google Scholar] [CrossRef]
- Sadilek, M.; Thurner, S. Physiologically motivated multiplex Kuramoto model describes phase diagram of cortical activity. Sci. Rep. 2015, 5, 10015. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, F.A.; Peron, T.K.; Ji, P.; Kurths, J. The Kuramoto model in complex networks. Phys. Rep. 2016, 610, 1–98. [Google Scholar] [CrossRef] [Green Version]
- Savostianov, A.; Shapoval, A.; Shnirman, M. Reconstruction of the coupling between solar proxies: When approaches based on Kuramoto and Van der Pol models agree with each other. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105149. [Google Scholar] [CrossRef]
- Mininni, P.D.; Gomez, D.O.; Mindlin, G.B. Simple model of a stochastically excited solar dynamo. Sol. Phys. 2001, 201, 203–223. [Google Scholar] [CrossRef]
- Lopes, I.; Passos, D.; Nagy, M.; Petrovay, K. Oscillator Models of the Solar Cycle. In Space Sciences Series of ISSI; Springer: New York, NY, USA, 2015; pp. 535–559. [Google Scholar] [CrossRef]
- Blanter, E.; Le Mouël, J.L.; Shnirman, M.; Courtillot, V. Long Term Evolution of Solar Meridional Circulation and Phase Synchronization Viewed Through a Symmetrical Kuramoto Model. Sol. Phys. 2018, 293, 134. [Google Scholar] [CrossRef]
- Hazra, G.; Karak, B.B.; Choudhuri, A.R. Is a deep one-cell meridional circulation essential for the flux transport solar dynamo? Astrophys. J. 2014, 782, 93. [Google Scholar] [CrossRef] [Green Version]
- Passos, D.; Charbonneau, P.; Miesch, M. Meridional circulation cynamics from 3D magnetohydrodynamic global simulations of solar convection. Astrophys. J. 2015, 800, L18. [Google Scholar] [CrossRef]
- Muñoz Jaramillo, A.; Sheeley, N.R. MWO Polar Faculae Count Calibrated to WSO Polar Fields and SOHO/MDI Polar Flux; Harvard Dataverse: Cambridge, MA, USA, 2016. [Google Scholar]
- Blanter, E.M.; Le Mouël, J.L.; Shnirman, M.G.; Courtillot, V. Kuramoto model of nonlinear coupled oscillators as a way for understanding phase synchronization: Application to solar and geomagnetic indices. Sol. Phys. 2014, 289, 4309–4333. [Google Scholar] [CrossRef]
- Kuznetsov, A.P.; Stankevich, N.V.; Turukina, L.V. Coupled van der Pol-Duffing oscillators: Phase dynamics and structure of synchronization tongues. Phys. D: Nonlinear Phenom. 2009, 238, 1203–1215. [Google Scholar] [CrossRef]
- Astakhov, S.; Gulai, A.; Fujiwara, N.; Kurths, J. The role of asymmetrical and repulsive coupling in the dynamics of two coupled van der Pol oscillators. Chaos Interdiscip. J. Nonlinear Sci. 2016, 26, 023102. [Google Scholar] [CrossRef] [PubMed]
- Savostyanov, A.; Shapoval, A.; Shnirman, M. The inverse problem for the Kuramoto model of two nonlinear coupled oscillators driven by applications to solar activity. Phys. D Nonlinear Phenom. 2020, 401, 132160. [Google Scholar] [CrossRef]
- Deng, L.H.; Xiang, Y.Y.; Qu, Z.; An, J. Systematic regularity of hemispheric sunspot areas over the past 140 years. Astron. J. 2016, 151, 70. [Google Scholar] [CrossRef]
- Syukuya, D.; Kusano, K. Simulation Study of Hemispheric Phase-Asymmetry in the Solar Cycle. arXiv 2016, arXiv:1612.03294. [Google Scholar]
- Passos, D.; Nandy, D.; Hazra, S.; Lopes, I. A solar dynamo model driven by mean-field alpha and Babcock-Leighton sources: Fluctuations, grand-minima-maxima, and hemispheric asymmetry in sunspot cycles. Astron. Astrophys. 2014, 563, A18. [Google Scholar] [CrossRef] [Green Version]
- Norton, A.A.; Gallagher, J.C. Solar-cycle characteristics examined in separate hemispheres: Phase, gnevyshev gap, and length of minimum. Sol. Phys. 2010, 261, 193. [Google Scholar] [CrossRef] [Green Version]
- Gurgenashvili, E.; Zaqarashvili, T.V.; Kukhianidze, V.; Oliver, R.; Ballester, J.L.; Dikpati, M.; McIntosh, S.W. North–South Asymmetry in Rieger-type Periodicity during Solar Cycles 19–23. Astrophys. J. 2017, 845, 137. [Google Scholar] [CrossRef] [Green Version]
- Nepomnyashchikh, A.; Mandal, S.; Banerjee, D.; Kitchatinov, L. Can the long-term hemispheric asymmetry of solar activity result from fluctuations in dynamo parameters? Astron. Astrophys. 2019, 625, A37. [Google Scholar] [CrossRef] [Green Version]
- Duhau, S.; Chen, C.Y. The sudden increase of solar and geomagnetic activity after 1923 as a manifestation of a non-linear solar dynamo. Geophys. Res. Lett. 2002, 29, 6-1–6-4. [Google Scholar] [CrossRef]
- Kane, R.P. Solar cycle predictions based on extrapolation of spectral components: An update. Sol. Phys. 2007, 246, 487–493. [Google Scholar] [CrossRef]
- Richards, M.T.; Rogers, M.L.; Richards, D.S.P. Long-term variability in the length of the solar cycle. Publ. Astron. Soc. Pac. 2009, 121, 797. [Google Scholar] [CrossRef] [Green Version]
- Blanter, E.; Le Mouël, J.L.; Shnirman, M.; Courtillot, V. Kuramoto model with non-symmetric coupling reconstructs variations of the solar-cycle period. Sol. Phys. 2016, 291, 1003–1023. [Google Scholar] [CrossRef]
- Featherstone, N.A.; Miesch, M.S. Meridional circulation in solar and stellar convection zones. Astrophys. J. 2015, 804, 67. [Google Scholar] [CrossRef] [Green Version]
- Choudhuri, A.R. A critical assessment of the flux transport dynamo. J. Astrophys. Astron. 2015, 36, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Cameron, R.H.; Dikpati, M.; Brandenburg, A. The global solar dynamo. Space Sci. Rev. 2017, 210, 367–395. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savostianov, A.; Shapoval, A.; Shnirman, M. Dynamics of Phase Synchronization between Solar Polar Magnetic Fields Assessed with Van Der Pol and Kuramoto Models. Entropy 2020, 22, 945. https://doi.org/10.3390/e22090945
Savostianov A, Shapoval A, Shnirman M. Dynamics of Phase Synchronization between Solar Polar Magnetic Fields Assessed with Van Der Pol and Kuramoto Models. Entropy. 2020; 22(9):945. https://doi.org/10.3390/e22090945
Chicago/Turabian StyleSavostianov, Anton, Alexander Shapoval, and Mikhail Shnirman. 2020. "Dynamics of Phase Synchronization between Solar Polar Magnetic Fields Assessed with Van Der Pol and Kuramoto Models" Entropy 22, no. 9: 945. https://doi.org/10.3390/e22090945
APA StyleSavostianov, A., Shapoval, A., & Shnirman, M. (2020). Dynamics of Phase Synchronization between Solar Polar Magnetic Fields Assessed with Van Der Pol and Kuramoto Models. Entropy, 22(9), 945. https://doi.org/10.3390/e22090945