Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations
<p>The (<b>a</b>) exact and (<b>b</b>) Laplace–Adomian decomposition method (LADM) solutions of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 1, at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The LADM solution of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 1, at (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>75</mn> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>The (<b>a</b>) Exact and (<b>b</b>) LADM solutions of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 2, at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The LADM solution of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 2, at (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>75</mn> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> </mrow> </semantics></math>.</p> "> Figure 3
<p>The (<b>a</b>) Exact and (<b>b</b>) LADM solutions of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 3, at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The LADM solution of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 3, at (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>75</mn> </mrow> </semantics></math>.</p> "> Figure 4
<p>The (<b>a</b>) exact and (<b>b</b>) LADM solutions of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 4, at <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>1</mn> </mrow> </semantics></math>. The LADM solution of <math display="inline"><semantics> <mrow> <mi>ν</mi> <mo>(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>z</mi> <mo>,</mo> <mi>t</mi> <mo>)</mo> </mrow> </semantics></math> of Example 4, at (<b>c</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>75</mn> </mrow> </semantics></math> and (<b>d</b>) <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> <mo>.</mo> <mn>50</mn> </mrow> </semantics></math>.</p> ">
Abstract
:1. Introduction
2. Definitions and Preliminaries of Concepts
3. Idea of Fractional Laplace–Adomian Decomposition Method
3.1. LADM for Dispersive Equation of One-Dimensional
3.2. LADM for Dispersive Equation of Higher-Dimension
4. Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
LADM | Laplace–Adomian decomposition method |
PDE | Partial differential equation |
KdV | Korteweg–de Vries |
LHAM | Laplace homotopy analysis method |
FVIM | Fractional variational iteration method |
FDTM | Fractional differential transform method |
HASTM | Homotopy analysis Sumudu transform method |
DE | Differential equation |
SM | Spline method |
References
- Goswami, A.; Singh, J.; Kumar, D. Numerical simulation of fifth order Kdv equations occurring in magneto-acoustic waves. Ain Shams Eng. J. 2018, 9, 2265–2273. [Google Scholar] [CrossRef]
- Steudel, H.; Drazin, P.G.; Johnson, R.S. Solitons: An Introduction. Cambridge etc., Cambridge University Press 1989. XII, 226 pp., £ 11.95 P/b. ISBN 0-521-33655-4 (Cambridge Texts in Applied Mathematics). ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 1990, 70, 340. [Google Scholar] [CrossRef]
- Djidjeli, K.; Price, W.G.; Twizell, E.H.; Wang, Y. Numerical methods for the solution of the third-and fifth-order dispersive Korteweg-de Vries equations. J. Comput. Appl. Math. 1995, 58, 307–336. [Google Scholar] [CrossRef]
- Zahran, M.A.; El-Shewy, E.K. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System. Phys. Scr. 2008, 78. [Google Scholar] [CrossRef]
- Seadawy, A.R. New exact solutions for the KdV equation with higher order nonlinearity by using the variational method. Comput. Math. Appl. 2011, 62, 3741–3755. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Xu, B.; Guo, Y. Numerical solution of Korteweg-de Vries-Burgers equation by the compact-type CIP method. Adv. Differ. Equ. 2015, 2015, 353. [Google Scholar] [CrossRef]
- Ubriaco, M.R. Entropies based on fractional calculus. Phys. Lett. A 2009, 373, 2516–2519. [Google Scholar] [CrossRef] [Green Version]
- Machado, J.T. Entropy analysis of integer and fractional dynamical systems. Nonlinear Dyn. 2010, 62, 371–378. [Google Scholar] [Green Version]
- Ball, J.M.; Chen, G.Q.G. Entropy and convexity for nonlinear partial differential equations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013. [Google Scholar] [CrossRef]
- Sibatov, R.; Shulezhko, V.; Svetukhin, V. Fractional Derivative Phenomenology of Percolative Phonon-Assisted Hopping in Two-Dimensional Disordered Systems. Entropy 2017, 19, 463. [Google Scholar] [CrossRef]
- Lopes, A.M.; Tenreiro Machado, J.A. Entropy Analysis of Soccer Dynamics. Entropy 2019, 21, 187. [Google Scholar] [CrossRef]
- Jiang, J.; Feng, Y.; Li, S. Exact Solutions to the Fractional Differential Equations with Mixed Partial Derivatives. Axioms 2018, 7, 10. [Google Scholar] [CrossRef]
- Silva, F.; Moreira, D.; Moret, M. Conformable Laplace Transform of Fractional Differential Equations. Axioms 2018, 7, 55. [Google Scholar] [CrossRef]
- Yavuz, M.; Özdemir, N. European vanilla option pricing model of fractional order without singular kernel. Fractal Fract. 2018, 2, 3. [Google Scholar] [CrossRef]
- Thabet, H.; Kendre, S.; Chalishajar, D. New analytical technique for solving a system of nonlinear fractional partial differential equations. Mathematics 2017, 5, 47. [Google Scholar] [CrossRef]
- Yépez-Martínez, H.; Gómez-Aguilar, F.; Sosa, I.O.; Reyes, J.M.; Torres-Jiménez, J. The Feng’s first integral method applied to the nonlinear mKdV space-time fractional partial differential equation. Revista Mexicana de FíSica 2016, 62, 310–316. [Google Scholar]
- Prakash, A.; Kumar, M. Numerical method for fractional dispersive partial differential equations. Commun. Numer. Anal. 2017, 1, 1–18. [Google Scholar] [CrossRef]
- Kocak, H.; Pinar, Z. On solutions of the fifth-order dispersive equations with porous medium type non-linearity. Waves Random Complex Media 2018, 28, 516–522. [Google Scholar] [CrossRef]
- Kanth, A.R.; Aruna, K. Solution of fractional third-order dispersive partial differential equations. Egypt. J. Basic Appl. Sci. 2015, 2, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Sultana, T.; Khan, A.; Khandelwal, P. A new non-polynomial spline method for solution of linear and non-linear third order dispersive equations. Adv. Differ. Equ. 2018, 2018, 316. [Google Scholar] [CrossRef]
- Pandey, R.K.; Mishra, H.K. Homotopy analysis Sumudu transform method for time—Fractional third order dispersive partial differential equation. Adv. Comput. Math. 2017, 43, 365–383. [Google Scholar] [CrossRef]
- Jafari, H.; Khalique, C.M.; Nazari, M. Application of the Laplace decomposition method for solving linear and nonlinear fractional diffusion–wave equations. Appl. Math. Lett. 2011, 24, 1799–1805. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, M.Z. Comparison between the Laplace Decomposition Method and Adomian Decomposition in Time-Space Fractional Nonlinear Fractional Differential Equations. Appl. Math. 2018, 9, 448. [Google Scholar] [CrossRef]
- Gaxiola, O.G. The Laplace-Adomian decomposition method applied to the Kundu–Eckhaus equation. Int. J. Math. Its Appl. 2017, 5, 1–12. [Google Scholar]
- Al-Zurigat, M. Solving nonlinear fractional differential equation using a multi-step Laplace Adomian decomposition method. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2012, 39, 200–210. [Google Scholar]
- Haq, F.; Shah, K.; ur Rahman, G.; Shahzad, M. Numerical solution of fractional order smoking model via laplace Adomian decomposition method. Alex. Eng. J. 2018, 57, 1061–1069. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Science Publishing: River Edge, NJ, USA, 2000. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Academic Press: San Diego, CA, USA, 1998; Volume 198. [Google Scholar]
- Gómez-Aguilar, J.F.; Torres, L.; Yépez-Martínez, H.; Baleanu, D.; Reyes, J.M.; Sosa, I.O. Fractional Liénard type model of a pipeline within the fractional derivative without singular kernel. Adv. Differ. Equ. 2016, 2016, 173. [Google Scholar] [CrossRef]
- Morales-Delgado, V.F.; Taneco-Hernández, M.A.; Gómez-Aguilar, J.F. On the solutions of fractional order of evolution equations. Eur. Phys. J. Plus 2017, 132, 47. [Google Scholar] [CrossRef]
- Naghipour, A.; Manafian, J. Application of the Laplace Adomian decomposition and implicit methods for solving Burgers’ equation. TWMS J. Pure Appl. Math. 2015, 6, 68–77. [Google Scholar]
- Wazwaz, A.M. An analytic study on the third-order dispersive partial differential equations. Appl. Math. Comput. 2003, 142, 511–520. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, R.; Khan, H.; Arif, M.; Kumam, P. Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations. Entropy 2019, 21, 335. https://doi.org/10.3390/e21040335
Shah R, Khan H, Arif M, Kumam P. Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations. Entropy. 2019; 21(4):335. https://doi.org/10.3390/e21040335
Chicago/Turabian StyleShah, Rasool, Hassan Khan, Muhammad Arif, and Poom Kumam. 2019. "Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations" Entropy 21, no. 4: 335. https://doi.org/10.3390/e21040335
APA StyleShah, R., Khan, H., Arif, M., & Kumam, P. (2019). Application of Laplace–Adomian Decomposition Method for the Analytical Solution of Third-Order Dispersive Fractional Partial Differential Equations. Entropy, 21(4), 335. https://doi.org/10.3390/e21040335