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Abstract: As one of the most widely used spread spectrum techniques, the frequency-hopping spread
spectrum (FHSS) has been widely adopted in both civilian and military secure communications.
In this technique, the carrier frequency of the signal hops pseudo-randomly over a large range,
compared to the baseband. To capture an FHSS signal, conventional non-cooperative receivers
without knowledge of the carrier have to operate at a high sampling rate covering the entire FHSS
hopping range, according to the Nyquist sampling theorem. In this paper, we propose an adaptive
compressed method for joint carrier and direction of arrival (DOA) estimations of FHSS signals,
enabling subsequent non-cooperative processing. The compressed measurement kernels (i.e., non-
zero entries in the sensing matrix) have been adaptively designed based on the posterior knowledge
of the signal and task-specific information optimization. Moreover, a deep neural network has been
designed to ensure the efficiency of the measurement kernel design process. Finally, the signal carrier
and DOA are estimated based on the measurement data. Through simulations, the performance of the
adaptively designed measurement kernels is proved to be improved over the random measurement
kernels. In addition, the proposed method is shown to outperform the compressed methods in
the literature.

Keywords: knowledge-enhanced compressed measurements; FHSS; carrier estimation; direction-of-
arrival estimation; deep learning

1. Introduction

As effective methods to enhance the resistance capacity of signals against interference
and interception, spread spectrum (SS) technologies have been adopted in various fields,
including military communications, civilian secure communications, and wireless networks.
In these technologies, the spectra of the baseband signals are expanded to a much broader
range. Consequently, without significant power covering the entire spread bandwidth,
common interference signals can only affect a small portion of the spectra of SS signals.

Frequency-hopping spread spectrum (FHSS) signals are a particular category of SS
signals. They have robust anti-interception capacities [1,2] employing pseudo-random
carrier frequency-hopping sequences. For non-cooperative receivers, in order to catch the
FHSS signals and localize their transmitters, parameter estimations, especially carrier and
direction of arrival (DOA) estimations, have to be performed first. Therefore, extensive
research has been conducted in this area in recent years.

From the aspect of signal analysis, the transform-based methods, including short-time
Fourier transform (STFT)-based [3–6], wavelet transform-based [7–10], and autocorrelation
analysis-based [11] methods, are the most straightforward approaches for signal param-
eter estimations. Even in recent years, transform-based methods have continued to be
extensively developed. For example, in 2019, Wan et al. [12] proposed a blind parameter
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estimation algorithm of FHSS signals based on space-time frequency analysis and matrix
joint diagonalization. More recently, Jiang et al. [13] designed a kernel function of the
time-frequency transform to obtain the time-frequency distribution of the FHSS signal,
as well as a model to extract the frequency-hopping ridge, which was used to estimate
the signal parameters. In addition to the transform-based methods, energy- or statistical
property-based methods, such as the channelized energy thresholding-based [14–16], sub-
band occupation likelihood analysis-based [17,18] and spectrum analyzer-based [19–21]
methods, are also implemented in FHSS signal parameter estimations, especially in carrier
estimations. In recent years, prosperous development of methods in this category has
also been presented. For example, in 2015, Zhang et al. [22] designed a method based
on multilevel channelized processing to detect and estimate the carrier of FHSS signals
in a complicated electromagnetic environment. In 2023, Li et al. [23] proposed a method
combining the maximum likelihood theory with orthogonal matching pursuit to estimate
the carriers of multiple FHSS signals. Although the above methods can achieve satisfactory
performance, they require high sampling rates determined by the bandwidths of interest,
according to the Nyquist sampling theory. With the increasingly widening bandwidths for
FHSS techniques, these methods would face challenges on hardware, in terms of sampling
rates and computational complexities.

The rendering of the compressed sensing (CS) theory [24,25] provides potential solu-
tions to the problems of sampling rate and computational complexity. According to the
CS theory, a signal can be perfectly reconstructed with overwhelming probability from
significantly fewer samples than those suggested by the Nyquist sampling theory, if it can
be sparsely represented through a transform or a dictionary. As the FHSS signals show
significant sparsity in the time-frequency domain, more and more research efforts have
been devoted to the exploitation of the CS theory for the processing of these signals [26,27].

To conduct the CS operations, random demodulation [28], multi-coset [29,30], and mod-
ulated wideband converter (MWC) [31,32] have been implemented to reduce the sampling
rates in recent years. Moreover, with the development of antenna array technology, CS-
based methods have also been developed for DOA estimations of FHSS signals. In 2017,
Ioushua et al. [33] introduced an MWC-based system composed of an L-shaped antenna
array, which can jointly estimate the carrier frequency and DOA of FHSS signals compres-
sively. Additionally, Lei et al. [34] proposed an algorithm for joint spectrum sensing and
DOA estimation, based on a simplified MWC structure. In 2021, Zhang et al. [35] proposed
an algorithm based on the CANDECOMP/PARAFAC decomposition and the multiple
signal classification (MUSIC) in an MWC-based simplified array receiver. However, as the
performances of those works were particularly impacted in low signal-to-noise ratio (SNR)
scenarios, challenges still remain. Furthermore, as real-time FHSS processing is usually
needed, efficient algorithms for quick signal analysis are still required to be developed with
certain hardware conditions.

Nowadays, with the outstanding computational power of graphics processing units
(GPUs), deep learning technology has also been widely adopted in signal processing areas,
including signal feature extractions [36], classifications [37], and parameter estimations [38].
In these implementations, the trained deep neural networks (DNNs) showed high efficiency
and outstanding signal analysis capabilities [39,40]. Additionally, efforts have also been de-
voted to the study of the improvement of DNN robustness [41,42]. However, as an intrinsic
problem of trained DNNs, adaptability during their implementations has remained limited.

In this paper, we propose an adaptive method to jointly estimate the FHSS carrier
and DOA using compressed sampling rates. In this method, a compressed measurement
framework with an antenna array is rendered. The compressed measurement kernels (i.e.,
non-zero coefficients in the measurement matrix) are optimized based on the task-specific
information (TSI) optimization and the continuously updated posterior knowledge of the
signal, while a DNN is trained to ensure the efficiency of the measurement kernel design.
The carrier and DOA are estimated from the measurement data. The main contributions of
this work are as follows:
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1. Compared to existing works, the proposed method can directly obtain the frequency
and DOA of the FHSS signal from compressed samples with improved performance,
without the need for signal reconstruction or high-rate transform/inverse transforms.

2. The proposed method integrates TSI optimization in the design of subsequent
measurement kernels, utilizing the obtained measurement data from the antenna array.
Therefore, the accuracy of the FHSS carrier and DOA estimations is enhanced, especially
for low-SNR scenarios.

3. The proposed method replaces the inefficient recursive design process of measure-
ment kernels with the implementation of a trained neural network. Therefore, the repeated
complex online measurement kernel optimization in the adaptive measurements is replaced
with one-time offline DNN training and repeated online DNN implementation, which
greatly accelerates the measurement process and improves the system’s applicability.

The remainder of this paper is organized as follows: In Section 2, the problem formu-
lation is presented, introducing a framework to implement the proposed method, as well
as the signal and CS models. In Section 3, the adaptive measurement kernel design method,
including theoretical analysis from the aspect of TSI optimization and the implementation
of deep learning, is detailed. Then, in Section 4, a method to estimate the carrier and DOA
of the FHSS signal from compressed measurements is described. The simulation results are
shown in Section 5. Finally, our conclusions are drawn in Section 6.

2. Problem Formulation

In this paper, we focus on the framework and algorithm development for non-
cooperative carrier and DOA estimations of the FHSS signal, with the combination of
knowledge-enhanced compressed measurements and deep learning. The framework to
conduct the proposed method is shown in Figure 1:

Figure 1. The proposed framework for carrier and DOA estimations of the FHSS signal based on
adaptive compressed measurements.

As shown in Figure 1, an antenna array with K elements is implemented, and the sig-
nals from the antenna elements are first preprocessed through the input filters to eliminate
the components beyond the band of interest. The filtering results are then multiplied with
the measurement kernels and subsequently passed through low-pass filters, which play the
roles of integrators. To obtain the compressed measurements, the results from the low-pass



Entropy 2024, 26, 544 4 of 15

filters are sampled at a compressed rate, which is much lower than that indicated by the
Nyquist sampling theory regarding the frequency-hopping range.

To implement this framework, the entire FHSS hopping range is uniformly divided
into Nb sub-bands. Nb can be decided according to the FHSS hopping range. With sufficient
computational resources, larger FHSS hopping ranges require more sub-bands, in order
to achieve satisfactory algorithm performance. Then, a likelihood analysis of frequency
sub-band occupation is performed using the compressed measurements from each antenna
element. The likelihood analysis results are employed to update the posterior probabilities
of sub-band occupation for the FHSS signal. These posterior probabilities are then used to
design the measurement kernel for compressed measurement in the next step.

In addition to the measurement kernel design, the posterior sub-band occupation
probabilities are also utilized in conjunction with the measurement data for carrier estima-
tion of the FHSS signal. Finally, the estimated carrier and the measurement data are used
to estimate the DOA of the FHSS signal.

In this paper, the elements of the antenna array are coherent and, thus, the same
compressed measurement kernels are used for all of the antenna elements in each mea-
surement step. We assume that the signal of interest is a far-field FHSS signal, resulting in
planar-wave signals. As the carrier frequency hops within a wide band, the signal can be
regarded as narrow-band within each frequency-hopping cycle. Therefore, the envelope
of the baseband signal can also be considered to be slowly altered. Let us represent the
non-compressed baseband signal according to the FHSS hopping range with a column
vector s and assume that the communication channel is an additive Gaussian white noise
channel. Then, the signal received by the kth antenna element (k = 1, 2, . . . , K) can be
expressed as

xk = sk + nk = sak(Ω) + nk, (1)

where ak(Ω) = exp
[
− j2π fc∆tk(Ω)

]
is the kth element in the steering vector of the antenna

array, fc is the carrier frequency of the signal, ∆tk is the time delay of the signal received
on the kth antenna element, relative to the reference point, and nk represents the additive
noise on the kth antenna element with the variance of σ2

n.
In the path after each antenna element in Figure 1, the compressed sensing can be

expressed as
yk = Φxk = Φ(sk + nk), (2)

where Φ is the M×N sensing matrix, with M < N. By implementing the framework in Figure 1,
Φ becomes a block diagonal with each block as a 1×R row vector (i.e., a measurement
kernel), where R = N

M represents the compression ratio.
In order to demonstrate the proposed method, the measurement kernel design ap-

proach and the carrier/DOA estimations approach are detailed in the following two sec-
tions, respectively.

3. Adaptive Measurement Kernel Design with the Combination of TSI Optimization
and Deep Learning
3.1. Measurement Kernel Design with TSI Optimization

In the framework proposed in Figure 1, the signal is measured compressively at
regular intervals. In this scenario, the first measurement kernel is taken as a normalized
random vector, and the subsequent measurement kernels are adaptively designed based
on the measurement data that have already been obtained. In particular, to design the
measurement kernel for the mth (1 < m ≤ M) measurement, the posterior probability
density function (PDF) of the signal, given the 1st through the (m − 1)th measurements, is
modeled as

pr(sm|Pm−1) =
Nb

∑
l=1

Pm−1
l fs,l(s

m), (3)
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where fs,l(sm) is a Gaussian white component that covers the lth (l = 1, 2, . . . , Nb) sub-band,
with zero mean and the covariance matrix denoted by Ξs,l. Pm−1 = [Pm−1

1 , Pm−1
2 , . . . , Pm−1

Nb
]T,

with Pm−1
l representing the posterior probability that the lth sub-band is occupied, given

the 1st through the (m − 1)th measurements, P0
l = 1

Nb
.

In order to reduce the computational complexity at this point, by ignoring the corre-
lation among the measurements from different antenna elements and the measurements
at different steps, Pm−1

l (1 < m ≤ M) is obtained by a Bayes update with Pm−2
l and the

(m − 1)th measurement from each antenna element, using

Pm−1
l =

Pm−2
l ∏K

k=1 fy,l,m−1(ym−1
k )

∑Nb
l=1 Pm−2

l ∏K
k=1 fy,k,m−1(ym−1

k )
, (4)

where ym−1
k = Φm−1xm−1

k represents the (m − 1)th compressed measurement result at
the kth antenna element, with Φm−1 and xm−1

k standing for the measurement kernel
and the input signal, respectively; xm−1

k = sm−1ak(Ω) + nm−1
k , where sm−1 and nm−1

k
represent the FHSS signal of interest and the additive noise at the (m − 1)th measure-
ment of the kth antenna element, respectively. Let us denote IR as an R×R identity
matrix. Then, fy,k,m−1(ym−1

k ) is a zero-mean Gaussian component, with the variance of

σ2
y,k,m−1 = Φm−1(Ξs,l + σ2

nIR)Φ
m−1H, where (·)H stands for the Hermitian operation of

a matrix.
Let us denote ym = [ym

1 , ym
2 , . . . , ym

K ]
T as the collection of the mth measurements from

the antenna elements, where (·)T stands for the transform operation of a matrix. Then,
we define conditional mutual information I(sm; ym|Pm−1, Φm) as the TSI. In this scenario,
the design of the mth measurement kernel is performed by solving the following optimiza-
tion problem:

Φ̂m = argmaxΦm I(sm; ym|Pm−1, Φm), s.t.∥Φm∥l2 = 1, (5)

where ∥ · ∥l2 denotes the l − 2 norm operation.
According to information theory, it is known that I(sm; ym|Pm−1, Φm) can be expressed

by the difference between two conditional entropies:

I(sm; ym|Pm−1, Φm) = h(ym|Pm−1, Φm)− h(ym|sm, Pm−1, Φm). (6)

In Equation (6), as ∥Φm∥l2 = 1, the entries of ym are independently Gaussian-distributed
with the variances of σ2

n, given the signal sm. Therefore, h(ym|sm, Pm−1, Φm) is a constant.
Additionally, by ignoring the correlations among the received signals from different an-
tenna elements, it can be ascertained that h(ym|Pm−1, Φm) = ∑K

k=1 h(ym
k |P

m−1, Φm) =
Kh(ym

k |P
m−1, Φm). Therefore, the optimization problem of Equation (5) is equivalent to

Φ̂m = argmaxΦm h(ym
k |P

m−1, Φm), s.t.∥Φm∥l2 = 1. (7)

Theoretically, with a step size µ, the optimization problem defined by Equation (7) can
be solved using the conventional recursive gradient method [43], where the ith optimization
step can be expressed as

X = Φm,i−1 + µ∇Φm,i−1 h(ym
k |P

m−1, Φm,i−1),

Φm,i =
X

∥X∥l2
.

(8)

According to Equation (3), h(ym
k |P

m−1, Φm), Φm at any optimization step can be ex-
pressed by
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h(ym
k |P

m−1, Φm) = −
∫

pr(ym
k |P

m−1, Φm)log
[
pr(ym

k |P
m−1, Φm)

]
dym

k

= −
∫ [ Nb

∑
l=1

Pm−1
l fy,l,m(ym

k )
]
log

[ Nb

∑
l=1

Pm−1
l fy,l,m(ym

k )
]
dym

k .
(9)

Using the Taylor expansion of the logarithmic item at ym
k = 0, as ym

k is a mixture of
Gaussian components with the means of zeros, Equation (9) can be approximated as

h(ym
k |P

m−1, Φm) = −
∫ [ Nb

∑
l=1

Pm−1
l fy,l,m(ym

k )
]{

log
[ Nb

∑
l=1

Pm−1
l fy,l,m(0)

]
+ ϵ(0)ym

k + . . .
}

dym
k

≈− log
[ Nb

∑
l=1

Pm−1
l fy,l,m(0)

]
= −log

[ Nb

∑
l=1

Pm−1
l

πΦm(Ξs,l + σ2
nIR)ΦmH

]
.

(10)

where ϵ(0) = ∇ym
k

log
[

∑Nb
l=1 Pm−1

l fy,l,m(ym
k )

]
|ym

k =0.

Therefore, it can be approximated that

∇Φm h(ym
k |P

m−1, Φm) ≈ −∇ym
k

log
[ Nb

∑
l=1

Pm−1
l

πΦm(Ξs,l + σ2
nIR)ΦmH

]

= −
∑Nb

l=1 Pm−1
l ∇Φm

{[
πΦm(Ξs,l + σ2

nIR)Φ
mH]−1

}
∑Nb

l=1 Pm−1
l

[
πΦm(Ξs,l + σ2

nIR)ΦmH]−1

= −∑Nb
l=1 Pm−1

l
[
Φm(Ξs,l + σ2

nIR)Φ
mH]−2

Φm(Ξs,l + σ2
nIR)

∑Nb
l=1 Pm−1

l
[
Φm(Ξs,l + σ2

nIR)ΦmH]−1 .

(11)

3.2. Adaptive Measurement Kernel Design Using the DNN

Theoretically, the measurement kernel design can be conducted using Equations (8) and (11).
However, the heavy iterative calculations are usually of high complexity and time-consuming.
To achieve high efficiency in the non-cooperative analysis of the FHSS signals, the fully
connected DNN shown in Figure 2 is proposed specifically in this paper to replace the
iterative optimization process.

As shown in Figure 2, the input and output of the proposed DNN are the posterior
probabilities of the sub-band occupation and the coefficients in the designed measurement
kernel, respectively. As the measurement kernels are complex-valued, the output layer of
the DNN has 2R nodes, with R nodes (Φm

Re,1, . . . , Φm
Re,R in Figure 2) representing the real

part of the measurement kernel and R nodes (Φm
Im,1, . . . , Φm

Im,R in Figure 2) representing the
imaginary part. Four hidden layers are included in the DNN, with their widths as 160, 640,
640, and 640, respectively. The final hidden layer is connected to a dropout layer with a
dropout rate of 0.75, which is used in both the training and the evaluation stages to enhance
the robustness of the generated measurement kernels. The DNN uses ReLU as the activation
function in the hidden layers and employs a combination of randomly generated sub-band
posterior probabilities and those generated during the conventional gradient descent
iterations as the training data. During the training process of the DNN, the negativity of
conditional differential entropy h(ym

k |P
m, Φm) approximated in Equation (10) is used as the

penalty function.
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Figure 2. The proposed DNN structure to conduct the adaptive measurement kernel design.

4. Carrier and DOA Estimations of the FHSS Signal
4.1. Estimation of the Carrier

During the adaptive measurement process, the posterior probabilities of sub-band
occupation are obtained. In order to localize the carrier precisely, the sub-band with the
highest occupation probability is further divided into W frequency slots. Subsequently,
a further posterior probability calculation of occupation over these W slots is conducted for
each of the antenna elements, using

Pk
L,w =

Pk
L,w,ini fyk,L,w(yk)

∑W
w=1 Pk

L,w,ini fyk,L,w(yk)
, (12)

where L represents the sub-band index with the highest posterior probability;
yk = [y1

k , y2
k , . . . , yM

k ]T denotes the measurement data from the kth antenna element; Pk
L,w

represents the posterior probability that the wth slot within the Lth sub-band is occupied,
given the measurement data yk and the case that the Lth sub-band is occupied; Pk

L,w,ini =
1

W
is the prior probability that the wth slot is occupied; fyk,L,w(yk) is the PDF of yk, given that
the signal falls in the wth slot of the Lth sub-band; and fyk,L,w(yk) is a Gaussian function.
By ignoring the correlations among measurements at different steps, the entries of yk are
regarded to be independently distributed with zero mean. The variance of the mth entry
in yk, i.e., ym

k , equals Φm(Ξs,L,w + σ2
nIR)Φ

mH, where Ξs,L,w stands for the covariance of a
white Gaussian signal within the wth slot of the Lth sub-band.

For each antenna element, the frequency slot occupation is estimated independently
within the Lth sub-band based on the maximum a posterior criterion:

ŵk = argmaxwPk
L,w. (13)

Then, the estimated carrier is obtained as the average of the center frequencies in the
estimated slots over the antenna elements.

4.2. Estimation of the DOA

As discussed above, the envelope variation can be neglected in an instantaneous
narrow-band signal, compared to the phase delay introduced by the carrier frequency and
the time delay on the antenna array elements. Therefore, the compressed samples at the
mth antenna element can be expressed as
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ym = [ym
1 , ym

2 , . . . , ym
K ]

T = [Φm(smaT(Ω) + Nm)]T = a(Ω)(Φmsm)T + (ΦmNm)T, (14)

where a(Ω) = [a1(Ω), a2(Ω), . . . , aK(Ω)]T and Nm = [nm
1 , nm

2 , . . . , nm
K ] represent the steer-

ing vector and the collection of the uncompressed noise at the mth measurement, respectively.
With the independence of the signal and the additive noise at each antenna element,

and assuming that the signal is zero mean, the covariance matrix of the measurements at
the antenna array can be obtained using the following statistical expectation:

Ryy = Em
{

ymymH}
= a(Ω)Em

{
(Φmsm)T(Φmsm)∗

}
aH(Ω) + Em

{
(ΦmNm)T(ΦmNm)∗

}
,

(15)

where (·)∗ stands for the conjugate operation and (Φmsm)T(Φmsm)∗ is a scalar. There-
fore, Em{(Φmsm)T(Φmsm)∗} can be represented by a positive constant η. In addition,
as Φm (m = 1, 2, . . . , M) is a normalized vector and the noises received by different an-
tenna elements are independent, the entries in the vector (ΦmNm)T are identically and
independently Gaussian-distributed with zero means and the variances of σ2

n. Therefore,
Equation (15) can be further derived as

Ryy = ηa(Ω)aH(Ω) + σ2
nIK, (16)

where IK is the K × K identity matrix.
From Equation (16), it can be further observed that the theoretical eigenvalues of Ryy

include a value of η + σ2
n and K − 1 repeated values of σ2

n. Consequently, by collecting the
compressed measurements at each antenna element, an estimate of the covariance matrix
Ryy can be obtained. Then, by selecting the smallest K − 1 eigenvalues and corresponding
eigenvectors to form the noise subspace Ĝ, the DOA of the source can be estimated by
finding the peak of the MUSIC spectrum function:

p(Ω) =
1

aH(Ω)ĜĜHa(Ω)
. (17)

With the adaptive measurement kernel design, the measurement kernels can be in-
creasingly coherent with the signal. Therefore, (Φmsm)T(Φmsm)∗ is able to converge to
a relatively high value. This ensures the separation of the eigenvalues η + σ2

n and σ2
n.

Consequently, the noise subspace estimation performance of Ryy and the DOA estimation
performance are also ensured.

5. Simulations

In order to verify the performance of the proposed method, simulations were con-
ducted using Gaussian-filtered binary frequency-shift keying FHSS signals specified by the
Bluetooth standard [44]. The signal during each hopping cycle can be expressed as follows:

s(t) =

√
Es

Ts
exp

{
j2π

[
fct + ς

Ns

∑
r=1

brg(t − rTs)
]}

, (18)

where Ts and Es represent the symbol period and the signal energy in the symbol period,
respectively; ς denotes the modulation index of the FHSS signal and Ns donates the number
of symbol periods within a hopping cycle; br is the rth (1 ≤ r ≤Ns) symbol content in a
hopping cycle, which takes either of the two values: −1 and 1; and g(t) is the phase pulse
function and can be expressed as

g(t) =
Q
[
α(t − Ts

2 )
]
− Q

[
α(t + Ts

2 )
]

2Ts
, (19)
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where α = π

Ts
√

log(2)
and Q(x) =

∫ ∞
x

exp(− x2
2 )√

2π
.

As specified by the Bluetooth standard, the frequency-hopping range of the signal was
between 2.402 GHz and 2.480 GHz, including 79 channels with a bandwidth of 1 MHz for
each channel. To analyze, the simulated non-compressed sampling rate was Fnyq = 80 MHz,
based on the band-pass Nyquist sampling theory. The frequency-hopping cycle and
the symbol period were set to 625 µs and 1 µs, respectively. To conduct compressed
sensing with the proposed method, an observation period of 80 µs was used. In practical
implementations, the compression ratio and the observation period can be adjusted to
provide enough measurements within a frequency-hopping cycle, even for fast frequency-
hopping signals. For simplification, we further assumed that no frequency hop occurred
during an observation period.

To implement the proposed method, a uniform linear antenna array (ULA) with 10 ele-
ments was used. The distance between the adjacent antenna elements was 0.5c

2.5 GHZ = 60 mm,
with c representing light speed. The DOA of the FHSS signal used in each simulation was
randomly selected, with a uniform distribution from −90 to 90 degrees. The entire range
from 2.4015 GHz to 2.4805 GHz was divided into 20 sub-bands (i.e., Nb = 20).

The training of the DNN to perform the adaptive measurement kernel design was
conducted using the Python package of Pytorch 1.10.2 in the GPU version [45], which was
installed on a workstation with the GeForce RTX 4060 GPU and 32 GB RAM. A total of
40,000 samples, which included randomly generated sub-band posterior probabilities and
sub-band posterior probabilities randomly selected during the gradient descent iteration
process, were taken as the training data. The ratio of the randomly generated samples to
the selected samples from iterative simulations was 1:3. The adaptive moment estimation
was used as the optimizer with a step size of 10−5, and a total number of 500 epochs were
conducted in the network training process.

At the carrier-estimation step, a sub-band was further divided into four slots (i.e.,
W = 4). In addition, the compression ratio was set to R = 10, resulting in 640 compressed
measurements for each antenna element during an entire observation period. The SNR,
defined as SNR = Es

σ2
nTs

, was taken between −25 dB and −5 dB.
The resulting root mean square error (RMSE) of the estimated carrier versus the SNR

and the RMSE of the estimated DOA versus the SNR are plotted in Figures 3 and 4, respec-
tively. To generate each point in the plots, 10,000 simulations were performed. In addition,
the CaSCADE algorithm proposed in [33] and the MWC/MUSIC-based method proposed
in [35] were also simulated, with the corresponding results shown in Figures 3 and 4, where
the same observation periods and the same numbers of compressed measurements were
used. For the MWC/MUSIC-based method, the same ULA for the proposed method was
implemented. For the CaSCADE algorithm, an L-shaped antenna array that implemented
the modified MWC was required. Therefore, an L-shaped antenna array with six antenna
elements in the vertical and horizontal directions, including a common antenna element at
the origin, was used. Each antenna element was connected to one channel of the MWC.
The distance between adjacent antenna elements of the L-shaped antenna array was the
same as that used in the ULA. Moreover, in order to validate the advantage of the adap-
tively designed measurement kernels, the proposed framework with normalized random
measurement kernels was also simulated, with the results shown in Figures 3 and 4.

From Figures 3 and 4, it can be observed that the estimated RMSEs of the frequency and
the DOA for each method in comparison decreased with the increase of SNR. Compared
to the MWC/MUSIC-based method with the same number of antenna elements and the
CaSCADE algorithm with even one additional antenna element, the proposed framework
with random measurement kernels obtained improved RMSEs of frequency estimations at
median and high SNR values and improved RMSEs of DOA estimations at median SNR
values. However, at relatively low SNR values, it did not provide significantly improved
performance for the estimations of both parameters, compared to the MWC/MUSIC-based
method. In contrast, at both low and high SNR values, the proposed adaptive compressed
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measurement and signal analysis method achieved the lowest RMSE values for both the
frequency and DOA estimations of the FHSS signals, compared to those two methods
in the literature. In particular, to achieve the same carrier and DOA estimation accuracy,
the proposed adaptive method can even work at an SNR value more than 5 dB lower,
compared to the MWC/MUSIC-based method.

Figure 3. RMSE comparison of the estimated carriers.

Figure 4. RMSE comparison of the estimated DOAs.

In order to obtain a deeper insight into the simulation results, scatter plots of the
estimated and true carrier and DOA values for the four methods in comparison are shown
in Figures 5–8, where 30 simulation results for each of the four methods with randomly
generated frequencies and DOAs at SNR = −15 dB were included. From those four figures,
it can be seen that the estimated frequencies and DOAs using the proposed adaptive
method were the closest to the ground truth.

Furthermore, to verify the efficiency of the proposed method, a timing comparative
study between the deep learning-based measurement kernel design method and the conven-
tional iterative measurement kernel optimization specified in Equation (8) was conducted.
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In this study, the experimental parameters remained and an SNR of −18 dB was used.
To achieve the performance of the deep learning-based method, 20,000 optimization steps
are needed, according to the simulation trials. The statistical comparison of time cost for
the two methods over 500 processing cycles, including the adaptive measurement kernel
designs, the sub-band occupation probability updates, and the carrier/DOA estimation in
each cycle, is shown in Table 1. In this comparison, the maximum, minimum, and mean
values of the time costs are shown.

Figure 5. Sampled comparisons between the carriers and DOAs in ground truth and those estimated
using the CaSCADE algorithm.

Figure 6. Sampled comparisons between the carriers and DOAs in ground truth and those estimated
using the MWC/MUSIC-based method.

From Table 1, it can be seen that the time cost of the proposed deep learning-based
method can be 0.33% of the conventional iterative optimization method for adaptive
measurements of FHSS signals. In particular, the shortest time cost of the deep learning-
based method was only 8.9006 s, which is hundreds of times’ acceleration, compared to
the conventional iterative optimizations. Therefore, it is verified that the proposed deep
learning-based method shows improved efficiency in adaptive measurements.
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Figure 7. Sampled comparisons between the carriers and DOAs in ground truth and those estimated
using the proposed framework with random measurement kernels.

Figure 8. Sampled comparisons between the carriers and DOAs in ground truth and those estimated
using the proposed adaptive method.

Table 1. Statistical comparison of time cost between the proposed adaptive method and the conven-
tional iterative method.

Mimimum Time Cost
per Estimation (s)

Averaged Time Cost
per Estimation (s)

Maximum Time Cost
per Estimation (s)

The Proposed Deep
Learning-Based

Method
8.9006 9.8371 14.2708

The Conventional
Iterative

Optimization
Method

2850.7 2968.4 3374.0

6. Conclusions

In this paper, a non-cooperative method to estimate the carrier frequency and the
DOA of FHSS signals was proposed. By this method, the signal measurements can be
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conducted with antenna arrays at much-compressed rates compared to those determined
by the Nyquist sampling theory and entire FHSS ranges. Unlike conventional compressed
sensing, the measurements were done adaptively, with the measurement kernels designed
based on the TSI optimization and the analysis of the measurement data that had been
obtained. In order to ensure the efficiency of the measurement kernel designing process,
a DNN was trained so that the repeated online recursive optimizations of the measurement
kernels were replaced by one-time offline training and repeated direct implementation of
the DNN.

Through simulations, frequency and DOA estimation accuracy were also validated by
comparison with the methods in the literature and the proposed compressed framework
with conventional random measurement kernels. In addition, the efficiency of the proposed
method was verified.

Author Contributions: Conceptualization, F.L.; methodology, Y.J. and F.L.; software, Y.J.; validation,
Y.J. and F.L.; formal analysis, Y.J. and F.L.; investigation, Y.J. and F.L.; resources, F.L.; data curation,
Y.J.; writing—original draft preparation, Y.J. and F.L.; writing—review and editing, F.L.; visualization,
Y.J.; supervision, F.L.; project administration, F.L.; funding acquisition, F.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant number
61901233, the Tianjin Education Commission Research Program Project grant number 2023YXZX04,
the Natural Science Foundation of Tianjin City grant number 19JCQNJC00900, and “the Fundamental
Research Funds for Central Universities”, Nankai University (63241330).

Data Availability Statement: The original contributions presented in the study are included in the
article material; further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SS spread spectrum
FHSS frequency-hopping spread spectrum
TSI task-specific information
CS compressed sensing
MWC modulated wideband converter
MUSIC multiple signal classification
SNR signal-to-noise ratio
GPU graphics processing unit
DNN deep neural network
PDF probability density function
ULA uniform linear antenna array
RMSE root mean squared error
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