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Abstract: Wind turbine planetary gearboxes have complex structures and operating en-
vironments, which makes it difficult to extract fault features effectively. In addition, it is
difficult to achieve efficient fault diagnosis. To improve the efficiency of feature extraction
and fault diagnosis, a fault diagnosis method based on improved multivariate variational
mode decomposition (IMVMD) and ensemble refined composite multivariate multiscale
dispersion entropy (ERCmvMDE) with multi-channel vibration data is proposed. Firstly,
the IMVMD is proposed to obtain the optimal parameters of the MVMD, which would
make the MVMD more effective. Secondly, the ERCmvMDE is proposed to extract rich
and effective feature information. Finally, the fault diagnosis of the planetary gearbox is
achieved using the least squares support vector machine (LSSVM) with features consisting
of ERCmvMDE. Simulations and experimental studies indicate that the proposed method
performs feature extraction well and obtains higher fault diagnosis accuracy.

Keywords: multivariate variational mode decomposition; refined composite multivariate
multiscale dispersion entropy; fault diagnosis; planetary gearbox

1. Introduction

Planetary gearboxes are common transmission components with a large carrying
capacity, high transmission ratio, and balance torque. They have been widely used in wind
turbines. As the operating conditions of a planetary gearbox are often severe, with harsh
environments, there will be frequent damage to its internal components [1]. Failures of the
planetary gearbox will influence the transmission efficiency and may even lead to serious
damage to the entirety of the equipment [2]. Therefore, the effective fault diagnosis of
planetary gearboxes in wind turbines is very important.

Existing fault diagnosis methods mainly focus on the feature extraction of the vibra-
tion signals of planetary gearboxes, and the effectiveness of feature extraction directly
influences fault diagnosis [3,4]. Owing to the complex structure of the planetary gear-
box, the vibration signals of various components are always coupled and modulated
with each other, and other factors also influence the vibration signal, such as background
noise [5,6]. Fault feature extraction with the original vibration signals usually does not
result in good performance. It is necessary to preprocess the original vibration signals for
fault feature extraction.

The vibration signals of planetary gearboxes are usually nonlinear and nonstation-
ary, and empirical mode decomposition (EMD) can decompose the different modal and
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noise components automatically [7]. Variational mode decomposition (VMD) has been
proposed to overcome the problems of endpoint effects and mode mixing of EMD [8],
and VMD has been widely used in the signal processing of planetary gearboxes [9,10].
Some studies indicate that the intensity and spectral structure of vibration signals are
not the same for different fault locations, which may cause misjudgment when using a
single-direction vibration signal. In recent years, an increasing number of studies have
used multi-channel vibration data for fault diagnosis, and the multivariate signal analysis
method ensures that each channel has the same decomposition scale; this has been widely
used in planetary gearbox fault diagnosis [11]. Rilling et al. extended EMD to bivariate
empirical mode decomposition (BEMD) [12]. Rehman and Mandic proposed multivariate
empirical mode decomposition (MEMD) to process multi-channel data [13]. Moreover,
multivariate variational mode decomposition (MVMD) was proposed by Rehman and
Aftab to overcome the problems of endpoint effects and mode mixing [14]. However, the
preset parameters of MVMD have a significant influence on its processing results [15], and
parameter optimization is still an important issue.

Many nonlinear dynamic methods, such as sample entropy (SE), permutation entropy
(PE), fuzzy entropy (FE), dispersion entropy (DE), and their multiscale entropy forms, have
been widely used in the field of planetary gearbox fault diagnosis because of their ability
to extract nonlinear fault characteristic information hidden in vibration signals [16-20].
Owing to the richer fault feature information contained in multivariate multiscale entropy,
various methods have also been proposed and applied, such as mvMSE, mvMFE, and
mvMDE [21-23].

Multiscale entropy may lead to inaccurate calculations owing to sequence coarse-
graining when the sample is too short and it cannot adequately extract the fault features [24].
Refined composite methods, such as RCMSE, RCMFE, and RCMDE, have been proposed
to improve the computational stability of multiscale entropy [25-27]. Refined composite
multiscale entropy has been applied in the field of planetary gearbox fault diagnosis and
has yielded many research results [28,29]. Refined composite multiscale entropy generally
obtains a coarsened sequence using the mean value. However, Azami H et al. obtained
the coarsened sequence by variance and standard deviation, and the results indicated that
RCMFE based on different coarse-graining methods can obtain different features at different
times [27]. Therefore, research on refined composite methods for multiscale entropy is
important for the effective extraction of fault features.

Based on the above analysis, a fault diagnosis method based on improved multivariate
variational mode decomposition (IMVMD) and ensemble refined composite multivariate
multiscale dispersion entropy (ERCmvMDE) with multi-channel vibration data is proposed
for wind turbine planetary gearboxes. The main contributions of this study are as follows.
A comprehensive evaluation index based on orthogonality and dispersion entropy is
proposed to obtain the optimal parameters of the MVMD. An ensemble refined composite
multivariate multiscale dispersion entropy is proposed to form the composite feature. The
fault diagnosis of the wind turbine planetary gearbox is achieved with a least squares
support vector machine (LSSVM) using the proposed feature extraction method.

The remainder of this paper is organized as follows. The related theory, proposed
signal processing method, and proposed feature extraction method are introduced in
Section 2. In Section 3, the proposed fault diagnosis method is described. In Section 4,
simulation analyses are presented to verify the advantages of the proposed IMVMD and
ERCmvMBDE. In Section 5, fault diagnosis using the proposed method is analyzed and
compared. Finally, the conclusions are drawn in Section 6.
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2. Methods

2.1. Improved Multivariate Variational Mode Decomposition
2.1.1. The Basic Theory of MVMD

MVMD is a multi-channel signal processing method that evolved from VMD [14].
MVMD can perform the coordinated decomposition of multi-channel signals.

Assume that a multi-channel signal S = {s, () }” =12 which contains P channels,
can be decomposed into a series of intrinsic mode functions (IMFs) by MVMD as

K
S(t) =) ug(t) 1
k=1
where K is the number of IMFs, u(t) = [u1(t), ua(t),..., up(t)].
MVMD requires that the sum of the bandwidth of the IMFs be the minimum. The
original signal can be accurately reconstructed by IMFs simultaneously. The constrained
problem is expressed as follows:

min {Z):Hat [ulip(t)e—fw"t} Hz}

{upitdwe} |k p 2
st Lupi(t) =sp(t), p=12,...,P
k

(2)

where 9;[-] represents the calculation of the partial derivatives of time, and ul_{;p (t) is the
modulating signal of the k-th IMF of the pth signal channel. wy is the center frequency of
the IME. The bandwidth of uy(t) can be estimated by the L, norm of the gradient function
of uk (t).

To solve the problem in Equation (2), its corresponding augmented Lagrangian func-
tion can be expressed as

2
L({ugp) {eid, Ap) = A2 ] oul? (0% |* 4 T sy (6) — S (0)| +
kp 2 P k 2 (3)
2 (A6, 3p(6) = B (1))

where «a is the penalty factor, A,(t) represents the Lagrange multiplier, and <-,-> represents
the inner product.

The alternate direction method of multipliers (ADMM) is used to obtain the optimal
solution of MVMD for Equation (3), where the modal update is as follows:

Ap(w
8p(w) — Lisx i p(w) + ()
it (w) = 2 4)
k,p 2
14 2a(w — wy)
The center frequency update is as follows:
o | 2
Yy w uk,p(w)‘ dw
witl = T— . (5)
L 5 [fip(@)] dew
p

Owing to the ability of the MVMD method to process multiple channel data simulta-
neously, the number of IMFs obtained from each channel’s decomposition is equal, and
the center frequency is the same. This decomposition method makes signal analysis more
stable and conducive to fault diagnosis.
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2.1.2. IMVMD

The modal number K and penalty factor « in the MVMD algorithm must be set
manually, and these parameters directly affect the decomposition quality [30]. When K is
extremely small, insufficient decomposition may occur, leading to mode mixing. Pseudo-
components may appear when the K value is too large. The «a value determines the
bandwidth of the IMF component, which in turn affects the MVMD.

In this paper, a comprehensive performance indicator based on orthogonality and DE
is proposed to obtain the appropriate MVMD parameters. The details of the indicator are
as follows.

DE can detect time-series complexities and dynamic mutations. This method has the
advantages of simple calculations, good robustness, and high computational efficiency.

ncm

DE(imf) = — Y  pe.Inpe (6)
=1

7T

where m denotes the embedding dimension, nc is the number of classes, and p, is the
probability of the 7t-th mode of the IMFE. The smaller the DE value of the signal, the
smoother the IMF curves.

The orthogonality index is mainly used to evaluate the independence between the two

modes as follows:
ab

~ lal[b]

where a and b are two vectors. The lower the orthogonality value, the higher the indepen-

Or(a,b) (7)

dence of the two vectors. The larger the orthogonality index, the higher the possibility of
modal mixing.

The better decomposition effect of MVMD is reflected in reduced modal mixing and
smoother IMF curves, which means that the DE and orthogonality values are the minimum.
Since the original signal is decomposed into several IMFs, corresponding to several DEs, the
largest DE represents the worst IMF in the decomposition. If the worst IMF has a smaller
DE, the remaining IMF curves will be smoother. Therefore, a comprehensive evaluation
index is proposed in this study to assist in determining parameters K and «. The indicators
are as follows:

min Sy (K, «) = R(K,a) + D(K, «)
K
R(K,a) = & g O, (imf;, imf;) ®)
Ki,j=i

D(K,«) = max{DE(imfy), DE(imf,),..., DE(imfx)}

where imf denotes the decomposition modal components of MVMD under control parame-
ters K and a. R(K, &) and D(K, a) are the normalization forms of the values of R(K, &) and
D(K, «) under different parameters. C is the combination number.

The steps to obtain the parameters are as follows.

Step 1: The S, values for different values of K are calculated with a constant de-
fault value of &, and the K value corresponding to the minimum S, is obtained as the
optimal value.

Step 2: The Sy values for different values of a are calculated while keeping the optimal
K value unchanged, and the « value corresponding to the minimum Sy, is obtained as the
optimal value.

According to the above steps, the optimal parameters K and « can be obtained to
improve the MVMD performance. The steps proposed in this study only require traversal
calculations within the preset range of K and & according to the step size. The amount of
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calculation is usually small, and the results can generally be obtained within a few seconds
of programming on an ordinary computer.

2.2. Ensemble Refined Composite Multivariate Multiscale Dispersion Entropy
2.2.1. The Basic Theory of mvMDE

Multivariate multiscale dispersion entropy (mvMDE) was proposed by Azami in
2019 [21]. This method has a faster calculation speed, better stability, and fewer calculation

parameters to be set and considered, making it suitable for the analysis of multivariate data.
p=12,..P
1n L with P channels and a data length

of L. The calculation process for mvMDE is as follows.

Assume a multi-channel signal U = {up,b}

(1) The coarse-graining process is used to obtain time series with different scales. The
original time series is divided into non-overlapping segments of length 7. The mean value
of each segment forms a new data series, as follows:

c_1 &
X, .= — u b

P Ty (i Sy |
wherep =1,2,...,P ©9)

wherei=1,2,...,(N

Il
—
Nl
| IS
N~—

where N is the length of x};, and 7 is the scale factor.

=12,..,P
(2) The multi-channel coarse-grained time series X* = {x; ; }p o N is mapped to
~)i=1,.2,...,
the range of 0 to 1 using a normal distribution function as follows:
2
—(t—pp)
1 Xy 2
v = Mo 2% g (10)

where (sz and i, are the variance and mean value of time series x*, respectively.

=12,..,P
(3) The series YT = {y; l}p o N continues to be mapped to different categories
)i=12,..,
as follows:
zp; = R(exyp,; +05) (1)

where z;f represents the i-th member of the classified signal in the p-th channel. R is the
rounding function and c is the number of categories.

(4) The time series zZ’}T'C is built with embedding dimension m and time delay d,
as follows:
mrT,c T, _T,C T,c T,c .
2,5 = {zp/j,zp,j+d,zp,j+2d .. "Zp,j+(m—1)d}’ ji=12--- ,N—(m+1)d (12)

(5) Each z;”}T’C can be mapped to a dispersion pattern as

T, T,c (13)

c __ T,c _ _
Tlogvy--0,,_q » Where Z,5 = 00,2 = U1 "Zp,j+(m—1)d = Vpm_1

Because the dispersion pattern contains m dimensions, each dimension can be one of
me,

the integers from 1 to c. Therefore, the number of dispersion patterns for z P

7.

“is ™.
(6) The relative frequency of each potential dispersion pattern of each channel is
calculated according to Equation (13):

Number (”vovr-vmil

m,T,c
LT
p,j )

(N— (m—1)d)P

r(nvovl'”vmfl) - (14)
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where Number (nvoyl.,,le 21;1}7,5) represents the number of z';}-r’c mapped to the disper-
sion pattern 7ty,p,...v,, ;-

(7) The mvMDE value can be calculated according to Shannon entropy as
Cm
moMDE(u,t,m,c,d) = — E (Togoy--0y, 1 )- INT (o500, 1 )- (15)

=1

2.2.2. ERCmvMDE

As stated above, equidistant segmentation and mean value methods are applied in the
coarse-graining process for mvMDE. This processing method has the following limitations.

(I) The length of the time series after coarse-grained processing will decrease signifi-
cantly with an increase in the scale factor. A shorter data length will decrease the stability
and reliability of the mvMDE calculation. Meanwhile, this coarse-graining process has only
one starting position, and the potential information in the time series processed by other
starting positions is ignored.

(II) If the coarse-graining process uses only the mean value of the signal segments,
some important information may be lost, such as the peaks and variances. This information
is usually very important for the fault diagnosis of planetary gearboxes.

An ensemble refined composite multivariate multiscale dispersion entropy (ER-
CmvMDE) method is proposed in this paper to overcome the above limitations. Firstly, the
sliding coarse-graining method is used instead of the equidistant segmentation method.
The refined composite entropy calculation is more stable. Secondly, multiple forms of
coarse-grained processing methods are adopted to extract more comprehensive fault fea-
ture information. The detailed steps of the ERCmvMDE method are as follows.

Step 1: Assuming a multi-channel signal with P channels and a data length of
p=12,..P ) )
LU = {up,h}b o 1 and the scale factor is . The 7 coarse-grained sequences are

obtained as follows:

Xt . r=12,..P
= X .
a { pai }z‘:l,Z,...,N (16)

wherea=1,2,...,tandi=1,2,...,(N = {LJ)

Four different coarse-grained methods are used to obtain the elements of X7,
as follows.
Coarse-grained processing by mean value:

1 iT+a—1

- ) uyy (17)

b=(i—1)t+a

T —
xp,a,i mean—

Coarse-grained processing by root mean square amplitude (RMSA):

2
1 iT+a—1
Xpai lRMsA= | 2} ’”rbh (18)
b=(i—1)t+a
Coarse-grained processing by variance:
2
1 itra-l 1 itta-1

x;,a,i variance — - Z Upp — = Z Upp 19)

b=(i—1)t+a b=(i—1)T+a
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Coarse-grained processing by maximum value:

Fpai lmax= (i—1)r+g;abéir+a—l{up’b} (20)

Using the above four coarsening strategies, four types of coarsening sequence groups
can be independently calculated as X[ |mean, X§ |rRmsA, XE |variances and X7 |max-

Step 2: For groups of coarse-grained sequences of the same type, the relative frequency
of each potential dispersion pattern for each coarse-grained sequence is calculated according
to Equations (10)—(14), and the average relative frequency of each potential dispersion
pattern for all different starting points is calculated as follows:

Sl

T
7(7Tvovl~~~vm,1> = E r<nv001"'vm—1 |X1-1C) (21)
a=1
where 7(7Tyy0, .0, ;| X3 ) represents the relative frequency of the dispersion patterns of the
a-th coarse-grained sequence.
Step 3: The RCmvMDE value can be calculated according to Shannon entropy as

CI’"
RCmvMDE(u,t,m,c,d) = — Z 7(TTogoy--v, 1) INT(TTogoy 0, 1 )- (22)
=1

Step 4: The RCmvMDE values calculated with the different coarse-graining strategies
are combined to obtain the ERCmvMDE, as follows:

ERCmvMDE(u,t,m,c,d) = {RCmoMDEyeqn(u,T,m,c,d), ...
<., RCmoMDE gy (1, T, m,c,d), . ..
..., RCmuvMDEgrpmsa(u, t,mc,d),...
..., RCmoMDE 4yignee(u, T, m,c,d)}

(23)

The ERCmvMDE contains the RCmvMDE when using mean value coarsening strategies.

3. The Structure of the Proposed Method

In this study, a fault diagnosis method based on IMVMD, ERCmvMDE, and the
LSSVM is proposed for planetary gearboxes. The fault diagnosis flowchart is shown in
Figure 1.

Mulii channel Feature vectors are

vibration signal of ———JP» calculated based on
planetary gear ERCmvMDE
Using the IMVMD Test data Train data
to Determine sets sets
Decomposition Traini
Parameters K and a + rammng
—p| LSSVM
MVMD Predict
IMFs L Fault diagnosis

result

Figure 1. The flowchart of the proposed fault diagnosis method.

The detailed steps of the proposed methods are as follows.



Entropy 2025, 27,192

8 of 20

Step 1: The appropriate parameter values of K and a are obtained by the proposed
IMVMD, and the multi-channel signal of the planetary gearbox is decomposed to obtain

the IMFs.
Step 2: The ERCmvMDE values of the IMFs are calculated and used as feature vectors

for fault diagnosis.
Step 3: The LSSVM is trained using feature vectors, and the trained LSSVM is used to

classify the predicted samples for fault diagnosis.

4. Simulation Analyses
In this section, the performance of the IMVMD and ERCmvMDE methods proposed
in this study is verified through simulations.

4.1. Simulation Analysis of IMVMD

Multi-channel observation signals with multiple characteristic frequencies are consid-
ered as X(t) = {X;(t) + ng(t), Xa(t) + ng(t)}, where ng(t) is Gaussian white noise. The signal
to noise ratio (SNR) is set to —5 dB, and the observation signals can be described as follows:

x1(t) = cos(27 % 10f) + 0.5 * cos (27T * 20¢) + 0.25 * cos (27 * 30¢) (24)
x(t) = 2% cos(27r x 10t + 71/2) + 1.5 % cos(27 % 20t + 71/2) + cos(27t * 30t + 77/2)

The multi-channel signal contains components of 10 Hz, 20 Hz, and 30 Hz, which
are similar to the basic frequency and multiple frequencies of a planetary gearbox. The
observed waveforms are shown in Figure 2.

2 I (el ’
R W’ l‘“\‘u , %. il M,«MM\M
€
<5
0 1 2 3 4 5 6
ts
§ 10 .
8 (TH \ A
% 0} {\ )M ‘V \m‘" (l” l”m M"'wl”‘o M ‘IP "W
E w0
0 1 2 3 4
ts

Figure 2. The time-domain waveforms of a multi-channel signal.

The optimal parameters K and « are obtained using the proposed IMVMD. The S,
values for different values of K&€[2, 10] are calculated using a constant default value of
« =2000. The results are shown in Figure 3.

2 4 6 8 10
K

Figure 3. The Sy values for different K (« = 2000).
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It can be seen that the S, value reaches a minimum when K is 3, which means that the
IMFs are the most regular and smooth and are not easily mixed up. The decomposition
performance of MVMD is best when K is equal to 3. There are just three frequency compo-
nents in the original signals according to Equation (24), which indicates that IMVMD has
obtained the optimal K.

The S, values for different values of a€[100, 5000] are calculated using a constant
default value of K = 3, where the step of « is 100. The results are shown in Figure 4.

x/
x2

0
0 1000 2000 3000 4000 5000
a

Figure 4. The Sy values for different a (K = 3).

As shown in Figure 4, it can be seen that when « is 3600, the fitness function has a
minimum value. Therefore, the optimal parameters obtained by IMVMD are K = 3 and
« = 3600. The final decomposition effects of IMVMD are shown in Figure 5.
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Figure 5. The final decomposition effects of IMVMD. (a) x1, (b) x5.
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As shown in Figure 5, both channel signals are decomposed into IMFs that are smooth
and regular. As shown in the frequency spectra of the IMFs, the center frequencies of the
IMFs of the two-channel signals are strictly related to the three characteristic frequencies
of the original signal. As shown in Figure 5a, the 30 Hz component of x; almost disap-
pears under strong noise interference, but the IMF with a 30 Hz center frequency is still
decomposed by IMVMD. The results indicate that IMVMD has excellent performance in
signal decomposition.

4.2. Simulation Analysis of ERCmvMDE

To verify the performance of the proposed ERCmvMDE, multi-channel signals formed
by power-law noise and white noise are applied. Power-law noise is colored noise based
on white noise, and it is difficult to distinguish between white noise and power-law noise
directly in the time domain.

Signals with three channels are applied in this section. As the signals are formed by
power-law noise and white noise, four types of multi-channel signals are formed with three
independent channel signals as follows: (1) all three channels contain white noise; (2) two
channels contain white noise and one channel contains power-law noise; (3) one channel
contains white noise and two channels contain power-law noise; (4) all three channels
contain power-law noise. The length of the multi-channel signal is 1024, and each type of
data is independently generated into 20 groups.

The RCmvMSE [21], RCmvMEFE [26], RCmvMDE [27], and ERCmvMDE methods are
used to calculate the entropy of the multi-channel signals. The parameters for the different
methods are listed in Table 1. The mean values and standard deviations (SDs) of the results
obtained by the different methods are shown in Figure 6.

Table 1. The parameter settings for the different methods.

Method Unique Parameters Common Parameters
ERCmvMDE Number of classes is 6 Scale factor is 20
RCmvMDE Number of classes is 6

Scalar embedding value is 2

RCmvMSE Scalar threshold value is 0.15 . .
Scalar time lag value is 1

RCmvMEE Scalar threshold Val}le is 0.15
Fuzzy power is 2

Figure 6a—c show the mean values and SDs of RCmvMFE, RCmvMSE, and RCmvMDE,
respectively. Figure 6¢c—f show the mean values and SDs of the results for ERCmvMDE.
RCmvMFE and RCmvMSE have larger SDs, particularly for signals with more channels
of power-law noise. RCmvMDE and ERCmvMDE have small SDs, which means that
these methods have good computational stability. As shown in Figure 6a,b, the entropies
of the four types of signals cannot be distinguished from each other well. However, the
ERCmvMDE values of the four types of signals can be clearly distinguished from each other.

The ERCmvMDE values based on the mean value, maximum value, and RMSA
decrease with an increase in the scale factor, and there is a more significant decrease if the
signal contains more white noise channels. However, the ERCmvMDE values based on
variance show the opposite trend. This indicates that ERCmvMDE can obtain more useful
information than RCmvMDE.

The results indicate that ERCmvMDE not only has good computational stability but
can also extract rich and effective feature information.
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Figure 6. The mean values and SDs of the results obtained by different methods with 20 groups of data.
(a) RCmvMSE; (b) RCmvMEFE; (¢) RCmvMDE (mean); (d) RCmvMDE (maximum); (e) RCmvMDE
(variance); (f) RCmvMDE (RMSA).

5. Experimental Analyses
5.1. Description of the Case

A public failure dataset for a planetary gearbox, named the “WT-Planetary Gearbox
Dataset’, provided by Liu et al. [31], was used to verify the proposed method. The failure
data were produced by a drive train dynamic simulator to simulate the vibration data of
a planetary gearbox of a wind turbine. The test rig included a planetary gearbox, motor,
fixed-shaft gearbox, loads, and data collection device. The planetary gearbox consisted
of four planet gears and a sun gear, and the detailed parameters of the planetary gearbox
are listed in Table 2. The planetary gearbox was operated under five different conditions:
healthy, broken tooth of sun gear, wear gear of sun gear, root crack of sun gear, and missing
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tooth of sun gear. The vibration data in the two directions, i.e., X and Y, were collected at a

sampling frequency of 48 k Hz.

Table 2. The parameters of the planetary gearbox.

Rotating Frequency of Sun Gear Tooth Number
_ Sun gear Ring gear Planet gear
fr=20Hz 28 100

The time-domain waveforms of the vibration data under different operating conditions

are shown in Figure 7.
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Figure 7. The time-domain waveforms of the vibration data of the planetary gearbox. (A) X direction;

(B) Y direction.
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Because the dataset had sufficiently long data samples and the collection time for each
condition exceeded 5 min, the dataset contained over 14 million data points for each opera-
tion condition. The dataset for each operation condition was evenly segmented into 200
groups, and each group contained 72,000 data points. Then, a sample of 1024 consecutive
points with random starting positions was selected for each group, and a non-overlapping
sample dataset was built for analysis in this study. Because of the use of the LSSVM for
sample classification in this study, the dataset had to be divided into a training set and a
testing set. The detailed parameters of the dataset are listed in Table 3.

Table 3. Parameters of sample dataset.

Operation Condition = Data Length TrI:;n;t;z;Ifes Ti‘:?:;?{:s Label
Healthy 1
Broken tooth 2
Missing tooth 1024 120 80 3
Root crack 4
Wear gear 5

5.2. Feature Extraction Performance

The vibration dataset of the planetary gearbox was processed by IMVMD, and the
optimal parameters obtained by IMVMD were K = 4 and « = 140. The vibration datasets
were decomposed by IMVMD with the optimal parameters. Then, the IMFs were processed
by ERCmvMDE to extract features, and RCmvMSE, RCmvMFE, and RCmvMDE were also

applied to extract features for comparison. The mean values and SDs of the results are
shown in Figure 8.

IMF1 IMF2 IMF3

RCmvMSE

RCmvMFE

Figure 8. Cont.
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Figure 8. The mean values and SDs of the results obtained by different methods with 200 groups of
sampling data. (a) RCmvMSE; (b) RCmvMFE; (¢) RCmvMDE (mean); (d) RCmvMDE (maximum);
(e) RCmvMDE (variance); (f) RCmvMDE (RMSA).
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Figure 8a—c show the mean values and SDs of RCmvMFE, RCmvMSE, and RCmvMDE,
respectively. Figure 8c—f show the mean values and SDs of the results for ERCmvMDE. The
mean values of RCmvMSE, RCmvMFE, and RCmvMDE for IMF2 to IMF4 were less smooth
as the scale factor increased, and the mean values of the different operating conditions
were significantly mixed. It was difficult to achieve effective fault diagnosis. As shown
in Figure 8d—f, the mean values of each IMF had better continuity as the scale factor
increased, and the distance between each operating condition increased significantly, which
suppressed the mixing problem. These results indicate that the features extracted by
ERCmvMDE are more conducive to fault diagnosis.

As the feature extraction methods are based on the multiscale entropy of the IMFs,
the dimensions of the features are always too large, which makes intuitive judgment
difficult. Thus, the t-Distributed Stochastic Neighbor Embedding (t-SEN) method was
applied to enable the multi-dimensional features to be displayed in a 2D space. The t-SEN
visualizations of the different feature extraction methods are shown in Figure 9.
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Figure 9. The t-SEN visualizations of different feature extraction methods. (a) IMVMD+ RCmvMSE,
(b) IMVMD + RCmvMEFE, (¢) IMVMD + RCmvMDE, (d) IMVMD + ERCmvMDE.

As shown in Figure 9, the sample features based on RCmvMSE and RCmvMFE be-
tween different operating conditions were too close, which is not conducive to classification.
The sample feature of RCmvMDE appeared to exhibit a clustering phenomenon, but some
of them appeared to be mixed. The sample feature based on ERCmvMDE appeared clus-
tered for different operation conditions, but the features of each operation condition could
be separated well. In order to quantitatively illustrate the effects of the different feature
extraction methods, the within-class scatter, between-class scatter, and a separability index
were used to measure the clustering and classification effects of the feature datasets [32].
The between-class scatter describes the classification effect between samples of different
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classes, while the within-class scatter describes the clustering effect between samples of the
same class. The calculation of these indices is as follows:

S==2—T ¥ |7l

PTCC-D) s Y
S 11C =n _

w = Eakgl Elﬂykz - yk”

s 5)
I
Y = ;,21 Yi

i=

yik=12,...,Ci=12,...,n)

where S;, is the between-class scatter, Sy, is the within-class scatter, -y represents the sepa-
rability index, yx;(k =1,2,...,C;i =1,2,...,n) is the dataset of features, C is the number
of classes, and 7 is the sample number. The larger S, and -y are and the smaller Sy, is, the
better the clustering and classification effects of the feature set.

The evaluation indices of the features extracted by the different methods are listed in
Table 4.

Table 4. The evaluation indices of the features extracted by the different methods.

Method Sy Sw Y
IMVMD+ RCmvMSE 29.109 37.130 0.784
IMVMD + RCmvMFE 25.297 38.374 0.660
IMVMD + RCmvMDE 40.459 38.117 1.060

IMVMD + ERCmvMDE 55.202 27.857 1.982

The results indicate that the proposed method based on IMVMD and ERCmvMDE
has better performance in the feature extraction of the wind turbine planetary gearbox.

5.3. Fault Diagnosis Analyses
The LSSVM was applied for fault classification; the training sample set, test sample
set, and sample labels were set as shown in Table 3.

5.3.1. Performance of IMVMD in Fault Diagnosis

To verify the performance of IMVMD in fault diagnosis, the IMFs were obtained with
the optimal parameters (K = 4, « = 140) and default parameters (K = 5, « = 200). The
ERCmvMDE of the IMFs was then calculated and formed as a feature vector for the LSSVM.
Confusion diagrams of the fault diagnosis results are shown in Figure 10.
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Figure 10. The confusion diagram of fault diagnosis with different parameters. (a) With default
parameters (K = 5, « = 2000); (b) with optimal parameters (K = 4, a = 140).
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The results indicated that the fault diagnosis accuracy based on the optimal parameters
obtained by IMVMD was significantly improved. The fault diagnosis accuracy can reach
99.5% when using the method proposed in this study. The results further demonstrate that
IMVMD can improve the decomposition efficiency.

5.3.2. Performance of ERCmvMDE in Fault Diagnosis

To verify the performance of ERCmvMDE in fault diagnosis, feature extraction meth-
ods based on different entropies were compared for fault diagnosis. The IMFs were obtained
by IMVMD, and the RCmvMSE, RCmvMFE, RCmvMDE, and ERCmvMDE of the IMFs
were calculated and formed as a feature vector for the LSSVM. Confusion diagrams of the
fault diagnosis results are shown in Figure 11.
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Figure 11. The confusion diagram of fault diagnosis with different feature extraction methods.
(a) RCmvMSE; (b) RCmvMFE; (¢) RCmvMDE; (d) ERCmvMDE.

As shown in Figure 11, the fault diagnosis accuracies based on RCmvMSE, RCmvMFE,
RCmvMDE, and ERCmvMDE were 96.5%, 97.75%, 97.5%, and 99.5%, respectively. Feature
extraction based on ERCmvMDE provided better fault diagnosis than the other feature
extraction methods. The fault diagnosis based on RCmvMSE resulted in incorrect results
for the broken tooth, crack, and wear gear conditions. The fault diagnosis based on
RCmvMEE resulted in some incorrect results in almost all conditions, except for the missing
tooth condition. Fault diagnosis based on RCmvMDE resulted in incorrect results under
almost all conditions except the wear gear condition. The proposed fault diagnosis method
resulted in fewer incorrect results, and there were only two mistakes in the broken tooth
and crack conditions.
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To validate the adaptability of the proposed method across different data samples,
a random starting point approach was employed to acquire diverse samples. As stated
above, the original data were evenly segmented into 200 groups with 72,000 data points for
each state, and the sample data length was only 1024. Therefore, a random starting point
could form diverse data samples. The data sample sets were randomly generated 20 times,
the IMFs were obtained by IMVMD, and the RCmvMSE, RCmvMFE, RCmvMDE, and
ERCmvMDE of the IMFs were calculated and formed as a feature vector for the LSSVM.
The average fault diagnosis accuracies are listed in Table 5.

Table 5. Average fault diagnosis accuracies of different methods when applied 20 times.

Method RCmvMSE RCmvMFE  RCmvMDE ERCmvMDE
Average accuracy 96.44% 97.18% 96.94% 99.31%

The results indicate the proposed methods still had good performance with different
data sample sets.

The above experimental analysis results indicate that the proposed IMVMD and
ERCmvMDE can make feature extraction more effective, and the proposed fault diagnosis
method performs well in the fault diagnosis of wind turbine planetary gearboxes.

6. Conclusions

Feature extraction from multi-channel vibration signals is an important issue for the
fault diagnosis of wind turbine planetary gearboxes. A fault diagnosis method based on a
novel feature extraction method was proposed in this study. Firstly, an improved MVMD
was proposed to obtain the optimal parameters of the MVMD, which would make the
MVMD more effective. Secondly, ERCmvMDE was proposed to extract rich and effective
feature information. Finally, the LSSVM was applied for fault classification. The following
conclusions were drawn from the simulations and experimental studies.

(a) IMVMD can obtain the optimal parameters of K and & of MVMD, which will affect
the decomposition effect. The fault diagnosis accuracy when using IMVMD was higher
than that using MVMD.

(b) ERCmvMDE not only exhibits good computational stability but can also extract
rich and effective feature information.

(c) The fault diagnosis accuracy using ERCmvMDE was higher than that using
RCmvMSE, RCmvMFE, and RCmvMDE in the experimental study. In additional, testing
work needs to be conducted to verify the broad applicability of this method in wind turbine
planetary gearbox fault diagnosis in the future.
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