Binary Communication with Gazeau–Klauder Coherent States
<p>Trace distance between the Gazeau–Klauder coherent states <math display="inline"><semantics> <mrow> <mo>|</mo> <mi>J</mi> <mo>,</mo> <mn>0</mn> <mo>〉</mo> </mrow> </semantics></math> given by Equation (<a href="#FD3-entropy-22-00201" class="html-disp-formula">3</a>) and the Perelomov coherent states <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> <mi>z</mi> <mo>=</mo> </mrow> <msqrt> <mi>J</mi> </msqrt> <mrow> <mo>〉</mo> </mrow> </mrow> </semantics></math> depicted for selected values of the rescaled susceptibility <math display="inline"><semantics> <mi>μ</mi> </semantics></math>.</p> "> Figure 2
<p>Helstrom bound <math display="inline"><semantics> <msub> <mi>P</mi> <mi>H</mi> </msub> </semantics></math> given by Equation (<a href="#FD19-entropy-22-00201" class="html-disp-formula">19</a>) depicted for selected values of <math display="inline"><semantics> <mi>μ</mi> </semantics></math>. For the sake of clarity, the range of <math display="inline"><semantics> <msub> <mi>P</mi> <mi>H</mi> </msub> </semantics></math> in the figure is limited to <math display="inline"><semantics> <mrow> <msub> <mi>P</mi> <mi>H</mi> </msub> <mo>≤</mo> <mn>0.1</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Conflicts of Interest
References
- Akira Furusawa, A.; van Loock, P. Quantum Teleportation and Entanglement: A Hybrid Approach to Optical Quantum Information Processing; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Lo, H.K.; Preskill, J. Security of Quantum Key Distribution Using Weak Coherent States with Nonrandom Phases. Quantum Inf. Comput. 2007, 7, 431–458. [Google Scholar]
- Ralph, T.C.; Gilchrist, A.; Milburn, G.J.; Munro, W.J.; Glancy, S. Quantum computation with optical coherent states. Phys. Rev. A 2003, 68, 042319. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, J.P. Coherent states in Quantum Information: An example of experimental manipulations. J. Phys. Conf. Ser. 2010, 213, 012013. [Google Scholar] [CrossRef]
- Liu, L.; Wang, Y.; Lavie, E.; Wang, C.; Ricou, A.; Guo, F.Z.; Lim, C.C.W. Practical Quantum Key Distribution with Non-Phase-Randomized Coherent States. Phys. Rev. Appl. 2019, 12, 024048. [Google Scholar] [CrossRef] [Green Version]
- Perelomov, A. Generalized Coherent States and Their Applications; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Gottesman, D.; Kitaev, A.; Preskill, J. Encoding a qubit in an oscillator. Phys. Rev. A 2001, 64, 012310. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, J.P.; Klauder, J.R. Coherent states for systems with discrete and continuous spectrum. J. Phys. A Math. Gen. 1999, 32, 123–132. [Google Scholar] [CrossRef]
- Hollingworth, J.M.; Konstadopoulou, A.; Chountasis, S.; Vourdas, A.; Backhouse, N.B. Gazeau-Klauder coherent states in one-mode systems with periodic potential. J. Phys. A Math. Gen. 2001, 34, 9463–9474. [Google Scholar] [CrossRef]
- Antoine, J.P.; Gazeau, J.P.; Monceau, P.; Klauder, J.R.; Penson, K.A. Temporally stable coherent states for infinite well and Pöschl–Teller potentials. J. Math. Phys. 2001, 42, 2349–2387. [Google Scholar] [CrossRef] [Green Version]
- Roy, B.; Roy, P. Gazeau–Klauder coherent state for the Morse potential and some of its properties. Phys. Lett. A 2002, 296, 187–191. [Google Scholar] [CrossRef]
- Roy, P. Quantum statistical properties of Gazeau–Klauder coherent state of the anharmonic oscillator. Opt. Commun. 2003, 221, 145–152. [Google Scholar] [CrossRef]
- Novaes, M.; de Aguiar, M.A.M.; Hornos, J.E.M. Generalized coherent states for the double-well potential. J. Phys. A Math. Gen. 2003, 36, 5773–5786. [Google Scholar] [CrossRef]
- Popov, D.; Sajfert, V.; Zaharie, I. Pseudoharmonic oscillator and their associated Gazeau–Klauder coherent states. Phys. A Stat. Mech. Appl. 2008, 387, 4459–4474. [Google Scholar] [CrossRef]
- Dajka, J.; Łuczka, J. Gazeau–Klauder cat states. J. Phys. A Math. Theor. 2012, 45, 244006. [Google Scholar] [CrossRef]
- Ching, C.L.; Ng, W.K. Deformed Gazeau-Klauder Schrödinger cat states with modified commutation relations. Phys. Rev. D 2019, 100, 085018. [Google Scholar] [CrossRef] [Green Version]
- Kitagawa, M.; Yamamoto, Y. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. Phys. Rev. A 1986, 34, 3974–3988. [Google Scholar] [CrossRef] [PubMed]
- Milburn, G.J. Quantum and classical Liouville dynamics of the anharmonic oscillator. Phys. Rev. A 1986, 33, 674–685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Helstrom, C.W. Quantum Detection and Estimation Theory; Academic Press: Cambridge, MA, USA, 1976. [Google Scholar]
- Helstrom, C.W. Quantum detection and estimation theory. J. Stat. Phys. 1969, 1, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Yadollahi, F.; Tavassoly, M. A theoretical scheme for generation of Gazeau–Klauder coherent states via intensity-dependent degenerate Raman interaction. Opt. Commun. 2011, 284, 608–612. [Google Scholar] [CrossRef] [Green Version]
- Aldana, S.; Bruder, C.; Nunnenkamp, A. Equationivalence between an optomechanical system and a Kerr medium. Phys. Rev. A 2013, 88, 043826. [Google Scholar] [CrossRef] [Green Version]
- Iliyasu, A.M.; Venegas-Andraca, S.E.; Yan, F.; Sayed, A. Hybrid Quantum-Classical Protocol for Storage and Retrieval of Discrete-Valued Information. Entropy 2014, 16, 3537–3551. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dajka, J.; Łuczka, J. Binary Communication with Gazeau–Klauder Coherent States. Entropy 2020, 22, 201. https://doi.org/10.3390/e22020201
Dajka J, Łuczka J. Binary Communication with Gazeau–Klauder Coherent States. Entropy. 2020; 22(2):201. https://doi.org/10.3390/e22020201
Chicago/Turabian StyleDajka, Jerzy, and Jerzy Łuczka. 2020. "Binary Communication with Gazeau–Klauder Coherent States" Entropy 22, no. 2: 201. https://doi.org/10.3390/e22020201
APA StyleDajka, J., & Łuczka, J. (2020). Binary Communication with Gazeau–Klauder Coherent States. Entropy, 22(2), 201. https://doi.org/10.3390/e22020201