Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks
<p>Schematic diagram and coordinate system.</p> "> Figure 2
<p>Impact of <math display="inline"><semantics> <mi>S</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 3
<p>Impact of <math display="inline"><semantics> <mi>S</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>H</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 4
<p>Impact of <math display="inline"><semantics> <mi>M</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 5
<p>Impact of <math display="inline"><semantics> <mi>M</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>H</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 6
<p>Impact of <math display="inline"><semantics> <mi>β</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 7
<p>Impact of <math display="inline"><semantics> <mi>β</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>H</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 8
<p>Impact of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>H</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 9
<p>Impact of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msup> <mi>H</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 10
<p>Impact of <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 11
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>θ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 12
<p>Variation in <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">θ</mi> <mrow> <mo>(</mo> <mi mathvariant="sans-serif">η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for heat source case.</p> "> Figure 13
<p>Variation in <math display="inline"><semantics> <mrow> <mi mathvariant="sans-serif">θ</mi> <mrow> <mo>(</mo> <mi mathvariant="sans-serif">η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math> for heat sink case.</p> "> Figure 14
<p>Impact of <math display="inline"><semantics> <mrow> <mi>L</mi> <mi>e</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 15
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>t</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 16
<p>Impact of <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>b</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 17
<p>Impact of <math display="inline"><semantics> <mrow> <msub> <mi>K</mi> <mn>1</mn> </msub> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mi>ϕ</mi> <mrow> <mo>(</mo> <mi>η</mi> <mo>)</mo> </mrow> </mrow> </semantics></math>.</p> "> Figure 18
<p>Impact of <math display="inline"><semantics> <mi mathvariant="sans-serif">β</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 19
<p>Impact of <math display="inline"><semantics> <mi mathvariant="sans-serif">γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> </mrow> </semantics></math>.</p> "> Figure 20
<p>Impact of <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>G</mi> </msub> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 21
<p>Impact of <math display="inline"><semantics> <mi>β</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mo> </mo> <mi>B</mi> <mi>e</mi> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 22
<p>Impact of <math display="inline"><semantics> <mi>γ</mi> </semantics></math> on <math display="inline"><semantics> <mrow> <mo> </mo> <mi>B</mi> <mi>e</mi> <mo>.</mo> </mrow> </semantics></math></p> "> Figure 23
<p>Impact of <math display="inline"><semantics> <mrow> <mi>P</mi> <mi>r</mi> </mrow> </semantics></math> on <math display="inline"><semantics> <mrow> <mo> </mo> <mi>B</mi> <mi>e</mi> <mo>.</mo> </mrow> </semantics></math></p> ">
Abstract
:1. Introduction
2. Mathematical Analysis
3. Entropy Generation Equation
4. Results and Discussion
5. Concluding Remarks
- It is noted that the porosity parameter, Casson fluid, and stretching ratio parameter upsurge the radial velocity component.
- The radial component of velocities is increased due to the variation of the porosity parameter and Casson fluid parameter, while the impact of magnetic parameter is reverse.
- Temperature profiles increase for thermophoretic and heat source parameters.
- A declining nanoparticles temperature results from the Prandtl number and heat sink parameter.
- Concentration profile shows increasing behavior for the Lewis number and thermophoretic parameter.
- Increasing values of the stretching ratio and Prandtl number increase the Bejan number, while reverse behavior is observed for the Casson fluid parameter.
- The observations from current analysis can be useful in thermal energy exchange processes, cooling processes, energy consumptions, thermodynamics applications, aircrafts, thermal extrusion systems etc.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
magnetic field strength | Casson fluid parameter |
dynamic viscosity | pressure |
density | electrical conductivity |
permeability of porous medium | temperature |
thermal diffusivity | specific heat |
heat generation parameter | thermophoretic diffusion coefficient |
Brownian diffusion coefficient | ratio of heat capacity |
reaction constant | mean temperature |
Brownian motion parameter | coefficient of Rosseland mean absorption |
constant of Stefan-Boltzmann | is stretching ratio |
heat source parameter | thermal radiation parameter |
Reynolds number | Prandtl number |
Lewis number. | parameter of magnetic |
Brownian motion parameter | Brownian diffusion parameter |
thermophoretic parameter | slip lengths |
porosity parameter | thermophoresis diffusion coefficient |
are thermal conductivity, | reference temperature |
viscous dissipation |
References
- Van Gorder, R.A.; Sweet, E.; Vajravelu, K. Analytical solutions of a coupled nonlinear system arising in a flow between stretching disks. Appl. Math. Comput. 2010, 216, 1513–1523. [Google Scholar] [CrossRef]
- Soid, S.K.; Ishak, A.; Pop, I. MHD flow and heat transfer over a radially stretching/shrinking disk. Chin. J. Phys. 2018, 56, 58–66. [Google Scholar] [CrossRef]
- Yin, C.; Zheng, L.; Zhang, C.; Zhang, X. Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propuls. Power Res. 2017, 6, 25–30. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Hatami, M.; Ganji, D.D. Nanofluid flowand heat transfer due to rotating disk. J. Mol. Liq. 2014, 190, 112–120. [Google Scholar] [CrossRef]
- Hashmi, M.; Khan, N.; Khan, S.U.; Rashidi, M.M. A mathematical model for mixed convective flow of chemically reactive Oldroyd-B fluid between isothermal stretching disks. Results Phys. 2017, 7, 3016–3023. [Google Scholar] [CrossRef]
- Khan, N.; Mahmood, T. Thermophoresis particle deposition and internal heat generation on MHD flow of an Oldroyd-B nanofluid between radiative stretching disks. J. Mol. Liq. 2016, 216, 571–582. [Google Scholar] [CrossRef]
- Khan, N.; Hashmi, M.S.; Khan, S.U.; Syed, W.A. Study of polymeric liquid between stretching disks with chemical reaction. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 102. [Google Scholar] [CrossRef]
- Choi, S.U.S. Enhancing thermal conductivity of fluids with nanoparticles. ASME Pub. Fed. 1995, 231, 99–106. [Google Scholar]
- Buongiorno, J. Convective Transport in Nanofluids. J. Heat Transf. 2006, 128, 240–250. [Google Scholar] [CrossRef]
- Ghadikolaei, S.; Ganji, D.D.; Ganji, D.; Jafari, B. Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Therm. Eng. 2018, 12, 176–187. [Google Scholar] [CrossRef]
- Khan, S.U.; Shehzad, S.A. Brownian movement and thermophoretic aspects in third grade nanofluid over oscillatory moving sheet. Phys. Scr. 2019, 94, 095202. [Google Scholar] [CrossRef]
- Alwatban, A.; Khan, S.U.; Waqas, H.; Tlili, I. Interaction of Wu’s Slip Features in Bioconvection of Eyring Powell Nanoparticles with Activation Energy. Process 2019, 7, 859. [Google Scholar] [CrossRef] [Green Version]
- Tlili, I.; Waqas, H.; Almaneea, A.; Khan, S.U.; Imran, M. Activation Energy and Second Order Slip in Bioconvection of Oldroyd-B Nanofluid over a Stretching Cylinder: A Proposed Mathematical Model. Process 2019, 7, 914. [Google Scholar] [CrossRef] [Green Version]
- Waqas, H.; Khan, S.U.; Tlili, I.; Awais, M.; Shadloo, M.S. Significance of Bioconvective and Thermally Dissipation Flow of Viscoelastic Nanoparticles with Activation Energy Features: Novel Biofuels Significance. Symmetry 2020, 12, 214. [Google Scholar] [CrossRef] [Green Version]
- Abdelmalek, Z.; Khan, S.U.; Waqas, H.; A Nabwey, H.; Tlili, I. Utilization of Second Order Slip, Activation Energy and Viscous Dissipation Consequences in Thermally Developed Flow of Third Grade Nanofluid with Gyrotactic Microorganisms. Symmetry 2020, 12, 309. [Google Scholar] [CrossRef] [Green Version]
- Eid, M.R.; Al-Hossainy, A.F.; Zoromba, M.S. FEM for Blood-Based SWCNTs Flow through a Circular Cylinder in a Porous Medium with Electromagnetic Radiation. Commun. Theor. Phys. 2019, 71, 1425. [Google Scholar] [CrossRef]
- Shah, Z.; Kumam, P.; Deebani, W. Radiative MHD Casson Nanofluid Flow with Activation energy and chemical reaction over past nonlinearly stretching surface through Entropy generation. Sci. Rep. 2020, 10, 4402–4414. [Google Scholar] [CrossRef] [Green Version]
- Eid, M.R. Effects of NP Shapes on Non-Newtonian Bio-Nanofluid Flow in Suction/Blowing Process with Convective Condition: Sisko Model. J. Non-Equilib. Thermodyn. 2020, 45, 97–108. [Google Scholar] [CrossRef]
- Shaw, S.; Dogonchi, A.S.; Nayak, M.K.; Makinde, O.D. Impact of Entropy Generation and Nonlinear Thermal Radiation on Darcy–Forchheimer Flow of MnFe2O4-Casson/Water Nanofluid due to a Rotating Disk: Application to Brain Dynamics. Arab. J. Sci. Eng. 2020, 1–20. [Google Scholar] [CrossRef]
- Sheremet, M.A.; Pop, I.; Öztop, H.F.; Abu-Hamdeh, N. Natural convective heat transfer and nanofluid flow in a cavity with top wavy wall and corner heater. J. Hydrodyn. 2016, 28, 873–885. [Google Scholar] [CrossRef]
- Mikhail, A.S.; Ioan, P. Effect of local heater size and position on natural convection in a tilted nanofluid porous cavity using LTNE and Buongiorno’s models. J. Mol. Liq. 2018, 266, 19–28. [Google Scholar]
- Zaib, A.; Haq, R.U.; Sheikholeslami, M.; Chamkha, A.J.; Rashidi, M.M. Impact of non-darcy medium on mixed convective flow towards a plate containing micropolar water-based tio2 nanomaterial with entropy generation. J. Porous Media 2020, 23, 11–26. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Sheremet, M.A.; Shafee, A.; Tlili, I. Simulation of nanoliquid thermogravitational convection within a porous chamber imposing magnetic and radiation impacts. Phys. A Stat. Mech. Appl. 2020, 124058. [Google Scholar] [CrossRef]
- Ma, Y.; Mohebbi, R.; Rashidi, M.M.; Yang, Z.; Sheremet, M.A. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure. Int. J. Heat Mass Transf. 2019, 130, 123–134. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Öztop, H.F.; Abu-Hamdeh, N.H.; Li, Z. Nanoparticle transportation of CuO-H2O nanofluid in a porous semi annulus due to Lorentz forces. Int. J. Numer. Methods Heat Fluid Flow 2019, 29, 294–308. [Google Scholar] [CrossRef]
- Darya, S.B.; Mikhail, A.S.; Hakan, F.O.; Mohamed, E.A. Natural convection of Al2O3/H2O nanofluid in a cavity with a heat-generating element. Heatline visualization. Int. J. Heat Mass Transf. 2019, 130, 564–574. [Google Scholar]
- Selimefendigil, F.; Öztop, H.F.; Chamkha, A.J. Mixed Convection of Pulsating Ferrofluid Flow Over a Backward-Facing Step. Iran. J. Sci. Technol. Trans. Mech. Eng. 2018, 43, 593–612. [Google Scholar] [CrossRef]
- Mehryan, S.; Vaezi, M.; Sheremet, M.; Ghalambaz, M. Melting heat transfer of power-law non-Newtonian phase change nano-enhanced n-octadecane-mesoporous silica (MPSiO2). Int. J. Heat Mass Transf. 2020, 151, 119385. [Google Scholar] [CrossRef]
- Öztop, H.F.; Abu-Nada, E.; Varol, Y.; Chamkha, A. Natural convection in wavy enclosures with volumetric heat sources. Int. J. Therm. Sci. 2011, 50, 502–514. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F.; Chamkha, A.J. Fluid–structure-magnetic field interaction in a nanofluid filled lid-driven cavity with flexible side wall. Eur. J. Mech. B/Fluids 2017, 61, 77–85. [Google Scholar] [CrossRef]
- Selimefendigil, F.; Öztop, H.F.; Chamkha, A.J. MHD mixed convection in a nanofluid filled vertical lid-driven cavity having a flexible fin attached to its upper wall. J. Therm. Anal. Calorim. 2019, 135, 325–340. [Google Scholar] [CrossRef]
- Abolbashari, M.H.; Freidoonimehr, N.; Nazari, F.; Rashidi, M.M. Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid. Powder Technol. 2014, 267, 256–267. [Google Scholar] [CrossRef]
- Kumar, M.; Reddy, G.J.; Kiran, G.R.; Aslam, M.A.M.; Beg, O.A. Computation of entropy generation in dissipative transient natural convective viscoelastic flow. Heat Transf. -Asian Res. 2019, 48, 1067–1092. [Google Scholar] [CrossRef]
- Shukla, N.; Rana, P.; Bég, O.A. Unsteady MHD Non-Newtonian Heat Transfer Nanofluids with Entropy Generation Analysis. Nonlinear Eng. 2019, 8, 630–644. [Google Scholar] [CrossRef]
- Saeed, A.; Ahmad, H.P.; Masoud, A.; Mohsen, S.; Josua, M. Natural convective heat transfer and entropy generation of alumina/water nanofluid in a tilted enclosure with an elliptic constant temperature: Applying magnetic field and radiation effects. Int. J. Mech. Sci. 2020, 174, 105470. [Google Scholar]
- Seyyedi, S.M.; Dogonchi, A.; Hashemi-Tilehnoee, M.; Waqas, M.; Ganji, D. Entropy generation and economic analyses in a nanofluid filled L-shaped enclosure subjected to an oriented magnetic field. Appl. Therm. Eng. 2020, 168, 114789. [Google Scholar] [CrossRef]
- Mohammad, R.S.; Mohammad, T.-R.; Rostamzadeh, H. Heat transfer and entropy generation analysis in a three-dimensional impinging jet porous heat sink under local thermal non-equilibrium condition. Int. J. Therm. Sci. 2020, 153, 106348. [Google Scholar]
- Khan, M.; Shahid, A.; El Shafey, M.; Salahuddin, T.; Khan, F. Predicting entropy generation in flow of non-Newtonian flow due to a stretching sheet with chemically reactive species. Comput. Methods Programs Biomed. 2020, 187, 105246. [Google Scholar] [CrossRef]
- Mustafa, M. MHD nanofluid flow over a rotating disk with partial slip effects: Buongiorno model. Int. J. Heat Mass Transf. 2017, 108, 1910–1916. [Google Scholar] [CrossRef]
- Arikoglu, A.; Ozkol, I.; Kömürgöz, G. Effect of slip on entropy generation in a single rotating disk in MHD flow. Appl. Energy 2008, 85, 1225–1236. [Google Scholar] [CrossRef]
Parameter | ||
---|---|---|
Mustafa [39] | Present results | |
0.0 | 0.259534 | 0.259538 |
0.5 | 0.191176 | 0.191181 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, N.; Riaz, I.; Hashmi, M.S.; Musmar, S.A.; Khan, S.U.; Abdelmalek, Z.; Tlili, I. Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks. Entropy 2020, 22, 495. https://doi.org/10.3390/e22050495
Khan N, Riaz I, Hashmi MS, Musmar SA, Khan SU, Abdelmalek Z, Tlili I. Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks. Entropy. 2020; 22(5):495. https://doi.org/10.3390/e22050495
Chicago/Turabian StyleKhan, Nargis, Iram Riaz, Muhammad Sadiq Hashmi, Saed A. Musmar, Sami Ullah Khan, Zahra Abdelmalek, and Iskander Tlili. 2020. "Aspects of Chemical Entropy Generation in Flow of Casson Nanofluid between Radiative Stretching Disks" Entropy 22, no. 5: 495. https://doi.org/10.3390/e22050495