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Abstract: Industrial linkages play a crucial role in sustaining industrial agglomerations,
driving economic growth, and shaping the spatial architecture of economic systems. This
study explores the complexity of causal networks within the industrial ecosystems of
China and the United States, using high-frequency economic data to compare the inter-
dependencies and causal structures across key sectors. By employing the partial cross
mapping (PCM) technique, we capture the dynamic interactions and intricate linkages
among industries, providing a detailed analysis of inter-industry causality. Utilizing data
from 32 Chinese industries and 11 United States industries spanning 2015 to 2023, our
findings reveal that the United States, as a global leader in technology and finance, exhibits
a diversified and service-oriented industrial structure, where financial and technology
sectors are pivotal to economic propagation. In contrast, China’s industrial network shows
higher centrality in heavy industries and manufacturing sectors, underscoring its focus on
industrial output and export-led growth. A comparative analysis of the network topology
and resilience highlights that China’s industrial structure enhances network stability and
interconnectivity, fostering robust inter-industry linkages, whereas the limited nodal points
in the United States network constrain its resilience. These insights into causal network
complexity offer a comprehensive perspective on the structural dynamics and resilience of
the economic systems in both countries.

Keywords: industry linkage; PCM; causal networks; network resilience

1. Introduction
In the contemporary global economic landscape, the United States and China dominate

in a “two-pillar” structure. In 2023, the United States remained the world’s largest economy
with a GDP of USD 21.8 trillion, accounting for about 24.5% of the global GDP, while this
was followed by China’s 15.5%. As two of the world’s largest economies with significant
interconnections, cooperation and competition are inevitably engaged. Concurrently, the
world is undergoing unprecedented changes, where global dynamics are increasingly
interrelated and interactive. Events such as the onset of the United States–China trade
war in 2018, the outbreak of the COVID-19 pandemic in late 2019, the Russo-Ukrainian
conflict in early 2022, and the tensions in the Middle East in 2023 have all had significant
repercussions for them. Against the backdrop of economic globalization and the concept of
a global community with a shared destiny, countries and sectors are becoming increasingly
interconnected.

Industries’ interconnectedness significantly influences the international competitiveness
of a country or region. Highly interconnected industries often present more opportuni-
ties for collaboration and innovation. Enhanced connectivity between sectors facilitates
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the transfer of knowledge and technology, fostering overall economic growth [1,2]. This
interconnectedness is further amplified by the advent of digital technologies and the devel-
opment of digital and spatial affordances, which contribute to the formation of complex
industrial and entrepreneurial ecosystems [3]. However, such high interconnectivity also
renders industries more susceptible to unexpected events, such as disruptions in global
supply chains, which can propagate damages across multiple sectors and consequently
exert a greater impact on the overall economy [4]. Incorporating causality-based metrics
significantly enhances our understanding of the fault propagation, root cause tracing, and
network dynamics in industrial systems. Furthermore, adaptive techniques such as CoCo-
Lasso provide robust tools for handling high-dimensional data and measurement errors, as
highlighted in previous research [5–8]. Industries’ interconnectedness offers a systematic
approach to capturing, quantifying, and interpreting the causal interactions, with potential
applications in fault diagnosis, system optimization, and policy design.

Governments manipulate the interlinkages between industries through industrial
policy and interventions, which may either reinforce or diminish these linkages to
achieve particular economic and social objectives [9]. In this context, the role of strategic
management within these interconnected ecosystems becomes paramount. As industries
increasingly adopt new business models and digital enterprises, the structure of industrial
linkages is reshaped, influencing the value capture and organizational dynamics within
these networks [10]. In the stage of globalization, highly interconnected economies often
enjoy enhanced competitiveness by leveraging their access to global supply chains and
markets [11], which drive industrial upgrading and indirectly stimulate the exploration
and application of data-driven correlations [12–14].

Innovative data-driven fault detection methodologies, such as Principal Component
Analysis (PCA), Partial Least Squares (PLS), and Canonical Correlation Analysis (CCA),
have been extensively researched and developed, showcasing their potential in various
applications [15–17]. The increasing complexity of industrial networks and the critical role
of technology in shaping their interdependencies have been highlighted, underscoring
the importance of understanding the dynamic nature of these networks [18,19]. Studies
have also explored how industry linkages contribute to innovation and competitiveness,
emphasizing the role of industrial ecosystems in fostering these dynamics [20,21]. Causal
metrics, when incorporated into industrial network models, can capture the directionality and
strength of relationships, which are critical for diagnosing fault propagation paths [22,23].

Statistical inference methods, such as Granger Causality (GC), Vector Autoregression
(VAR), Transfer Entropy (TE), Structural Equation Modeling (SEM), and Bayesian Networks
(BNs), perform feature extraction and hypothesis tests to judge the causal relationships for
time series or probability structure data [24–27]. Another important observation is the role
of causality in optimizing network robustness. The inclusion of causality structures into
time-varying network analyses, as suggested by Carlos-Sandberg and Clack [28], offers
a powerful mechanism for monitoring system performance and mitigating risk. More-
over, the synergy between causality-based approaches and neural network models further
expands their application potential, particularly in soft sensing and fault prediction [29].
However, these methods primarily focus on identifying patterns, correlations, and latent
structures and are not inherently designed to distinguish between direct and indirect causal-
ity [30]. This limitation can lead to misjudging true direct causal relationships, especially
within the nonlinear and dynamic industrial systems that characterize modern economies.

In this paper, we have employed partial cross mapping (PCM) [31] to differentiate
direct causality within industrial systems and measure the inter-industry linkages through
phase space reconstruction. We have identified key nodes in the industrial structures
and compared the linkages between China and the United States via a causal network.
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Industrial systems with numerous interdependent nodes have been effectively modeled us-
ing linkage indicators, incorporating both direct and indirect causal relationships, elucidat-
ing the asymmetry of causality, and enhancing the accuracy of the industrial interrelations.
Social Network Analysis (SNA) has been employed to examine the intricate characteristics
of industry nodes to provide a more comprehensive depiction of inter-industry causal
linkages. The robustness of industrial networks to deliberate and random attacks has also
been further measured.

2. Methodology
2.1. PCM (Partial Cross Mapping)

An articulated integration of three tools from nonlinear dynamics and statistics—
phase space reconstruction, mutual cross mapping, and partial correlation—named partial
cross mapping is an effective way to differentiate direct causations from indirect ones when
the variables of the underlying dynamical system are non-separable and interact weakly
or moderately. Take three time series X = {xt}L

t=1, Y = {yt}L
t=1, and Z = {zt}L

t=1 with the
length L; three shadow manifolds can be gained using Takens–Mane’s delay-coordinate
embedding technique, as (MX, MY, MZ)—MX = {xi}L

i=r, MY = {yi}L
i=r, MZ = {zi}L

i=r—
where the state vectors are given as follows:

xi = (ui, ui+τx , ui+2τx , ..., ui+(mx−1)τx )

yi = (vi, vi+τy , vi+2τy , ..., vi+(my−1)τy)

zi = (wi, wi+τz , wi+2τz , ..., wi+(mz−1)τz) (1)

where mx, my, and mz are the embedding dimensions, and τx, τy, and τz are time lags, which
are deduced using False Nearest Neighbor (FNN) and Delayed Mutual Information (DMI),
respectively. Here, we set τx, τy and τz; mx, my, and mz; and r = maxξ{1 + (mξ − 1)τξ},
with ξ = (x, y, z).

Determine a fixed number of nearest neighbors for state xi (usually set to m + 1).
For ut, find its nearest neighbors in MX, denoted as NX{ut}.Then, map to MY, where the
corresponding nearest neighbor set in MY is NY|X{vt}, and NY|X(vt) = {vt′ | ut′ ∈ NX(ut)}.
Finally, calculate the weighted average of NY|X{vt} to obtain the mapping estimate ŷi

xi .
This process can be used to obtain the estimated time series ŶX for Y.

Similarly, NZ|X(wt) and ẑxi
i can be obtained. Next, map the nearest neighbors in ẑxi

i
directly to MY, resulting in the nearest neighbor set NY|X,Z(v′t), from which the mapping

estimate ŷ
ẑ

xi
i

i can be obtained. This process can be used to obtain the estimated time series
ŶẐX

for Y.
The detailed form of the partial correlation coefficient between Y and X conditioned

with Z is given as follows:

Pcc(Y, ŶX |ŶẐX
) =

Corr(Y, ŶX)− Corr(Y, ŶẐX
)Corr(ŶX , ŶẐX

)√
(1 − Corr(Y, ŶẐX )2)(1 − Corr(ŶX , ŶẐX )2)

(2)

where Corr(*) represents the correlation between the variables.
The correlation coefficient in the mutual cross mapping structure is measured as follows:

Rc = |Corr(vt, v̂t
u)| (3)

where v̂t
u = E(N̂u(vt)), v̂t

u is the mapping from ut, and E(·) is the appropriately weighted
average at all points in each set. Given a threshold T , according to the rule of mutual
correlation, a causal influence from X to Y exists if RC is larger than T.
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In real-world systems, causal relationships between variables frequently involve time
lags. Therefore, when we evaluate the causal link between two variables, it is essential to
determine the optimal time lag to maximize the causal coefficient. To effectively address the
challenge of causation transitivity, we introduce the direct causal inference index, defined
as follows:

RD = |Pcc(yt, ŷt
x|ŷẐX

t )| (4)

where ŷẐX
t is extracted as the indirect causality through Z, and Pcc(·) is the partial correlation

coefficient between the first two variables.
According to the statistical principles, RC ≥ RD always applies. Suppose a empirical

threshold T is given; the causal relationship between X and Y can be deduced via the
following frame: 

direct causality o f Y → X i f RC ≥ RD ≥ T

indirect causality o f Y → X i f RC ≥ T ≥ RD

absent causality o f Y → X i f T ≥ RC ≥ RD

(5)

2.2. Linkage Indicators

‘Linkage indicators’ measure the strength of the causal relationships among industries
as derived from the partial cross mapping (PCM) technique. This differs from the traditional
interpretation in Input–Output Analysis (IOA), where linkage effects typically refer to
indirect ripple effects in the forward or backward directions, quantified using inter-industry
transaction matrices. Our indicator captures both the direct and indirect causal linkages
within a network framework, emphasizing the dynamics of inter-industry influence rather
than economic transactions alone.
(A) Degree Centrality. Degree centrality measures the number of connections of a node

in the network, named the degree of a node, which is its connection with other nodes.
Higher degree centrality plays a pivotal role and is calculated as expressed in (6).

CD(v) =
deg(v)
N − 1

(6)

where CD(v) is the degree centrality of the node, deg(v) is the degree of the node, and
N is the total number of nodes in the network.

(B) Betweenness Centrality. Betweenness centrality measures the role of nodes as in-
termediaries on the shortest path in the network. Nodes with high intermediate
centrality are usually located on the information flow path and control the information
propagation and connect important nodes in different parts. The formula is shown
in (7).

CB(v) = ∑
s ̸=v ̸=t

σst(v)
σst

(7)

where σst is the total number of shortest paths from node s to t, while σst(v) is the
number of those paths passing through node v.

(C) Closeness Centrality. Closeness centrality measures the average distance between
nodes and other nodes. Nodes with high compact centrality are closer to other nodes
in the network, and it is measured using (8).

CC(v) =
N − 1

∑u ̸=v d(v, u)
(8)

where CC(v) is the closeness centrality of node v, and d(v,u) is the shortest path length
between nodes v and u.
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2.3. Resilience Measurement

In evaluating the robustness of industrial networks, we selected two characteristics
related to random and deliberate attacks on network nodes to assess their impact on
network efficiency.

In a random attack, the attacker selects a node or edge in the network to attack,
while the selected target is random and there is no specific strategy. The main purpose of
random attacks is to test the resilience and robustness of the network to understand how
the network behaves when it is subjected to random damage, which helps us understand
the sensitivity of the network structure under the condition of random attacks.

In a deliberate attack, the attacker selects a specific node or edge to attack, usually
based on the network topology or the criticality of the network function. The goal of a
deliberate attack may be to disrupt specific parts of the network, paralyze critical nodes,
disrupt network communications, or impede the transmission of information. The attacker
exploits a vulnerability or structural weakness in the network to carry out an attack in
order to achieve their objectives.

Here, we employ two indices, named the global network efficiency and maximum
connected subgraph size, to capture the feature of the resilience of industrial linkages.

(A) Global network connectivity. This describes the overall communication efficiency
based on the shortest path length between nodes in the network and reflects the speed
of information transfer in the network, with the equation for its calculation given
in (9).

E =
1

N(N − 1) ∑
i ̸=j

1
dij

(9)

where N is the number of nodes in the network and dij is the shortest path length
between node i and j. The value ranges from 0 to 1. This index tends towards 0 if the
network edges are sparse, while it tends towards 1 if the network is highly connected.

(B) Maximum connectivity subgraph scale. This index is defined as the ratio of the
number of nodes contained in the maximum connected subgraph to the total number
of nodes in the network, noted as S. As the network is constantly attacked and
gradually fragmented, S can further reflect the stability shown by the network collapse
process. The measurement of S is shown in (10).

S =
L

N(1 − f )
(10)

where f indicates the proportion of nodes removed after the attack, and f is f0 the crit-
ical value for network collapse. L is the number of nodes contained in the maximum
connected subgraph.

3. Empirical Analysis
3.1. About the Data

The bilateral relationship between China and the United States stands as one of the
most critical in today’s global landscape. In the United States, industry classifications are
commonly aligned with the standards set by S&P Dow Jones Indices, categorizing the
primary industries into 11 sectors, as shown in Table 1. The data utilized in this analysis
are sourced from the official S&P Dow Jones Indices website, accessible at S&P Global.

The industry classification typically follows the Shenwan Industry Classification in
China, developed by the Research Institute of Shenwan Hongyuan (http://www.swsindex.
com/). Prior to 2020, the Shenwan classification system identified 28 primary industry
categories. In 2021, the number of primary industries was adjusted from 28 to 31 (see
Table 2). These newly added categories are beauty care, petroleum and petrochemical, and

http://www.swsindex.com/
http://www.swsindex.com/
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environmental protection. Additionally, the original “extractive” industry was divided into
“coal” and “petroleum and petrochemical”, while “public utilities” was split into “public
utilities” and “environmental protection”.

Table 1. Industry names and codes in the United States.

Code Name of Industry Code Name of Industry

A1 Consumer Discretionary A7 Real Estate
A2 Consumer Staples A8 Communication Services
A3 Health Care A9 Utilities
A4 Industrials A10 Financials
A5 Information Technology A11 Energy
A6 Materials

Table 2. Industry names and codes in China.

Code Name of Industry Code Name of Industry

C1 Mining C17 Transportation
C2 Media C18 Agriculture, Forestry, Animal

Husbandry, and Fishery
C3 Electrical Equipment C19 Automobiles
C4 Electronics C20 Light Manufacturing
C5 Real Estate C21 Commercial Trade
C6 Textiles and Apparel C22 Food and Beverages
C7 Non-Bank Financials C23 Communications
C8 Steel C24 Leisure Services
C9 Utilities C25 Pharmaceuticals and Biotechnology

C10 National Defense and Military C26 Banking
C11 Chemical C27 Nonferrous Metals
C12 Machinery and Equipment C28 Comprehensive
C13 Computers C29 Coal
C14 Household Appliances C30 Environmental Protection
C15 Building Materials C31 Beauty Care
C16 Construction and Decoration C32 Petroleum and Petrochemical

Here, we take industry data from the United States in 2022 as an example to figure
out the basic causal linkages (see Figure 1), an interaction matrix for 11 industries is
obtained using the PCM technique, and we choose the threshold T = 0.25 to pick out the
strong linkages among these (for E = 2 and τ = 1) [32]. A total of 34 causal combinations
were detected, where 18 groups exhibited unidirectional causality; meanwhile, 8 revealed
bidirectional causality. The bigger the size of the red circle in the heat map in Figure 1, the
higher the degree of the correlation between the two industries, where the horizontal axis
is the cause and the vertical axis is the effect.

It is obvious that an extreme mutual causality lies between the industrial and finan-
cial sectors in the United States’ industrial system, which is consistent with its status as
the world’s industrial and financial power. The communication equipment and finance
industries are the two key industries in the United States economic system.
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Figure 1. Heat map of PCM causal intensity for the United States industry in 2022 (the size of the
circle represents the degree of correlation).

In the Chinese industrial system, the pillar industries have changed according to
the Chinese government’s policies and regulations; here, we measure three centrality
indicators, as shown in Table 3. The comprehensive industry, with the highest degree
centrality (0.5333), and the non-bank financial sector, leading in closeness centrality (0.1063),
emerge as central hubs, facilitating extensive and efficient interactions across the network.
The chemical industry, with the highest betweenness centrality (0.4931), serves as a crucial
intermediary, enhancing the connectivity among diverse sectors. Light manufacturing;
food and beverages; and utilities also demonstrate significant bridging roles with high
betweenness centrality, while pharmaceuticals and biotechnology, alongside non-bank
financials, exhibit strategic positioning in their high closeness centrality. Peripheral indus-
tries like textiles and apparel; computers; and electrical equipment show limited influence,
highlighting a hierarchical and interconnected network in which strategic sectors maintain
economic robustness and resilience.

The most influential industries are distinguished for both countries (see Table 4). The
influential industries have varied significantly, indicating a dynamic industrial landscape,
in China. Household appliances and light manufacturing appeared multiple times with a
strong presence. Traditional sectors, such as pharmaceuticals, nonferrous metals, and food
and beverages, have also been significant. Information technology and consumer staples
frequently appear, indicating their sustained influence, in the United States. The promi-
nence of information technology is notable in multiple years. Real estate has emerged as
influential in recent years, reflecting its growing impact, which underscores the importance
of innovation and consumer markets to the United States’ economy.
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Table 3. Network centrality indicators of Chinese industries in 2023.

Industry Betweenness Closeness Degree
Centrality Centrality Centrality

Comprehensive 0.4784 0.0784 0.5333
Light Manufacturing 0.4752 0.0792 0.4667
Non-Bank Financials 0.4148 0.1063 0.5000
Food and Beverages 0.4506 0.0649 0.3667

Pharmaceuticals and Biotechnology 0.4083 0.0796 0.4000
Automobiles 0.4083 0.0698 0.4333

Building Materials 0.4148 0.0611 0.3667
Utilities 0.4284 0.0562 0.3333

Steel 0.3843 0.0640 0.3667
Agriculture, Forestry, Animal Husbandry, and Fishery 0.3787 0.0610 0.4000

Household Appliances 0.4667 0.0407 0.3333
Real Estate 0.4752 0.0405 0.3333

Commercial Trade 0.4284 0.0554 0.3000
Chemical 0.4931 0.0202 0.3000

Coal 0.4429 0.0428 0.2667
Environmental Protection 0.3630 0.0595 0.3333

Machinery and Equipment 0.4021 0.0487 0.2667
Media 0.3308 0.0734 0.2333

Beauty Care 0.3787 0.0265 0.3333
Banking 0.4148 0.0249 0.2667

Communications 0.3787 0.0479 0.2667
Transportation 0.4284 0.0144 0.2667

Construction and Decoration 0.3149 0.0381 0.3667
Petroleum and Petrochemical 0.3226 0.0562 0.2333

Nonferrous Metals 0.4021 0.0161 0.2333
National Defense and Military 0.3787 0.0474 0.1333

Electronics 0.3630 0.0147 0.3000
Leisure Services 0.3948 0.0000 0.1667

Electrical Equipment 0.3394 0.0103 0.1333
Textiles and Apparel 0.3641 0.0000 0.0667

Computers 0.2465 0.0031 0.1667

Table 4. Most influential industries for both countries in previous years.

Year Two of the Most Influential Industries Two of the Most Influential Industries
in China in the United States

2015 Pharmaceuticals and Biotechnology, Materials, Consumer Staples
Commercial Trade

2016 Household Appliances, Light Manufacturing Information Technology, Industrials
2017 Nonferrous Metals, Non-Bank Financials Information Technology, Industrials
2018 Comprehensive, Utilities Consumer Discretionary, Utilities
2019 Food and Beverages, Utilities Consumer Staples, Information Technology
2020 Automobiles, Household Appliances Health Care, Materials
2021 Real Estate, National Defense and Military Real Estate, Consumer Discretionary
2022 Banking, Computers Real Estate, Communication Services
2023 Comprehensive, Light Manufacturing Communication Services, Financials

3.2. The Causal Network via PCM

In this section, we construct the causal network using PCM to detect the linkage
structure of industries for both countries. Figure 2 shows the industry interconnection
network between China and the United States, with each node representing an industry. The
size and color depth of the nodes represent the degree of their criticality in the network. The
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larger the node and the darker the color, the higher its centrality and influence in the
whole network.

In the industry linkage network of different periods, we find that the industry linkage
networks for different periods are intricate, and the central industry nodes are constantly
changing from 2015 to 2023. Firstly, for China, in 2015 (see Figure 2a), traditional Chinese
medicine biology, commercial trade, computers, and the chemical industry were the most
influential industries, while household appliances, light industrial manufacturing, and the
pharmaceutical and biological industries led in the overall linkage in 2016 (see Figure 2c).
In 2017 (see Figure 2e), non-ferrous metals, non-banking finance, and public utilities
formed a small community structure in the industry network, affecting the other nodes in
the network, which may have been caused by the establishment of the China Non-ferrous
Metals International Production Capacity Cooperation Enterprise Alliance (hereinafter
referred to as the “alliance”) in early 2017. This alliance was approved by the National
Development and Reform Commission and initiated by the China Non-Ferrous Metals
Industry Association, under the guidance of the spirit of the 19th National Congress. In
2018 (see Figure 2g), industries blossomed; food and beverages and public utilities were
the key industries in 2019 (see Figure 2i). The medical industry became the most influential
industry throughout the year of 2020 (see Figure 2k). In 2021 (see Figure 2m), the real estate
market declined significantly. As the center of the network, banks were closely connected
with other industries in 2022 (see Figure 2o), and their industrial linkage radiated through
the whole world. In 2023 (see Figure 2q), the network of industrial linkages in China
exhibits significant changes in its structural composition and influence, which reveals
that the most prominent nodes within the network are the non-bank financial, steel, and
comprehensive sectors. These sectors act as major hubs, exerting considerable influence
on the network dynamics and showcasing robust interconnections with other industries.
The dominance of these sectors suggests a shift in economic centrality, with their activities
radiating outwards and impacting a broad range of industries both domestically and
globally. This interconnectedness underscores the pivotal role of these sectors in driving
economic activities and shaping the industrial landscape.

The industrial landscape in the United States has undergone notable transformations,
with different sectors emerging as pivotal nodes each year. In 2015 (see Figure 2b),
materials and consumer staples were central, succeeded by information technology and
real estate in 2016 (see Figure 2d). In 2017 (see Figure 2f), information technology and
industrials took prominence, while the consumer discretionary and utilities sectors led
in 2018 (see Figure 2h). Information technology and consumer staples re-emerged in
2019 (see Figure 2j), followed by health care and materials in 2020 (see Figure 2l). Real
estate, consumer discretionary, and materials became key in 2021 (see Figure 2n), with
real estate and communication services leading in 2022 (see Figure 2p). Finally, in 2023
(see Figure 2r), communication services, financials, and information technology became
the dominant sectors. This dynamic evolution highlights the shifting importance and
interconnectedness of various industries over time, reflecting broader economic trends and
technological advancements.
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(a) China, 2015 (b) The United States, 2015

(c) China, 2016 (d) The United States, 2016

(e) China, 2017 (f) The United States, 2017

Figure 2. Cont.
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(g) China, 2018 (h) The United States, 2018

(i) China, 2019 (j) The United States, 2019

(k) China, 2020 (l) The United States, 2020

Figure 2. Cont.
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(m) China, 2021 (n) The United States, 2021

(o) China, 2022 (p) The United States, 2022

(q) China, 2023 (r) The United States, 2023

Figure 2. Causal networks of industries for China and the United States (2015–2023).
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3.3. Comparation of the Topological Features of the Industrial Networks Between China and the
United States

The industrial networks of China and the United States exhibit distinct topological
characteristics (Figure 3), reflecting the unique structural dynamics, economic strategies,
and resilience mechanisms in each country. By examining key metrics such as the edge
count, network density, average degree, average path length, and network diameter over
time, this study highlights the critical differences and similarities between the two networks.

(a) China

0

0.2

0.4

0.6

0.8

Edges

Density

Avg_Degree Avg_Path_Length

Diameter

2015

2016

2017

2018

2019

2020

2021

2022

2023

(b) The United States

Figure 3. Radar chart for network topology features by year.

The edge count serves as a proxy for the overall connectivity within the network. It is
evident that the industrial linkage in China (Figure 3a) exhibits a higher number of edges
compared to that ub the United States (Figure 3b). For example, in 2016, China’s industrial
network recorded 263 edges, significantly surpassing the United States’ 45 edges in the same
year. This disparity indicates that China’s network fosters more inter-industry linkages,
likely driven by its focus on manufacturing and export-oriented growth. In contrast,
the United States network exhibits relatively stable and lower edge counts, peaking at
65 edges in 2020, which reflects its focus on high-value-added sectors with fewer but
stronger connections.

Network density measures the proportion of possible connections that are realized
within the network. While the United States’ network demonstrates higher densities
throughout the period, peaking at 0.591 in 2020, China’s network density fluctuates more
significantly, with values ranging from 0.118 in 2019 to 0.348 in 2016. These differences
underscore the United States network’s tendency toward compact and efficient connections,
while China’s network adapts dynamically to the economic conditions, particularly in
response to external shocks such as the Sino–US trade conflict.

The average degree, reflecting the mean number of connections per node, highlights
the differences in inter-industry collaboration. China’s average degree varies considerably,
reaching a high of 9.393 in 2016 and a low of 3.179 in 2019, indicating episodic surges in
connectivity, likely driven by government policies or external shocks. By comparison, the
United States network exhibits a more gradual and consistent increase, with the average degree
rising from 2.636 in 2015 to 5.273 in 2023. This stability in the United States network points to
sustained emphasis on integrated value chains and strategic inter-industry partnerships.
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Average path length indicates the efficiency of the information or resource flow within
the network. The United States consistently demonstrates shorter path lengths, ranging
from 1.418 in 2020 to 2.427 in 2015, signifying a more compact network that facilitates
rapid inter-industry communication. In contrast, China exhibits longer path lengths in
certain years, such as 2.888 in 2017 and 3.089 in 2019, reflecting a more distributed network
structure. However, the shorter path lengths in years like 2016 (1.79) suggest periods of
heightened efficiency and tighter interconnectivity.

Network diameter, the longest distance between any two nodes, offers insights into
the network’s overall spread and connectivity. Both networks show variation in their
diameters, with China’s ranging from 4 in 2016 to 9 in 2021 and the United States varying
between 3 and 5 throughout the period (Figure 4). The larger diameters in China’s net-
work during certain years suggest a broader and more hierarchical structure, while the
consistently smaller diameters in the United States network indicate a more compact and
centralized configuration.
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Figure 4. Comparison of network topology features of China and the United States.

3.4. Network Resilience

To elucidate the impact of the Sino–US trade war on the causal linkage effects within
industry, here, we take China as example and analyze two distinct periods: January 2017 to
June 2018 (361 data sets) and July 2018 to December 2019 (368 data sets). We conducted
partial cross mapping causal tests for these periods. Figure 5 presents the causal networks
from PCM before and after the trade war, while the network topology characteristics are
detailed in Table 5.
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(a) Before the trade war (b) After the trade war

Figure 5. Causal network diagram of PCM of China’s Shenwan industries.

Table 5. Network topology characteristics before and after the trade war.

Network Network Average Average
Edges Density Betweenness Clustering Coefficient

Before the start of the US–China trade war 69 0.091 0.063 0.084
After the start of the US–China trade war 90 0.120 0.076 0.189

It is evident that the trade war intensified the connectivity between industry nodes,
with the number of connected edges increasing from 69 to 90 (Table 5). This led to a rise in
the average number of intermediaries and an increase in the average clustering coefficient
from 0.084 to 0.189, which reflected the ‘clustering’ phenomenon among industries; a
higher value indicates a stronger connection among industries. Consequently, the overall
network density rose from 0.091 to 0.120, which shows the Sino–US trade war enhancing
cooperation and connectivity much more than ever before.

We then employed two network disintegration strategies to assess the impact of the
Sino–US trade war on the industrial system, using a deliberate attack and a random attack,
until the network was fully dismantled. A deliberate attack involves sequentially removing
nodes based on their importance, ranked by the number of connections. In contrast, random
attacks involve the random removal of nodes to disrupt the network’s connectivity.

Figures 6 and 7 illustrate the changes in the global network connectivity efficiency
(E) and the maximum connected subgraph scale (S) over two periods, which demonstrate
robust resilience in the post-Sino–US trade war period. This provides insights into how
such disruptions could affect network connectivity and stability. The trade conflict acts as
an external shock that may alter the importance of certain nodes (industries) or disrupt the
causal linkages within the network. By modeling these changes through network failure
scenarios, the ability of the industrial network to withstand and recover from disruptions
was assessed.

We measure the critical value for network collapse ( f0 ) under deliberate attacks as
exceeding 0.75 (The threshold f0 = 0.75 represents the proportion of nodes removed before
network collapse, reflecting network robustness. This value is consistent with studies
such as [33], which assessed the error and attack tolerance in complex networks. Similarly,
ref. [34] highlights f0 as a critical indicator of network resilience in urban systems. While
f0 = 0.75 involves subjective elements, its adoption in this study provides a standardized
measure for comparing network stability.), which shows that the network withstands
failure for longer compared to the pre-trade war period. The higher f0 in the post-trade war
period indicates greater resilience, showing the network can sustain functionality despite
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node failures. This reflects stronger interconnections and structural robustness within the
Chinese industrial network after the trade conflict.

Figure 6. Global network connectivity efficiency.

Figure 7. Maximum connectivity subgraph scale efficiency.

Additionally, the E and S values in the post-trade war period consistently surpass
those from the pre-trade war period, suggesting a more tightly knit network with numerous
prominent central nodes. During random attacks, the E and S value curves post-trade
war also generally remain higher, with f0 in both periods above 0.82, exhibiting stronger
resistance to random disruptions following the Sino–US trade war.

Under both attack modes, the post-Sino–US trade war network demonstrates greater
resilience and robustness. This statement about global trade network resilience is based on
the observed robustness, as shown in Figure 4. The global implications suggest that such
resilience strategies could benefit other nations facing similar trade conflicts.

This enhanced resilience suggests that the trade war fostered closer cooperation
within China’s internal industries, thereby strengthening the network’s robustness. The
alignment of common interests and relevant policies has fostered a greater propensity
for collaboration among Chinese industries, promoting joint efforts in sharing the risks
and rewards when facing external challenges. Such close collaboration facilitates resource
sharing and information exchange with mutual support, thereby improving the overall
resilience of the industrial network to external shocks. Unfortunately, we encountered
insufficient nodal points in the industry data series for the United States, which limited the
scope of our network resilience analysis.
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4. Conclusions and Discussion
In this study, we have explored the dependencies and causal relationships within and

between the industrial networks of China and the United States, offering a comparative
perspective on their structural dynamics and economic resilience. Utilizing the partial cross
mapping (PCM) technique alongside complex network theory, we have analyzed real data
spanning 2015 to 2023 for 32 industries in China and 11 industries in the United States. Our
findings reveal that the Sino–US trade conflict has influenced domestic industrial structures,
intensified inter-industry linkages, and reshaped the resilience of industrial networks. In
particular, China’s industrial network demonstrates closer connections between nodes,
bolstering its stability and robustness in the post-trade war period. These observations
align with the broader theoretical understanding that increased connectivity can enhance
network resilience while also exposing vulnerabilities to systemic risks [35]. Furthermore,
the comparative analysis underscores significant structural differences: the United States
exhibits a diversified, service-oriented network dominated by the technology and financial
sectors, whereas China’s industrial network emphasizes heavy industries and manufac-
turing, driven by export-oriented growth. These structural dynamics reflect contrasting
economic strategies and their implications for long-term resilience and adaptability.

While this study has illuminated the dynamics of the industrial networks in China
and the United States amid the Sino–US trade war, it is crucial to recognize the inherent
limitations of the scope and granularity of the data utilized. The analysis relies on industry
indices and aggregated data, which, while representative, may not fully capture the intricate
and evolving dynamics of industrial networks. Future studies could integrate broader
geopolitical and socioeconomic contexts, enhancing the depth of their insights and yielding
a more nuanced understanding of the underlying patterns. For instance, the inclusion of
global value chain interactions, as highlighted by Baldwin and Lopez-Gonzalez [36], could
shed light on how international networks adapt to trade tensions and other systemic shocks.

Moreover, digital transformation continues to reshape industrial linkages, as em-
phasized by [37,38]. Exploring the impact of technological advancements on industrial
networks is a promising direction for future research, as it could reveal new causal patterns
and dependencies critical to understanding economic resilience.

The comparative analysis presented in this study underscores how distinct economic
structures and policy frameworks shape industrial linkages and stability. The findings
demonstrate that China’s industrial network, with its focus on manufacturing and export-
driven growth, differs significantly from the United States’ diversified and service-oriented
structure. These distinctions provide actionable insights for policymakers, economists,
and business leaders in developing strategies to enhance economic resilience and manage
risks. For example, understanding the unique characteristics of a country’s industrial
network can inform targeted interventions to reinforce economic structures and mitigate
potential disruptions.

Nevertheless, it is essential to approach these findings with caution. This study does
not claim to fully account for all variables influencing industrial networks during the
Sino–US trade war, such as international trade barriers, policy shifts, and external economic
shocks. Future research could address these factors by incorporating more granular data,
extending the temporal scope, and employing advanced econometric and network models.
Such approaches would enable a deeper examination of the resilience and adaptability of
industrial networks under varying conditions.

This research also highlights the broader implications of understanding industrial
networks. By mapping the causal relationships and identifying key sectors, this study
contributes to the development of frameworks applicable to other economies. As noted
by [39,40], the complexity of economic networks necessitates sophisticated analytical tools



Entropy 2025, 27, 209 18 of 19

to uncover the structures that drive economic growth and resilience. Policymakers can
leverage these insights to design adaptive strategies that foster economic stability and
growth, even in the face of global trade tensions and systemic risks.

In conclusion, this study offers a foundation for further exploration of industrial
network dynamics, emphasizing the need for interdisciplinary approaches that integrate
network theory, policy analyses, and technological insights. By addressing its limitations
and building on its findings, future research can contribute to a deeper understanding of
global economic systems and inform the creation of resilient and adaptive industrial policies
capable of navigating an increasingly interconnected and complex global landscape.
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