Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System
"> Figure 1
<p>Tensile curves of investigated alloys at room temperature. Curves for brittle alloys TaTiZr, Nb<sub>1.5</sub>TaTiZr<sub>0.5</sub> and Nb<sub>0.5</sub>TaTiZr<sub>1.5</sub> were shifted horizontally to make them visible.</p> "> Figure 2
<p>Scanning electron microscopy (SEM) image of investigated fracture surfaces: (<b>a</b>), (<b>b</b>), (<b>c</b>) NbTaTiZr alloy; (<b>d</b>) NbTaTi alloy (<b>e</b>) TaTiZr alloy; (<b>f</b>) NbTiZr alloy; (<b>g</b>) Nb<sub>1.5</sub>TaTiZr<sub>0.5</sub> alloy; (<b>h</b>), (<b>i</b>) Nb<sub>0.5</sub>TaTiZr<sub>1.5</sub> alloy; where TG denotes transgranular ductile fracture and IG intergranular ductile fracture.</p> "> Figure 3
<p>SEM image of investigated alloys microstructure: (<b>a</b>) NbTaTiZr alloy; (<b>b</b>) NbTaTi alloy; (<b>c</b>) TaTiZr alloy; (<b>d</b>) NbTiZr alloy; (<b>e</b>) Nb<sub>1.5</sub>TaTiZr<sub>0.5</sub> alloy; (<b>f</b>) Nb<sub>0.5</sub>TaTiZr<sub>1.5</sub> alloy.</p> "> Figure 4
<p>SEM image of investigated alloys microstructure: (<b>a</b>), (<b>b</b>) TaTiZr alloy; (<b>c</b>) Nb<sub>1.5</sub>TaTiZr<sub>0.5</sub> alloy; (<b>d</b>) Nb<sub>0.5</sub>TaTiZr<sub>1.5</sub> alloy.</p> "> Figure 5
<p>WDS line analysis of: (<b>a</b>) NbTaTiZr alloy; (<b>b</b>) TaTiNb alloy; (<b>c</b>) TaTiZr alloy; (<b>d</b>) NbTiZr alloy; (<b>e</b>) Nb<sub>1.5</sub>TaTiZr<sub>0.5</sub> alloy; (<b>f</b>) Nb<sub>0.5</sub>TaTiZr<sub>1.5</sub> alloy.</p> "> Figure 6
<p>X-ray diffraction (XRD) patterns of investigated alloys. Reflections of the BCC phases are marked by labels.</p> "> Figure 7
<p>Equilibrium atomic configuration of simulated HfNbTaTiZr alloy.</p> "> Figure 8
<p>(<b>a</b>) Relation of the total elongation to failure A on the sum of Ta and Zr atomic concentration, (<b>b</b>) the concentration of the BCC1 phase plotted as a function of the sum of Ta and Zr content. Data for Nb<sub>1.5</sub>TaTiZr<sub>0.5</sub> alloy are indicated by red symbols and were excluded from linear regression.</p> "> Figure 9
<p>Relation of δ and: (<b>a</b>) HV30; (<b>b</b>) elongation.</p> "> Figure 10
<p>Relation of the elongation to failure and: (<b>a</b>) the VEC parameter; (<b>b</b>) the content of BCC 1 phase.</p> "> Figure 11
<p>Binary phase diagrams: (<b>a</b>) Ta-Zr. Reprinted from [<a href="#B30-entropy-21-00114" class="html-bibr">30</a>] with permission of Springer Nature; (<b>b</b>) Nb-Zr. Reprinted from [<a href="#B31-entropy-21-00114" class="html-bibr">31</a>] with permission of Springer Nature; (<b>c</b>) Ta-Hf. Reprinted from [<a href="#B32-entropy-21-00114" class="html-bibr">32</a>] with permission of Springer Nature; (<b>d</b>) Nb-Hf. Reprinted from [<a href="#B33-entropy-21-00114" class="html-bibr">33</a>] with permission of Springer Nature.</p> ">
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Chemical Composition
3.2. Mechanical Properties
3.3. Fractographic Analysis
3.4. Microstructure
3.4.1. XRD Analysis
3.4.2. Monte Carlo Simulation of Microstructure
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2016, 122, 448–511. [Google Scholar] [CrossRef]
- Zhang, W.; Liaw, P.K.; Zhang, Y. Science and technology in high-entropy alloys. Science China Materials, January 2018, 61, 2–22. [Google Scholar] [CrossRef] [Green Version]
- Cantor, B.; Chang IT, H.; Knight, P.; Vincent AJ, B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 2004, 377, 213–218. [Google Scholar] [CrossRef]
- Yeh, B.J.; Chen, S.; Lin, S.; Gan, J.; Chin, T.; Shun, T.; Tsau, C. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Adv. Eng. Mater. 2004, 6, 299–303. [Google Scholar] [CrossRef]
- Schön, C.G.; Duong, T.; Wang, Y.; Arróyave, R. Probing the entropy hypothesis in highly concentrated alloys. Acta Mater. 2018, 148, 263–279. [Google Scholar] [CrossRef]
- Otto, F.; Yang, Y.; Bei, H.; George, E.P. Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 2018, 61, 2628–2638. [Google Scholar] [CrossRef]
- Li, Z.; Ludwig, A.; Savan, A.; Springer, H.; Raabe, D. Combinatorial metallurgical synthesis and processing of high-entropy alloys. J. Mater. Res. 2018, 33, 3156–3169. [Google Scholar] [CrossRef]
- Tsai, M.; Yeh, J.; Tsai, M.; Yeh, J. High-Entropy Alloys: A Critical Review High-Entropy Alloys: A Critical Review. Mater. Res. Lett. 2014, 2, 107–123. [Google Scholar] [CrossRef]
- Rost, C.M.; Sachet, E.; Borman, T.; Moballegh, A.; Dickey, E.C.; Hou, D.; Jones, J.L.; Curtarolo, S.; Maria, J.P. Entropy-stabilized oxides. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef]
- Senkov, O.N.; Miracle, D.B.; Chaput, K.J. Development and exploration of refractory high entropy alloys—A review. J. Mater. Res. 2018, 33, 3092–3128. [Google Scholar] [CrossRef]
- Niinomi, M.; Nakai, M.; Hieda, J. Development of new metallic alloys for biomedical applications. Acta Biomater. 2012, 8, 3888–3903. [Google Scholar] [CrossRef] [PubMed]
- Niinomi, M. Recent Research and Development in Titanium Alloys for Biomedical Applications and Healthcare Goods Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2003, 4, 445–454. [Google Scholar] [CrossRef]
- Wang, S.; Xu, J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng. C 2017, 73, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Todai, M.; Nagase, T.; Hori, T.; Matsugaki, A.; Sekita, A.; Nakano, T. Scripta Materialia Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. SMM 2017, 129, 65–68. [Google Scholar] [CrossRef]
- Li, H.F.; Xie, X.H.; Zhao, K.; Wang, Y.B.; Zheng, Y.F.; Wang, W.H.; Qin, L. In vitro and in vivo studies on biodegradable CaMgZnSrYb high-entropy bulk metallic glass. Acta Biomater. 2013, 9, 8561–8573. [Google Scholar] [CrossRef] [PubMed]
- Nnamchi, P.S. First principles studies on structural, elastic and electronic properties of new Ti-Mo-Nb-Zr alloys for biomedical applications. JMADE 2016, 108, 60–67. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Beresnev, V.M.; Jurga, S. Structural and mechanical characterization of (TiZrNbHfTa) N/WN multilayered nitride coatings. Mater. Lett. 2018, 229, 364–367. [Google Scholar] [CrossRef]
- Zyka, J.; Malek, J.; Pala, Z.; Andrsova, I.; Vesely, J. Structure And Mechanical Properties Of TaNbHfZrTi High Entropy Alloy. In Proceedings of the METAL 2015—24rd International Conference on Metallurgy and Materials, Brno, Czech Republic, 3–5 June 2015; pp. 3–8. [Google Scholar]
- Senkov, O.N.; Scott, J.M.; Senkova, S.V.; Miracle, D.B.; Woodward, C.F. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloys Compd. 2011, 509, 6043–6048. [Google Scholar] [CrossRef]
- Senkov, O.N.; Zhang, C.; Pilchak, A.L.; Payton, E.J.; Woodward, C.; Zhang, F. CALPHAD-aided development of quaternary multi-principal element refractory alloys based on NbTiZr. J. Alloys Compd. 2019, 783, 729–742. [Google Scholar] [CrossRef]
- Senkov, O.N.; Rao, S.; Chaput, K.J.; Woodward, C. Acta Materialia Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys. Acta Mater. 2018, 151, 201–215. [Google Scholar] [CrossRef]
- Coelho, A.A. TOPAS; Version 5; Computer Software; Coelho Software: Brisbane, Australia, 2016. [Google Scholar]
- Standard Test Methods for Determining Average Grain Size; ASTM E112-13; ASTM: West Conshohocken, PA, USA, 2013.
- Lukac, F.; Dudr, M.; Musalek, R.; Klecka, J.; Cinert, J.; Cizek, J.; Chraska, T.; Cizek, J.; Melikhova, O.; Kuriplach, J.; et al. Introduction, Spark plasma sintering of gas atomized high-entropy alloy HfNbTaTiZr. J. Mater. Res. 2018, 33, 3247–3257. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Shi, Z.; Song, T. Compositional design of strong and ductile (tensile) Ti-Zr-Nb-Ta medium entropy alloys (MEAs) using the atomic mismatch approach. Mater. Sci. Eng. A 2019, 742, 762–772. [Google Scholar] [CrossRef]
- Maiti, S.; Steurer, W. Structural-disorder and its effect on mechanical properties in single- phase TaNbHfZr high-entropy alloy. Acta Mater. 2016, 106, 87–97. [Google Scholar] [CrossRef]
- Couzinié, J.P.; Dirras, G.; Perrière, L.; Chauveau, T.; Leroy, E.; Champion, Y.; Guillot, I. Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 2014, 126, 285–287. [Google Scholar] [CrossRef]
- Sheikh, S.; Shafeie, S.; Hu, Q.; Ahlström, J.; Persson, C.; Veselý, J.; Zýka, J. Alloy design for intrinsically ductile refractory high-entropy alloys Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 2016, 120. [Google Scholar] [CrossRef]
- Takeuchi, A.; Inoue, A. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element. Mater. Trans. 2005, 46, 2817–2829. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H. Ta-Zr (Tantalum-Zirconium). J. Phase Equilib. 1996, 17, 555. [Google Scholar] [CrossRef]
- Okamoto, H. Nb-Zr (Niobium-Zirconium). J. Phase Equilib. 1992, 13, 577. [Google Scholar] [CrossRef]
- Okamoto, H. Hf-Ta (Hafnium-Tantalum). J. Phase Equilib. 1996, 17, 382. [Google Scholar] [CrossRef]
- Okamoto, H. Hf-Nb (Hafnium-Niobium). J. Phase Equilib. 1998, 19, 288. [Google Scholar] [CrossRef]
- Wu, Y.D.; Cai, Y.H.; Chen, X.H.; Wang, T.; Si, J.J.; Wang, L.; Wang, Y.D.; Hui, X.D. Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 2015, 83, 651–660. [Google Scholar] [CrossRef]
- Schuh, B.; Volker, B.; Todt, J.; Schell, N.; Perriere, L.; Li, J.; Couzinie, J.P.; Hohenwarter, A. Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 2018, 142, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Coury, F.G.; Butler, T.; Chaput, K.; Saville, A.; Copley, J.; Foltz, J.; Mason, P.; Clarke, K.; Kaufman, M.; Clarke, A. Phase equilibria, mechanical properties and design of quaternary refractory high entropy alloys. Mater. Des. 2018, 155, 244–256. [Google Scholar] [CrossRef]
- Stepanov, N.D.; Yurchenko, N.Y.; Zherebtsov, S.V.; Tikhonovsky, M.A.; Salishchev, G.A. Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 2018, 211, 87–90. [Google Scholar] [CrossRef]
- Chen, S.Y.; Tong, Y.; Tseng, K.; Yeh, J.; Poplawsky, J.D.; Wen, J.G.; Gao, M.C.; Kim, G.; Chen, W.; Ren, Y.; et al. Phase transformations of HfNbTaTiZr high-entropy alloy at intermediate temperatures. Scr. Mater. 2019, 158, 50–56. [Google Scholar] [CrossRef]
- Sheikh, S.; Bijaksana, M.K.; Motallebzadeh, A.; Shafeie, S.; Lozinko, A.; Gan, L.; Tsao, T.; Klement, U.; Canadinc, D.; Murakami, H.; et al. Accelerated oxidation in ductile refractory high-entropy alloys. Intermetallics 2018, 97, 58–66. [Google Scholar] [CrossRef]
Ti | Ta | Nb | Zr | Hf | |
---|---|---|---|---|---|
molar mass | 47.867 | 180.94 | 92.9 | 91.22 | 91.224 |
density (g cm−3) | 4.51 | 7.14 | 7.8 | 6.51 | 6.5 |
melting temp. (K) | 1941 | 3269 | 2741 | 2125 | 2495 |
atomic radius (Å) | 1.47 | 1.43 | 1.43 | 1.62 | 1.6 |
VEC | 4 | 5 | 5 | 4 | 4 |
HfNbTaTiZr | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
NbTaTiZr | 0.25 | 0.25 | 0.25 | 0.25 | 0 |
NbTaTi | 0.333 | 0.333 | 0.333 | 0 | 0 |
TaTiZr | 0.333 | 0.333 | 0 | 0.333 | 0 |
NbTiZr | 0.333 | 0 | 0.333 | 0.333 | 0 |
Nb1.5TaTiZr0.5 | 0.25 | 0.25 | 0.375 | 0.125 | 0 |
Nb0.5TaTiZr1.5 | 0.25 | 0.25 | 0.125 | 0.375 | 0 |
VEC | ∆Hmix | δ | Tm [K] | Ω | Smix | Smix | ||
---|---|---|---|---|---|---|---|---|
[kJ/mol] | [%] | [J/(mol K)] | [R*J/(mol K)] | |||||
HfNbTaTiZr | 4.4 | 2.72 | 5.51 | 2514.20 | 12.37 | 13.38 | 1.61 | HEA |
NbTaTiZr | 4.5 | 2.50 | 5.26 | 2519.00 | 11.61 | 11.53 | 1.39 | MEA |
NbTaTi | 4.662 | 1.33 | 1.31 | 2647.68 | 18.17 | 9.13 | 1.10 | MEA |
TaTiZr | 4.329 | 1.77 | 5.43 | 2442.56 | 12.57 | 9.13 | 1.10 | MEA |
NbTiZr | 4.329 | 2.66 | 5.43 | 2266.73 | 7.78 | 9.13 | 1.10 | MEA |
Nb1.5TaTiZr0.5 | 4.625 | 2.13 | 4.20 | 2596.00 | 13.42 | 10.98 | 1.32 | MEA |
Nb0.5TaTiZr1.5 | 4.375 | 2.38 | 5.67 | 2442.00 | 11.29 | 10.98 | 1.32 | MEA |
Alloy | Rp0.2 [MPa] | Rm [MPa] | A [%] | E [GPa] | HV30 |
---|---|---|---|---|---|
HfNbTaTiZr | 1155 | 1212 | 12.3 | 59 | 359 |
NbTaTiZr | 1144 | 1205 | 6.4 | 98 | 358 |
NbTaTi | 620 | 683 | 18.5 | 143 | 246 |
TaTiZr | - | 284 | 0 | 157 | 485 |
NbTiZr | 956 | 991 | 14.2 | 88 | 295 |
Nb1.5TaTiZr0.5 | 822 | 852 | 0.33 | 127 | 294 |
Nb0.5TaTiZr1.5 | - | 843 | 0 | 93 | 489 |
Alloy | Phase | Ti | Zr | Nb | Ta |
---|---|---|---|---|---|
Nb0.5Ta TiZr1.5 | Bright | 0.19(1) | 0.28(1) | 0.16(1) | 0.37(2) |
Dark | 0.22(2) | 0.42(3) | 0.15(2) | 0.21(2) | |
nominal | 0.25 | 0.375 | 0.125 | 0.25 | |
Nb1.5Ta TiZr0.5 | Bright | 0.13(1) | 0.07(1) | 0.41(3) | 0.39(3) |
Dark | 0.22(2) | 0.22(2) | 0.36(2) | 0.20(2) | |
nominal | 0.25 | 0.125 | 0.375 | 0.25 | |
NbTaTiZr | Bright | 0.17(1) | 0.16(1) | 0.32(2) | 0.35(22) |
Dark | 0.25(2) | 0.35(2) | 0.23(2) | 0.17(1) | |
nominal | 0.25 | 0.25 | 0.25 | 0.25 | |
NbTaTi | Bright | 0.23(2) | 0.28(1) | 0.49(2) | |
Dark | 0.42(2) | 0.28(1) | 0.30(1) | ||
nominal | 0.333 | 0.333 | 0.333 | ||
TaTiZr | Bright | 0.32(2) | 0.16(2) | 0.52(2) | |
Dark | 0.40(3) | 0.35(3) | 0.25(1) | ||
nominal | 0.333 | 0.333 | 0.333 |
Alloy | BCC1 | BCC 2 | BCC3 | |||
---|---|---|---|---|---|---|
a [Å] | [%] | a [Å] | [%] | a [Å] | [%] | |
HfNbTaTiZr | 3.4089(1) | 100 | ||||
NbTaTiZr | 3.3509(8) | 60.15 | 3.380(2) | 39.85 | ||
NbTaTi | 3.29685(7) | 100 | ||||
TaTiZr | 3.446(1) | 29.08 | 3.3184(2) | 70.92 | ||
NbTiZr | 3.3969(1) | 100 | ||||
Nb1.5TaTiZr0.5 | 3.3220(5) | 28.25 | 3.334(2) | 71.22 | 3.3273(2) | 0.53 |
Nb0.5TaTiZr1.5 | 3.451(5) | 19.64 | 3.3395(3) | 77.97 | 3.4121(4) | 2.39 |
Ti-Ta | Ti-Nb | Ti-Zr | Ti-Hf |
1 | 2 | 0 | 0 |
- | Ta-Nb | Ta-Zr | Ta-Hf |
- | 0 | 3 | 3 |
- | - | Nb-Zr | Nb-Hf |
- | - | 4 | 4 |
- | - | - | Zr-Hf |
- | - | - | 0 |
Alloy | Ta + Zr | HV30 | Rp0.2 [MPa] | Rm [MPa] | A [%] | A calc. [%] | Ref. |
---|---|---|---|---|---|---|---|
HfNbTaTiZr | 0.4 | 359 | 1155 | 1212 | 12.3 | 12.51 | [This work] |
NbTaTiZr | 0.5 | 358 | 1144 | 1205 | 6.4 | 7.33 | [This work] |
NbTaTi | 0.333 | 246 | 620 | 683 | 18.5 | 15.98 | [This work] |
TaTiZr | 0.666 | 485 | - | 284 | 0 | −1.26 | [This work] |
NbTiZr | 0.333 | 295 | 956 | 991 | 14.2 | 15.98 | [This work] |
Nb1.5TaTiZr0.5 | 0.375 | 294 | 822 | 852 | 0.33 | 13.81 | [This work] |
Nb0.5TaTiZr1.5 | 0.625 | 489 | - | 843 | 0 | 0.86 | [This work] |
NbTaTiZr | 0.5 | - | * 1190 | * 1190 | * 0 | 7.33 | [25] |
NbTa0.8Ti1.2Zr | 0.45 | - | * 1100 | * 1110 | * 1 | 9.92 | [25] |
NbTa0.6Ti1.4Zr | 0.4 | - | * 1030 | * 1070 | * 2.5 | 12.51 | [25] |
NbTa0.4Ti1.6Zr | 0.35 | - | 910 | 1040 | 18 | 15.10 | [25] |
NbTa0.2Ti1.8Zr | 0.3 | - | 790 | 920 | 22 | 17.69 | [25] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zýka, J.; Málek, J.; Veselý, J.; Lukáč, F.; Čížek, J.; Kuriplach, J.; Melikhova, O. Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System. Entropy 2019, 21, 114. https://doi.org/10.3390/e21020114
Zýka J, Málek J, Veselý J, Lukáč F, Čížek J, Kuriplach J, Melikhova O. Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System. Entropy. 2019; 21(2):114. https://doi.org/10.3390/e21020114
Chicago/Turabian StyleZýka, Jiří, Jaroslav Málek, Jaroslav Veselý, František Lukáč, Jakub Čížek, Jan Kuriplach, and Oksana Melikhova. 2019. "Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System" Entropy 21, no. 2: 114. https://doi.org/10.3390/e21020114
APA StyleZýka, J., Málek, J., Veselý, J., Lukáč, F., Čížek, J., Kuriplach, J., & Melikhova, O. (2019). Microstructure and Room Temperature Mechanical Properties of Different 3 and 4 Element Medium Entropy Alloys from HfNbTaTiZr System. Entropy, 21(2), 114. https://doi.org/10.3390/e21020114