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Abstract: Complexity is a key measure of driving scenario significance for scenario-based autonomous
driving tests. However, current methods for quantifying scenario complexity primarily focus on
static scenes rather than dynamic scenarios and fail to represent the dynamic evolution of scenarios.
Autonomous vehicle performance may vary significantly across scenarios with different dynamic
changes. This paper proposes the Dynamic Scenario Complexity Quantification (DSCQ) method
for autonomous driving, which integrates the effects of the environment, road conditions, and
dynamic entities in traffic on complexity. Additionally, it introduces Dynamic Effect Entropy to
measure uncertainty arising from scenario evolution. Using the real-world DENSE dataset, we
demonstrate that the proposed method more accurately quantifies real scenario complexity with
dynamic evolution. Although certain scenes may appear less complex, their significant dynamic
changes over time are captured by our proposed method but overlooked by conventional approaches.
The correlation between scenario complexity and object detection algorithm performance further
proves the effectiveness of the method. DSCQ quantifies driving scenario complexity across both
spatial and temporal scales, filling the gap of existing methods that only consider spatial complexity.
This approach shows the potential to enhance AV safety testing efficiency in varied and evolving
scenarios.

Keywords: autonomous vehicles; driving scenario complexity; safety assessment; complexity quantification

1. Introduction

Autonomous Vehicles (AVs) have garnered widespread attention owing to their po-
tential to enhance the transportation systems safety and deliver substantial economic and
environmental benefits. In recent years, AVs have seen considerable technological ad-
vancements alongside the development of deep learning. However, no SAE level 4 [1]
autonomous vehicles have been commercially deployed to date, primarily due to the
incomplete verification of their safety [2]. One of the key steps in the development and
deployment of AVs is conducting comprehensive safety assurance testing [3]. Common
methods for AV testing include Naturalistic Field Operational Tests (N-FOT) [4] based
on mileage and scenario-based testing. Due to the repetitive and simple scenarios in nat-
ural driving environments, significant events such as accidents are rare. Thus, N-FOTs
require the accumulation of hundreds of millions of miles in order to demonstrate AV
safety [5], leading to high time and economic costs. To accelerate the safety testing of
AVs, researchers are exploring scenario-based testing methods that intentionally generate
critical scenarios to increase the probability of their occurrence [6–10]. The complexity
of a scenario is a key indicator that defines the importance of critical scenarios [11]. It is
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recommended that scenarios with higher complexity be prioritized for testing to improve
testing efficiency [12,13].

For autonomous vehicles, complex traffic environments impact the entire driving pro-
cess, including perception, decision-making, and control. In [14,15], the authors indicated
that the performance of AV algorithms is often inversely correlated with the complexity of
the scenarios they encounter. When assessing AVs, test results across different complexity
scenarios may not be directly comparable [16]. For instance, an AV scoring 95 in a simple
scenario might only score 50 in a complex one, whereas another AV scoring 85 in a simple
scenario could achieve 70 in a complex one. Such score discrepancies inadequately reflect
the overall performance of AVs. Therefore, quantifying the complexity of driving scenarios
is crucial for AV safety assurance testing.

Several studies have analyzed the complexity of driving environments from the per-
spective of drivers. In [17–19], the authors investigated the relationship between workload,
driver mental load, and complexity of the traffic environment. In [20,21], experienced
drivers directly annotated the complexity of diverse driving scenarios through video clips.
Nevertheless, these subjective methods are limited by the low number of scenarios, and are
challenging to scale up for large datasets. Moreover, the impact of model quantification
results on AV intelligent algorithms remains unexplored.

In addition, some objective quantification methods based on environmental factors
have defined scenario complexity using variables such as traffic density [22], weather con-
ditions, and road hazards [23], among others. For example, a dynamic driving environment
complexity quantification method was proposed in [11] by describing spatial and temporal
interactions among vehicles from the perspectives of quantity, variety, and relationships.
However, this approach ignores static traffic elements and other traffic participants. To
supplement this, static traffic elements such as driveable area size, weather visibility, and
road friction coefficient were integrated in [6] to comprehensively quantify testing en-
vironment complexity. In [24], the scenario complexity was divided into two parts for
evaluation, namely the road semantic complexity and traffic element complexity. In [19],
the authors considered dynamic factors such as the pedestrian density, cyclist density, and
number of vehicles passing through per unit time. In [13,25], a tree structure model of
factors influencing intelligent driving systems was devised by combining expert evaluation
methods to determine the respective contributions of each factor to the scene complexity.

Existing studies on methods of driving scenario complexity quantification are sum-
marized in Table 1. In summary, the existing studies primarily focus on analyzing the
impact of scenario elements by categorizing them into static and dynamic factors. However,
several issues remain unresolved. First, an inadequacy exists in the analysis of correlation
between scene factors. The stronger the correlation between factors, the higher the re-
dundancy in their reflected evaluation information, necessitating appropriate adjustments
to their contributions to scene complexity. Second, the term ’dynamic’ mentioned in the
aforementioned studies refers to relatively dynamic elements within the environment, but
fails to consider the dynamic evolutionary property of scenarios themselves.

In the context of this paper, the standard definition in ISO 34501 [26] is adhered
to and reiterated: the Scene is the snapshot of all entities, including the environment
and both static and dynamic entities, all actors and observer self-representations, and the
relationships between these entities. The Scenario is the sequence of scenes which describes
a time span; a scenario is a description of the evolution of a series of scenes over time.
According to this definition, the complexity models established in existing research are
oriented towards scenes rather than scenarios, and consequently overlook the variability
of elements within the traffic environment. The performance of AVs in scene-oriented
settings does not necessarily guarantee consistent performance in scenarios characterized
by significant fluctuations in the constituent elements of the scene.
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Table 1. Summary of scene complexity measurement methods.

Category Study Scenario Elements Method

Subjective
quantitative

methods
based on

the driver’s
perspective

[17] /
Analyzing the relationship between
driver’s mental workload and traffic
environment complexity

[18] / Analyzing the relationship between driving
workload and road condition complexity

[19] / Analyzing the relationship between driver
workload and traffic complexity

[20] / Experienced drivers directly annotated
complexity ratings using video clips

[21] / Experienced drivers directly annotated
complexity ratings using video clips

Objective
quantitative

methods
based on

environmental
factors

[11] Encounter angles (θ), relative speeds (v),
and relative distances (d) C = f1(θ)× f2(v)× f3(d)

[6]

Drivable area size, weather visibility, road
friction coefficient (static scene complexity
CS), and dynamic traffic elements (CD) as
described in [11]

C = αSCS + αDCD

[19]
Dynamic factors such as the pedestrian
and cyclist density and the number of
vehicles passing through per unit time

Combining different parameter values of
traffic elements

[22] Traffic density Analyzing the impact of traffic density on
takeover performance

[23] Road hazards Analyzing the impact of road hazard
events on takeover performance

[24] Road semantic complexity (CR) and traffic
element complexity (CE) C = λ1CR + λ2CE

[13]
Lighting environments, lane line parameters,
road parameters, longitudinal and lateral
speed, road congestion

Developing a tree structure model of
factors and integrating it with the analytic
hierarchy process

[25] Obstacles, lanes, traffic lights, identifying
and responding to other traffic participants

Utilizing expert evaluation methods
combined with information entropy theory

Therefore, this paper proposes the Static Scene Complexity Quantification (SSCQ)
method, which comprehensively considers the impacts of environmental conditions, road
conditions, and dynamic entities on scene complexity. Additionally, it analyzes the correla-
tion among factors within each dimension. On this basis, the information entropy [27] is
introduced to measure the dynamic changes of scene elements, thereby quantifying the
uncertainty added to scenarios due to changes in complexity. Consequently, the Dynamic
Scenario Complexity Quantification (DSCQ) method is proposed. Furthermore, we validate
the quantification results by correlating them with the performance of object detection
algorithms. Figure 1 shows the flow of this work. Notably, this quantification framework is
flexible and extensible, allowing for the inclusion of additional evaluation dimensions and
indicators in the future.
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Figure 1. Illustration of the quantification method for dynamic driving scenario complexity. The
scene is the snapshot of all entities, while the scenario is the sequence of scenes which describes
a time span [26]. Scenario complexity is influenced by elements and features such as weather,
illumination, and obstacles, and their dynamic evolution further increases scenario uncertainty. This
study develops a scenario complexity quantification method incorporating both static features and
dynamic evolution. In this context, we investigate the effects of different complexity levels on object
detection performance.

2. Proposed Method

The demand for higher capabilities in autonomous driving systems escalates when
faced with more complex driving scenarios. Consequently, a model that effectively char-
acterizes the complexity of driving scenarios is crucial for testing and evaluating AVs.
As mentioned above, existing complexity quantification methods are oriented towards
static driving scenes rather than dynamic driving scenarios, and fail to account for the
intricacies arising from the temporal variation of scene elements. In this study, we propose
a comprehensive quantification method of scenario complexity on both the temporal and
spatial scales. In Section 2.1, we refer to the way that [6,24] categorized the factors influ-
encing scene complexity into static and dynamic elements and further subdivide these
factors into three dimensions. Subsequently, in Section 2.2 we quantify the static scene
complexity based on the partitioned dimensions. Finally, we measure the uncertainties
caused by variations in these factors over the observation period in Section 2.3 to quantify
the complexity of dynamic scenarios.

2.1. Factors Influencing Driving Scene and Scenario Complexity

The complexity of driving scenes is influenced by three key dimensions: natural
environmental conditions, road conditions, and dynamic entities in driving scenes. The
complexities of these three dimensions are denoted as C1, C2, and C3, respectively. The
domains of influence of these dimensions are depicted in Figure 2, which provides detailed
information on influencing factors, notation, and the corresponding values and complexity
indices. For continuous variables, the complexity indices are directly determined based on
their values or by establishing a functional relationship with the complexity. For discrete
variables, complexity indices are assigned on a scale of 0 to 1, reflecting their impact on
overall complexity. Specifically, the complexity indices for Weather are ranked based on the
complexity of different weather conditions as outlined in [28], while the indices for Time
and Types of Traffic Participants are directly adopted from [6,13], respectively.
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environmental 
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dynamic entity
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conditions

Figure 2. Domains of interest for different quantification dimensions.

(1) Natural Environmental Conditions Complexity (C1): The complexity of environ-
mental conditions is defined according to the weather, illumination, and time of day of the
scene in which the tested AV operates. Specific weather conditions can range from clear
skies to heavy rain or fog. Illumination refers to the available light intensity, which varies
from best conditions for computer vision to overall dark situations. Daytime and nighttime
present different lighting conditions and levels of visibility, each contributing differently to
the complexity of the driving environment.

(2) Road Conditions Complexity (C2): The complexity of road conditions is defined
according to the slippery condition of the AV’s drivable path and the quantity of obstacles.
Slippery road surfaces caused by rain, ice, or snow contribute to complexity, directly im-
pacting vehicle safety and maneuverability. Additionally, the number of obstacles increases
driving difficulty, with a higher obstacle count indicating a more complex environment
that necessitates more precise perception and planning.

(3) Dynamic Entities Complexity (C3): This dimension considers dynamic entities in
the driving environment, encompassing the following factors:

Ego Vehicle’s Speed: The speed of the ego vehicle affects the frequency of inter-
actions with surrounding dynamic entities and the available reaction time; at higher
speeds, the need for quicker decision-making and faster responses escalates, thereby
augmenting complexity.

Types of Traffic Participants (TPs): Different types of TPs, such as cars, bicycles, and
pedestrians, each have different behavior patterns and interaction modes, which imposes
various requirements on the AV’s perception and decision-making system; for example,
pedestrian behavior is more random, while cars follow traffic rules.

Occlusion Levels: The degree to which other vehicles or objects are obscured; high
levels of occlusion mean that the ego vehicle’s sensors have a limited field of view, requiring
stronger prediction and reasoning capabilities to handle potential sudden situations.

Distances to Other TPs: The distance between the ego vehicle and other traffic partic-
ipants is crucial for safety and decision-making, with shorter distances requiring higher
precision and faster response to prevent collisions and ensure safety.

The complexity quantified in this study is relative, and the proposed complexity
quantification method offers a general framework that is adaptable to various datasets.
Given the inconsistencies in annotation scope and content across autonomous driving
datasets, it is challenging to provide universally consistent quantification standards for all
datasets. However, as the proposed method does not rely on the specific annotation ranges
of any particular dataset, researchers can apply this method to rank and assign complexity
indices to scenario factors in other datasets. Additionally, the proposed framework supports
flexible expansion or removal of factors within the three complexity dimensions, ensuring
adaptability to diverse datasets and scenarios.
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2.2. Static Scene Complexity Quantification

The complexity of static driving scenes is collectively determined by the complexities
C1, C2, and C3 of the three dimensions mentioned above, which can be described as follows:

Csne = (C1 + C2) ∗ C3. (1)

The complexity calculations for C1 and C2 are as follows:

C1 = (ω11x11 + ω12x12 + ω13x13), (2)

C2 = (ω21x21 + ω22x22). (3)

Initially, ωij represents the weights of the jth influence factor within the ith dimension, and
is set equally with ωij. Then, these weights are adjusted based on the conflict analysis of
factor p. Specifically, a stronger correlation between factor p and other factors q indicates
a higher degree of redundancy in that factor’s reflected evaluative information and a
correspondingly weaker level of conflict. This can undermine the evaluative strength of
the indicator, necessitating a decrease in the weight assigned to factor p. The degree of
conflict between factor p and other factors is denoted by Equation (4), where rpq represents
the Pearson correlation coefficient between influence factors p and q, while the adjusted
weight is presented as Equation (5):

Rp = ∑
q

(
1− rpq

)
, (4)

ωij = (ωij +
Rj

∑j Rj
)/2. (5)

The complexity C3 is calculated using Equation (6), where β is the scale factor and m
denotes the TP number:

C3 = β ∗Vego ∗
m

∑
j=1

f (x, z) ∗ ln(1 + extype) ∗ ln(1 + exocc), (6)

f (x, z) = 0.5e−|x| + 0.5e−|z|, (7)

where x and z represent the horizontal and vertical distances between TPs and the ego vehicle,
respectively. The relationship between x, z, and complexity is illustrated in Figure 3.

Figure 3. Relationship between complexity and distance to other traffic participants.
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2.3. Dynamic Scenario Complexity Quantification

In the process of driving, the complexity of the scene is constantly varying, leading
to scenarios that are both dynamic and uncertain. For instance, in the case of high traffic
density, the speed of surrounding vehicles may frequently adjust, and the complexity
introduced by such dynamic variability will increase the difficulty of driving decision-
making. Similarly, during the process of entering or exiting a tunnel, rapid changes
in illumination can further elevate scenario complexity, affecting the accuracy of target
recognition by cameras. Consequently, it is crucial to develop a scenario complexity
quantification model that can adapt to these dynamic evolutionary property in order to
effectively address emerging complexity.

The complexity indices corresponding to the varying values of influencing factors
in Table 2 are sequenced to ascertain their respective complexity levels. It is noteworthy
that the complexity level associated with an influence factor may change at successive
time points. Table 3 outlines the probability of changes in complexity level; the rows
represent the complexity levels of a factor at time t, the columns represent these levels at
the subsequent time t + 1, and Pu,v denotes the probability of a transition in complexity
level from u to v between two adjacent time points within a specified time frame.

Based on the respective probabilities of changes in complexity levels within the sce-
nario, the information entropy is utilized to quantify the uncertainty arising from the
complexity variations of each factor [27], as illustrated in Equation (8). Entropy is a classical
theoretical tool for describing system uncertainty that is widely applied in complex systems
to capture the impact of dynamic variations on system states. In dynamic driving scenarios,
complexity primarily arises from the evolving scenario factors and the uncertainty that they
introduce. Entropy provides a natural theoretical foundation for quantifying this complex-
ity. Previous studies such as [11,25] have employed entropy to analyze the contributions of
static and dynamic factors to scene complexity. However, these applications predominantly
focused on localized effects of specific factors, and lacked systematic characterization of the
overall dynamic evolution of scenario complexity.

Furthermore, because the complexity contributed by different degrees of change varies,
a weighting coefficient is introduced to measure these varying degrees. The weighting
coefficient is the ratio of the change in complexity level to the range of the complexity
level of that factor. As shown in Table 3, the complexity level of a factor ranges from
1 to n and the change in complexity level ranging from t to t + 1 is u− v; then, the weight
coefficient is (u− v)/(n− 1). We define this as the Dynamic Effect Entropy (DEE) based on
the weighted information entropy obtained from Equation (8) and the degree of change in
the impact factor, which we then use to measure the dynamic effect of scenario complexity,
as shown in Equation (9). DEE quantifies the impact of the uncertainty due to dynamic
changes in the investigated factor’s complexity on the complexity of the scenario over the
observation period T. The design of DEE builds upon entropy theory by incorporating the
unique characteristics of dynamic driving scenarios. DEE employs a weighting mechanism
to quantify how variations in complexity contribute to overall scenario uncertainty. While
its computation depends on inputs such as illumination or vehicle speed, the computational
logic is consistently based on the entropy-based measurement of dynamic changes, with
weighting then applied to their magnitudes. Although the computational process can be
flexibly adjusted to accommodate different input parameters, the formalized model remains
unchanged, offering a universal analytical framework for quantifying the complexity of
dynamic scenario.

Huv = −∑ puv ln puv (8)

DEE = −∑
|u− v|
n− 1

puv ln puv (9)

The DEE values of each factor are calculated and summed in three dimensions to derive
DEE1, DEE2, and DEE3. These values are then utilized to determine the complexity of
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the dynamic scenario, as illustrated in Equation (10). C1, C2, and C3 correspond to the
respectively average values of C1, C2, and C3 over the designated time period.

Csio =
[
(1 + DEE1)C1 + (1 + DEE2)C2

]
(1 + DEE3)C3 (10)

Table 2. Factors influencing scene complexity. The complexity index for the Weather factor is assigned
uniformly between 0 and 1 based on the complexity order of various weather conditions from [28],
while the complexity indices for Time and Types of Traffic Participants are determined according
to [6,13], respectively.

Influence Factor Notation Value Complexity Index

Environment

Weather [28] x11

Clear 0
Rainy 0.25

Light fog 0.50
Snow 0.75

Dense fog 1

Illumination x12

Best computer vision weather 0
Low dynamic range 0.33
High dynamic range 0.66

Overall dark 1

Time [13] x13
Day 0

Night 1

Road

Obstacles x21

0 0
1 0.33
2 0.66

3+ 1

Slippery condition x22

Dry 0
Wet 0.33

Slushy 0.66
Full snow coverage 1

Dynamic entities

Vehicle speed Vego

Types of traffic participants [6] xtype

Pedestrian 0.7
Ridable vehicle 0.8
Passenger car 0.9
Large vehicle 1

Occlusion level xocc

No occlusion 0
>10% 0.1
>40% 0.4
>80% 1

Distance from traffic participants (x, z) f (x, z)

Table 3. Probability of changes in complexity level.

Complexity
Level 1 2 · · · v · · · n

1 p11 p12 · · · p1v · · · p1n
2 p21 p22 · · · p2v · · · p2n

· · · · · · · · · · · · · · · · · · · · ·
u pu1 pu2 · · · puv · · · pun
· · · · · · · · · · · · · · · · · · · · ·
n pn1 pn2 · · · pnv · · · pnn

3. Experiment and Results
3.1. Performance Comparison of DSCQ and SSCQ Methods
3.1.1. Dataset

The dataset used in this work was DENSE [29], which covers 10,000 km and contains
diverse weather and lighting, including severe conditions such as snow, rain and fog. Its
comprehensive annotations and varied testing trajectories make it exceptionally suitable
for conducting scenario complexity assessment. To facilitate the continuous measurement
of scenario complexity, the dataset was segmented into independent scenario units at every
60 s. The choice of scenario unit length was guided by the need to balance the effective
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capture of both dynamic changes and computational efficiency. Short intervals may fail
to adequately reflect the dynamic evolution of a scenario, while longer intervals might
obscure critical short-term variations, weakening the ability to evaluate autonomous driving
performance. For practicality, an interval of 60 s was chosen in order to ensure a balance
between capturing major dynamic changes and maintaining moderate computational cost.
This interval can be flexibly adjusted to suit different application scenarios. Such changes
affect only the numerical results without altering the core logic of the DSCQ method which
quantifies complexity based on the dynamic changes in the scenario. Data that could
not be categorized into any scenario unit were excluded, resulting in a final selection of
9916 frames of data constituting 519 scenario units.

3.1.2. Quantification of Driving Scene and Scenario Complexity

With the above data, the SSCQ method was employed to conduct an initial evaluation
of scene complexity. The findings indicated that approximately 30.58% of scenes exhibited
complexity between 0 and 0.01 and that 50.60% fell within the range of 0 to 0.1, suggesting
that most driving scenes possessed a very low level of complexity. Subsequently, the dy-
namic effects within each scenario unit were calculated based on the DEE to obtain the quan-
tified scenario complexity (Csio) results. The calculation process is shown in Algorithm 1.
Among the 519 analyzed driving scenarios, 13.1% exhibited complexity levels between
0 and 0.1. The summarized descriptive statistics of the complexity quantification results
are presented in Table 4.

Algorithm 1: Driving Scenario Complexity Quantification
input : x11, x12, x13, x21, x22, Vego, xtype, xocc, d

1 , The number of scenes in a scenario N
output : Csne, Csne_avg, Csio

2 for i← 0 to N do
3 Calculate C1 according to Equation (2);
4 Calculate C2 according to Equation (3);
5 Calculate C3 according to Equation (6);
6 Csne_i = (C1 + C2) ∗ C3;
7 end
8 Csne_avg = ∑i Csne_i/N;
9 Calculate DEE according to Equation (9);

10 Calculate Csio according to Equation (10).

Table 4. Summarized descriptive statistics of the complexity quantification results.

Number of
Records Mean Std.Dev. Min. Median Max.

Csne 9916 0.3116 0.4992 0 0.0928 4.2423
Csne_avg 519 0.3086 0.3418 0 0.2133 2.6916
Csio 519 0.5163 0.4907 0 0.3809 2.9796

3.1.3. Comparison of Quantitative Results for Scenario Complexity Using DSCQ and SSCQ

To further demonstrate DSCQ’s ability to capture the effect of dynamic changes on
scenario complexity, the average scene complexity within each scenario unit, denoted
as Csne_avg, was calculated and compared against the quantification results of Csio. The
probability distribution and violin plot depicted in Figure 4 illustrates that Csio and Csne_avg
exhibit similar overall trends in the quantification of scenario complexity, with the majority
of scenarios having relatively low complexity. However, the quantification results of SSCQ
tend to cluster more towards lower complexity levels compared to DSCQ, potentially
overlooking numerous highly intricate scenarios characterized by significant dynamic
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fluctuations. In comparison, Csio adapts to the dynamic evolution of scenarios and identifies
a broader range of complex scenarios.

(a) (b)

Figure 4. Comparison of quantified scenario complexity results for the DSCQ and SSCQ approaches:
(a) probability distribution of scenario complexity and (b) violin plot of complexity, with dashed lines
representing quartiles and width of the plot indicating probability density.

Attention to complex scenarios is paramount in both automated driving testing and
real-world driving scenarios. Consequently, this study focuses on comparing the top 20%
of scenarios ranked by complexity using the SSCQ and DSCQ methods. Analyzing the
composition of road types within complex scenarios, as depicted in Figure 5a, the results
from the SSCQ method reveal that highway-type scenarios dominate the set of complex
scenarios, primarily due to their high vehicle speeds, which increase scene complexity.
Highways typically exhibit relatively consistent road structures, including straight seg-
ments, ramps, and exits, and have relatively sparse pedestrian and non-motorized vehicle
traffic. Consequently, driving scenarios on highways tend to be more stable, resulting in
lower complexity at the dynamic variation level.

In contrast, the DSCQ method predominantly identifies complex scenarios within city
areas, aligning with the diversity and uncertainty of urban transportation environments.
Urban road networks are inherently more intricate, including intersections, roundabouts,
narrow streets, and intensified traffic flows. In addition, diverse behaviors of pedestrians
and non-motorized vehicles contribute to the heightened uncertainty in urban driving
scenarios. Hence, driving scenarios within city areas exhibit greater instability and com-
plexity when considering dynamic variation. Moreover, the DSCQ model captures the
heightened complexity of tunnel scenarios stemming from rapid variations in lighting
conditions, traffic flow, and obstacles. DSCQ further indicates that scenarios with more
obstacles and a higher number and variety of participants exhibit greater variability and
uncertainty, leading to increased scenario complexity. In summary, the complex scenarios
identified by DSCQ are more representative of real-world driving environments.
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all data
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Figure 5. Comparison of scene elements in the top 20% of scenario complexity for Csne_avg and
Csio: (a) percentage of different road types, (b) percentage of number of traffic participant types,
(c) percentage of obstacle quantities, and (d) percentage of traffic participant quantities.

3.2. Validity Verification of DSCQ
3.2.1. Case Study

To further demonstrate the feasibility of the proposed complexity quantification meth-
ods and delineate the distinctions between the two quantification models, we selected three
scenarios with pronounced complexity disparities as examples and investigated them using
both models for illustrative purpose. These scenarios contain various driving conditions
such as time, road type, weather, etc., and dynamic changes. The curve graphs in Figure 6
illustrate the fluctuations in Csne within the sample scenario. Finally, several general
conclusions regarding the quantitative model of driving scenario complexity are derived.

In the first scenario (Figure 6a), Csne_avg = 0.6778 and Csio = 1.8207. Despite the
complexity of each scene in this scenario not being particularly high, its location within
a bustling district amplifies uncertainty. The lighting conditions, number of obstacles,
and vehicle speeds undergo frequent fluctuations; particularly notable are the significant
variations in pedestrian volume. These factors collectively elevate the scenario’s complexity.
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Figure 6. Examples of driving scenes and corresponding quantified scene complexity and scenario
complexity results. The curve graphs illustrate the fluctuations in Csne within the sample scenario.
The Csio and Csne_avg of the scenario are calculated to demonstrate the discrepancy between DSCQ
and SSCQ in quantifying scenario complexity. The results indicate that although the example scenario
exhibits relatively low scene complexity, there are significant fluctuations in complexity within the
scenario. This increase in uncertainty is captured by DSCQ but not by SSCQ.

The second scenario (Figure 6b), with Csne_avg = 0.4946 and Csio = 1.1375, is situated
within an irregular road environment which lacks clear regulatory constraints. The vari-
ability in the number of obstacles is significant, and the behaviors of traffic participants
are more diverse. For example, children may play on the ground, posing a risk of un-
expected entry into the driving path. These factors contribute to increased complexity,
placing higher demands on the perception and decision-making capabilities of autonomous
driving systems.

The third scenario Figure 6c, with Csne_avg = 0.3677 and Csio = 0.9655, involves the
process of traversing a tunnel. Within the tunnel, frequent changes in lighting conditions
can compromise the reliability of sensor data. Additionally, there can be discrepancies in
traffic flow and vehicle speeds between the inside and outside of the tunnel, necessitating
timely adjustments in strategies by the autonomous driving system in order to adapt to the
evolving road conditions. Consequently, the need to traverse the tunnel introduces greater
complexity to the driving scenario.

Based on the above cases, the following conclusions can be drawn:
(1) The SSCQ method can accurately describe the complexity of different

driving scenes.
(2) The DSCQ method, on top of measuring the complexity of driving scenes, also

quantifies the uncertainty arising from dynamic changes within the scenario, allowing it to
capture complex scenarios that SSCQ may overlook.

(3) While certain driving scenes may not be inherently complex, fluctuations in the
scene parameters can increase the complexity of the associated scenarios.
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3.2.2. Analysis of the Impact of Scenario Complexity on Object Detection Performance

The core tasks of an autonomous driving system encompass perception, decision-
making, and control. The accuracy of perception is fundamental to ensuring the safety and
effectiveness of the entire system, as only through precise object recognition can the system
make correct decisions and execute appropriate control measures [30]. Compared to other
sensors, cameras offer higher accuracy in object detection and lower costs [31], making
them indispensable sensors in AVs. This section aims to explore the correlation between
scenario complexity and the object detection algorithm performance of gated cameras.
Through experimental analysis of various complex scenarios, we aspire to uncover how
gated cameras perform under different environmental complexities.

• Experimental Design and Algorithm

The experimental data are detailed in Table 5. To ensure that the experimental results
were not influenced by the amount of training data, we sorted 519 scenarios in ascending
order based on the complexity quantified by the DSCQ method and divided them into four
equally sized subsets with complexity levels increasing from A to D. We conducted object
detection on these four subsets with different complexity levels and compared the detection
performance across the groups. The YOLOv5 model was chosen for its advantages in
inference speed, detection accuracy, and small file size, which have made it widely applied
in autonomous driving object detection tasks.

Table 5. Scenario complexity-based dataset partitioning.

Complexity Range Subset Average of Scenario Complexity

0–25% A 0.082
25–50% B 0.2689
50–75% C 0.5281

75–100% D 1.1911

• Implementation Details

We utilized the Pytorch framework for model construction. The software environment
utilized CUDA v12.2, cuDNN v7.6.5, and Python 3. For the training process, we employed
the pretrained yolov5s.pt model with an original image size of 1280 × 720 pixels. The
training and validation image sizes were uniformly scaled to 640 × 640 pixels, and the
hyperparameters were set as follows: training epochs = 10, batch size = 16, confidence
threshold = 0.25, optimizer = stochastic gradient descent (SGD), and learning rate = 0.01.

• Evaluation Metrics

To evaluate the accuracy of the algorithm, we employed the mean average precision
(mAP) [32] as the primary metric, specifically using mAP@0.5 and mAP@0.5:0.95; mAP@0.5
denotes the average precision across all categories at an IoU threshold of 0.5, while
mAP@0.5:0.95 provides a comprehensive assessment by considering the average precision
across a range of IoU thresholds from 0.5 to 0.95 with a step size of 0.05. The formula for
calculating mAP is as follows:

mAP =
1
K

K

∑
i=1

∫ 1

0
Pi(Ri)dRi (11)

where K is the number of categories, while Pi and Ri represent the precision and recall of
category i, respectively, and are calculated as follows:

P =
TP

TP + FP
(12)

R =
TP

TP + FN
(13)
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where TP denotes the number of true positive predictions, FP denotes the number of false
positive predictions, and FN denotes the number of false negative predictions.

Furthermore, we compared the confidence of the object detection results across the
four subsets. In the YOLO model, for each detected object, the confidence score reflects
the model’s certainty that the object is within the specified bounding box and belongs to a
particular class. This score is a combination of the probability of an object being present
in the bounding box and the probability distribution over all classes. Confidence scores
provide a measure of uncertainty, with higher confidence scores suggesting that the model
is more certain about the presence and class of the detected object.

• Results

The experimental results presented in Figure 7 demonstrate a general decline in detection
accuracy and confidence as the complexity level increases from subset A to subset D.
Notably, the detection results for subsets B and C are relatively close together, which may
be attributed to the small difference in scenario complexity between these two subsets.

(a) (b) (c)

Figure 7. Performance comparison of object detection in different subsets: (a) comparison of mAP@0.5,
(b) comparison of mAP@0.5:0.95, and (c) comparison of average confidence.

Based on these observations, it can be inferred that scenario complexity has a certain
impact on object detection performance; as the scenario complexity increases, the detection
accuracy tends to decrease and the uncertainty becomes stronger. Hence, the effectiveness
of the DSCQ method proposed in this study for quantifying the complexity of driving
scenarios is validated through these findings.

4. Conclusions

This paper has proposed the DSCQ method for quantifying the complexity of driv-
ing scenarios, aiming to fill the existing research gap in measuring the complexity and
uncertainty of dynamic driving scenarios. The proposed method evaluates driving sce-
nario complexity by integrating static scene complexity and the uncertainty arising from
dynamic changes. Specifically, static scene complexity examines the impact on complexity
of different environmental conditions, road conditions, and dynamic entities in the traffic
environment. Meanwhile, the uncertainty analysis of dynamic changes explores the evolv-
ing properties of scene elements in order to quantify the informational upsurge associated
with their variations.

To validate the model’s effectiveness in quantifying scenario complexity, experiments
were conducted on real traffic data. Scenario complexity was measured using both the
DSCQ model, which considers spatiotemporal evolution characteristics, and the SSCQ
model, which disregards these dynamics. Three different types of scenarios were used as
case studies to demonstrate the ability of DSCQ to quantify dynamic scenario complex-
ity. Our results underscore the superior ability of DSCQ to precisely capture dynamic
uncertainties, making the extracted complex scenarios more representative of reality. Fur-
thermore, a preliminary exploration into the influence of scenario complexity on object
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detection performance was undertaken. Our findings reveal a decrease in both accuracy
and confidence of object detection in more complex scenarios. In conclusion, our research
results demonstrate that the proposed quantification method not only provides an accurate
description of the complexity differences in various driving scenarios but also reveals the
variations in scenario complexity stemming from different degrees of dynamic evolution in
similar scenes.

There are several potential applications for the proposed model. First, by extracting
complex scenarios, it allows more attention to be paid to the performance of AVs under
challenging circumstances, thereby improving testing efficiency. Second, when considering
the diverse performance of autonomous driving algorithms across multiple scenarios,
reliance on a single scenario for evaluation may yield biased conclusions that inadequately
reflect algorithms’ overall effectiveness and reliability. The model presented in this paper
can provide support for building a comprehensive system evaluation for coupled evaluation
of AV scenarios and algorithms by quantifying the scenario complexity. Moreover, this
quantification method is computationally simple, and is considered suitable for integration
into AVs for real-time monitoring of scenario complexity, thereby providing immediate
support and assistance for human driver takeover warnings.

Although the object detection algorithm proposed in this study is highly representa-
tive, completely eliminating the specificity of analytical conclusions remains challenging.
However, our conclusions indicate prospects for analyzing other algorithms related to
autonomous driving. Future work could consider using more detailed data annotations
in simulation environments to achieve more precise quantification of scenario complexity,
and could analyze the performance of decision-planning algorithms in scenarios of varying
complexity beyond perception algorithms. Our results indicate that DSCQ already has
significant practical application potential, laying a solid foundation for future research into
extending complexity analysis to the decision-making and control modules.
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