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Abstract: In a highly dynamic and complex environment where risks and uncertainties are inevitable,
the ability of a system to quickly recover from disturbances and maintain optimal performance is
crucial for ensuring operational continuity and efficiency. In this context, resilience has become an
increasingly important topic in the field of engineering and the management of productive systems.
However, there is no single quantitative indicator of resilience that allows for the measurement of
this characteristic in a productive system. This study proposes the use of permutation entropy of
ordinal patterns in time series as an indicator of resilience in industrial equipment and systems.
Based on the definition of resilience, the developed method enables precise and efficient assessment
of a system’s ability to withstand and recover from disturbances. The methodology includes the
identification of ordinal patterns and their analysis through the calculation of a permutation entropy
indicator to characterize the dynamics of industrial systems. Case studies are presented and the
results are compared with other resilience models existing in the literature, aiming to demonstrate the
effectiveness of the proposed approach. The results are promising and highlight a highly applicable
and simple indicator for resilience in industrial systems.

Keywords: industrial resilience; permutation entropy; ordinal patterns; resilience assessment

1. Introduction

In today’s contexts, it is crucial for an industrial system to adapt and recover from
unexpected events, such as technical failures or supply interruptions, in order to maintain
production and minimize economic losses. This ability of a system to withstand and recover
from disturbances without significant interruption is known as industrial resilience [1].
Resilience in industrial systems is fundamental for ensuring operational continuity and
efficiency in highly dynamic and disturbance-prone environments.

The increasing complexity and interconnection of modern industrial processes have
sparked a growing interest in investigating and measuring the resilience of these systems [2].
Identifying and quantifying resilience can provide valuable insights for enhancing the
responsiveness and adaptability of industrial systems to unforeseen changes.

This article proposes a new quantitative indicator based on the use of Shannon en-
tropy [3] applied to ordinal patterns in time series as a measure of resilience in industrial
systems. This approach will enable the precise and efficient evaluation of industrial systems’
resilience, offering a valuable tool for managing and improving operability in complex
industrial environments.

The structure of this article is as follows: the next section presents a brief literature
review to provide a theoretical and contextual framework for the proposal. Then, in
Section 3, the methodology and the derivation of the resilience indicator based on the
permutation entropy of ordinal patterns are proposed. Subsequently, in Section 4, case
studies are presented and discussed as a form of validation. Finally, a discussion and
conclusions sections are provided.

Entropy 2024, 26, 961. https://doi.org/10.3390/e26110961 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26110961
https://doi.org/10.3390/e26110961
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9745-0512
https://doi.org/10.3390/e26110961
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26110961?type=check_update&version=1


Entropy 2024, 26, 961 2 of 17

2. Theoretical Background
2.1. The Concept of Resilience

The concept of resilience has been defined by numerous authors, but in general, it
is defined as the ability to recover and maintain functionality after failures [4]. Various
disciplines have incorporated the term into their areas, ranging from ecology [5], where the
term originated, to materials science [6], as well as social and urban studies [7]. In the field
of engineering, the American Society of Mechanical Engineers (ASME) defines resilience as
the ability of a system to withstand external and internal disturbances without interruption
in its function [8]. If the function is interrupted, it must be fully recovered as quickly as
possible. This definition highlights the importance of maintaining the performance of a
system under stable and reliable conditions, even when adverse conditions or shocks occur.
This concept contributes to the management of physical assets, where failures can have
significant economic and operational consequences.

Various authors have proposed models to measure resilience. Tierney and Bruneau [9]
measure the recovery time of a system after a shock. Yodo and Wang [10] propose a general
framework for resilience analysis. Cholda [11] suggests a holistic evaluation. Albasrawi
et al. [12] develop metrics to compare recovery strategies in cyber infrastructures. Ibrahim
and Alkhraibat [13] use factors such as voltage and recovery time for microgrid systems.
Attoh-Okine et al. [14] consider robustness, redundancy, and resources. Hu and Mahadevan
measure the resilience of mechanical systems through reliability over time. Cai et al. relate
resilience to system availability in the face of disruptive events. Durán et al. use indicators
such as productivity and equipment effectiveness to propose a resilience indicator [15].
Most of these models are based on subjective and qualitative approaches, which makes
their generalization difficult.

2.2. Ordinal Patterns

In set theory, an ordinal number describes the numerical position of an object in an
ordered set, allowing for the comparison of the size and order of well-ordered sets. On the
other hand, a pattern is a repeated arrangement of elements that follows a specific rule [16].
Patterns can be finite or infinite and include arithmetic, geometric, or symbolic sequences,
or other variations.

Ordinal patterns are sequences of elements ordered in time series, where the relative
order of the elements is more crucial for the analysis than their specific value [17]. The
essence of this approach lies in comparing the relative values of the data, which allows for
the study of how the data are organized in relation to each other [18].

The application of ordinal patterns is particularly beneficial in areas that require a
detailed study of time series with large fluctuations, where it is necessary to characterize
their behavior. This method is relevant in fields such as biomedicine (e.g., in the analysis of
brain waves) [19], financial analysis [20], environmental analysis [21], and, in the context of
this work, the analysis of dynamics in industrial equipment or systems to characterize their
performance behavior over time.

Dynamic systems often exhibit random fluctuations in their operation and perfor-
mance. Ordinal patterns offer greater robustness against system noise by focusing on
the order characteristics of values rather than their specific quantification [19]. This ap-
proach allows for more precise information about the underlying trends and patterns in
the time series.

There is no single method based on ordinal patterns for calculating and sizing the
behavior of a time series. However, all techniques converge on the idea of generating
symbols that symbolically represent the time series data. Various parameters can be
employed depending on the context and specific analysis requirements, including different
pattern sizes, different delays between data points, and different variations in the way data
are categorized and symbolized. Regardless of the technique used, the common goal is to
transform the data into ordered symbols that represent the underlying structure of the time
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series. These symbols enable robust analysis that is less sensitive to noise, focusing on the
order of values rather than their exact magnitudes.

In the context of industrial analysis, the capacity and flexibility of this approach are
crucial as they allow the adaptation of ordinal pattern techniques to the specific charac-
teristics of the data and their fluctuations. For example, in analyzing the dynamics of the
operation or performance of industrial equipment, different configurations (order and
delay) can be used to better capture the system’s variations and behaviors under study.

Ordinal patterns are basically defined through two main variables: the pattern size or
embedding dimension (d) and the delay (τ).

Pattern embedding dimension (d): The pattern dimension (d) represents the number
of consecutive points in the time series that constitute the ordinal pattern. For example:
an embedding dimension, d = 2. This considers only a pair of consecutive points, which
may not be sufficient to capture the full structure of the data. Pattern with d = 3. This
examines triplets of points, providing a more comprehensive view of the time series and its
dynamics.

A small embedding dimension may fail to capture the system’s complexity, while a
larger pattern size can be more sensitive to noise and increase the computational cost for
processing, as it involves more points and a greater number of possible patterns.

The embedding delay (τ) is the spacing between the points compared within each
ordinal pattern:

High Delay Values: Using high delay values involves considering points that are more
separated in time to generate the ordinal patterns, which can better capture long-term
dynamics. However, this might result in a loss of information about short-term dynamics,
as important details could be overlooked.

Low Delay Values: Using low delay values means comparing points that are closer
together in time, which can effectively capture short-term dynamics but may be more
sensitive to noise in the data.

A high delay can help mitigate data noise, allowing for a more accurate interpretation
of the ordinal patterns.

Figure 1a shows a situation with patterns where d = 3 and τ = 1, while Figure 1b shows
the situation with d = 3 and τ = 2. Note how the patterns differ with just a simple change in
one of their parameters.
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In general, ordinal patterns are described without considering the repetition of values,
as it is unusual or unlikely for a dynamic system to exhibit exactly identical or repeated
behavior in a short period of time.

This approach allows for a more refined and precise analysis of time series data, as it
facilitates the differentiation of behavior patterns and their relationship to the resilience of
the system under study. Additionally, it provides a solid foundation for interpreting and
understanding the data in a manner relevant to the research context.

2.3. Permutation Entropy

Entropy is a “measure of the disorder of a system”, a concept widely known in ther-
modynamics [22], information theory [23], and statistical analysis. Considering industrial
systems, these generally exhibit fluctuations and dynamism in their data series regarding
functionality levels. Measuring the degree of “order” in these time series could indicate
how resilient they are to random disturbances and how capable they are of recovering from
disruptive events.

Specifically, permutation entropy is a measure of complexity for time series based on
the comparison of neighboring values [24]. It is easy to calculate, robust, and useful even in
the presence of noise. Permutation entropy evaluates the diversity of ordinal patterns (per-
mutations) in a time series, with its value increasing with randomness and decreasing with
predictability [25]. This measure is invariant under monotonic nonlinear transformations
and is especially advantageous due to its simplicity and speed of calculation.

On the other hand, Shannon entropy is a measure of the uncertainty in a system and
is calculated using the probabilities of event occurrences in a probability distribution [3,26].
This model is calculated using the following formula:

H(X) = −
n

∑
i=1

P(xi) · (P(xi)) (1)

where P(xi) is the probability of event xi occurring and n is the total number of possi-
ble events.

This work proposes a new resilience indicator, specifically a resilience indicator based
on the permutation entropy of ordinal patterns, combining symbolic time series analysis
to obtain an entropy measure that represents the time performance of the resilience of
equipment or production lines.

3. Methodology

The proposed approach focuses on deriving a resilience indicator from a time series
with values representing some measure of functionality or performance of a production
system, thereby supporting the decision-making process in physical asset management.
Initially, the Symbolic Analysis Method is applied to a time series containing data on the
functionality of equipment or systems. This series is then discretized by dividing the space
covered by the series into a finite number of elements.

Next, the symbolization process takes place, where each value corresponds to a unique
symbol belonging to a finite alphabet. Thus, the time series, understood as a trajectory,
becomes a finite chain of symbols. These symbols constitute the so-called ordinal patterns.

The different ordinal patterns are then identified and counted to represent changes in
behavior over time in the time series. The permutation entropy method is applied to the
chain of symbols in relation to the different ordinal patterns. Finally, the obtained value
is evaluated and compared with entropy values derived from the proportion of certain
ordinal patterns, using various series from other systems or the same system in different
periods. This comparison provides information about the resilience of the analyzed system.

For the formation of ordinal patterns, a set of value ranges is considered: for example,
high, medium, and low. By assigning each data point to one of these ranges, it becomes
possible to identify variations in the performance or functionality of the system over time.
Once the chain of patterns is constructed, a measure of permutation entropy is calculated.
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The main hypothesis of this work is that this measure of permutation entropy can be linked
to or used to represent the resilience of the equipment or system whose performance or
functionality produced the time series being analyzed.

3.1. Ordinal Pattern Identification

As mentioned in the previous section, the data from the time series will be classified or
assigned according to ranges (e.g., high, medium, and low). To establish these ranges, the
local arithmetic mean of the data is considered. The term “local arithmetic mean” refers to
the fact that the time series is subdivided into a given number of constant-length segments,
for which the mean is calculated.

The symbolization phase is carried out according to the number of labels considered
in the analysis. For example, if the labels are high, medium, and low, the values will be
classified as “high” if they are greater than the mean plus a user-defined value l. Values
will be considered “medium” if they fall within a range around the mean +/− the value of
l, and “low” if they are less than the mean minus l. Once the series values are classified,
ordinal patterns are identified using combinations of these labels (Figure 2). The number of
possible patterns is defined by NP = kd, where d is the pattern order and k is the number
of labels considered. For the analysis of ordinal patterns, patterns with a fixed size of
d = 3 were selected, resulting in 27 possible patterns (with a length of 3) containing three
nodes each. This choice was based on the theory suggesting that, with this length [19],
the data structure can be robustly interpreted without generating an excessive number of
combinations.
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Each combination will be associated with a number between 1 and 27 to facilitate
its identification and analysis in the algorithm. This approach enables a more precise
analysis of time series, capturing significant variations and their relationship to the system’s
resilience.

3.2. Definition of Lookback

As previously mentioned, the time series is segmented into uniform-sized segments,
called lookbacks. Each segment is used to identify ordinal patterns, calculate the mean
value of the data within the segment, establish ranges for labeling, and perform symbolic
analysis. This allows for the individual analysis of resilience corresponding to each time
segment. The use of local parameters in each segment captures specific variations in the
system and provides a detailed view of how the system’s resilience changes over time.

The calculation of entropy assumes that each pattern affects the results of the equation
equally, depending on its frequency in the time series. However, for the model to indicate
the resilient behavior of a system, certain patterns should be weighted more heavily
than others.

In summary, in a time series that shows a situation of greater resilience, patterns
that demonstrate greater stability, less severe drops, and faster recoveries should have a
higher weight than other patterns, positively impacting the resilience measure. Conversely,
patterns associated with sharp drops in performance and slower recoveries are considered
to negatively impact the resilience value.

Therefore, a resilience factor is added to the entropy model for each possible pattern,
modifying the entropy formula as shown in Equation (2).

ρ(xi) = 1 −
(

1
log2

(
kd
) · n

∑
i=1

f ri
max( f ri)

· P(xi) · (P(xi))

)
(2)

where the term f ri
max ( f ri)

corresponds to the normalized resilience factors. The results
obtained by applying Equation (2) will range between 0 and 1, where the system will be
more resilient as the value approaches 1. Conversely, it will be less resilient as the value of
ρ(xi) approaches 0. The detailed differentiation of the weights or ponderations that certain
patterns will possess is analyzed in the following section.

This approach ensures that the resilience measure accurately reflects the system’s
performance stability and recovery capability by giving higher weights to patterns that
indicate resilience and lower weights to those indicating vulnerability.

3.3. Resilience Factors

It is crucial to conceptually analyze the transitions that patterns can present throughout
the series and the need to assign different weights to each possible pattern. To do this,
we will explore the relationship between resilience and disruptive events. The different
scenarios that can arise from a disruptive event and may affect its performance (e.g.,
availability) are illustrated by Figure 3. Disruption means “a sudden break or interruption”,
so a disruptive event, in the industrial context, is an occurrence that causes an interruption
or loss of the system’s normal performance.

In a system that is in a stable or steady state and operates within a normal range, a
sudden and disruptive event can cause a “drop” in performance, leading to a degraded
performance range. In this situation, the system can exhibit two possible behaviors:
(i) the blue segment shows that from a degraded performance level, the system returns to
the normal performance level, which indicates a resilient system; or (ii) the system fails to
recover its performance level and remains degraded. The latter indicates low resilience.
If we examine in more detail what happens during a disruptive event, and by observing
Figure 3, we can identify the following phases:

1. Normal Performance: In this stage, the system operates regularly with an availability A0.
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2. Performance Drop: Due to a disruptive event, the system degrades from A0 to AD
between times tI and tII.

3. Disrupted Performance: The system stabilizes at a lower-than-acceptable availability
level, AL. During this stage, corrective and maintenance actions are applied to begin
recovering the system’s performance at time tIII.

4. Recovery: Due to the recovery efforts, the system’s availability increases, surpassing
the acceptable availability limit and reaching an acceptable level by time tIV.

5. Recovered Performance: The system returns to normal operation, regaining its initial
availability or something close to A0.
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Each node of the pattern locally represents the stage the system is in. This characteristic
is crucial in defining how ordinal patterns affect resilience.

Given that the nature of ordinal patterns does not consider the temporal dimension, it
is important to conceptually define which stages and conditions in the system are more
resilient. Ordinal patterns only consider the relative order among them, so assigning
them a weight is a way to relate the transitions to their respective timeframes, the stage
they represent, and the performance indicated by the pattern. Without these adaptations,
entropy would only measure the degree of disorder within the segments of the series,
without directly relating to the concepts of resilience. By linking the transitions to the times
and local data of each pattern, an important question arises: Which patterns most influence
the resilience of the system? To propose a unique set of weights, we will focus primarily
on the parameters (A0 − AD) and (tIII − tII), which represent the performance drop after a
disruptive event, and the time spent in a disrupted state or the time it takes for the system
to begin its recovery.

Using the definition provided by ASME, a resilient system must be able to recover its
functions quickly. This indicates that (tIII − tII) should be as short as possible, regardless of
the magnitude of the system’s availability drop.

To facilitate understanding of the combinations of different patterns, transition dia-
grams will be used to describe these state transitions. These diagrams show the possible
transitions in the performance P(t) of a system over time t, starting from an initial state P0.
Each transition is labeled with numbers representing different scenarios of performance
change (Figure 4).

The patterns are differentiated by two main characteristics related to the transitions
they present intra-pattern. Firstly, different importance is assigned to transition 1 (T1i)
and transition 2 (T2i), prioritizing which range the final node falls into. This is because
the final state of a system after a disruptive event is crucial for determining its future
performance. Assigning greater importance to the last node allows for a more accurate
reflection of the impact on the system’s resilience. Additionally, this priority also reflects the
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system’s stability, as the last node indicates the range in which the system’s performance
has stabilized.
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As mentioned earlier, the different ordinal patterns have specific weights reflected in
the proposed resilience equation. These weights are determined by their contribution to
the system’s resilience. In other words, patterns that positively influence the system receive
a weighting that enhances resilience, while patterns that negatively affect resilience receive
a weighting that reduces it.

The resilience factors represent the weight of each pattern in the resilience calculation
and are determined using the following equation:

f ri = 1 + (α · T1i) + (β · T2i) (3)

where

■ i is the pattern number between 1 and 27.
■ T1i is the contribution of the first transition between nodes N1 and N2.
■ T2i is the contribution of the second transition between nodes N2 and N3.
■ α and β are importance factors that modify the weight of the transitions intra-pattern

and depending on how the pattern ends.

The importance factors modify the weighting of the pattern transitions depending on
transition T2i, as this last transition more significantly reflects the nature of the pattern and
its final contribution to the representation of the system’s resilience, as reflected in the time
series. Thus, as a result of various sensitivity analyses, the values of α and β were defined
according to the following relationship: α = 0.75 β. Since the method is parameterizable,
the value of Beta can be predefined by the user, just like the values of the ranges. In our
case, we used a Beta value of 1.

The contribution values according to the type of intra-pattern transition are repre-
sented by the value assigned to the transition (T1i and/or T2i). To this end and considering
the 9 types of transitions shown in Figure 4, the values that each type of transition will have
for the calculation of the fri according to Equation (3) were established in collaboration with
a group of maintenance experts, operating under a focus group modality. These values,
along with a brief explanation for each one based on the type of transition, are shown in
Table 1.

The resilience factors are multiplied by the probability in the entropy equation, repre-
senting the contribution of each pattern to the system’s ability to resist and recover from
disturbances. The contribution percentages were selected to reflect the impact of each type
of transition on the system’s resilience:

A. Improvement, Stable Recovery, Enhanced Recovery: These transitions indicate
that the system is improving its performance or recovering after a disturbance, thereby
increasing resilience.
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B. Disruptive Stages, Stable Disruptive, Severe Disruptive: These transitions represent
a significant reduction in the system’s performance, thereby decreasing resilience.

C. Stability, Stable Improvement, Normalization: These stages reflect that the system
remains within an expected performance range or improves slightly without significant
changes in resilience.

Table 1. Contribution values according to the type of transition.

Transition Stage Name Description Contribution

1 Moderate drop Performance reduction due to a disruptive event. 5

2 Stable at a medium level The system operates within the expected range without
significant changes in performance. 3

3 Sharp rise The system’s performance improves. 2

4 Stable at a low level After a disruptive event, the system stabilizes at a
vulnerable performance level. 4

5 Gradual recovery The system recovers to an expected performance state. 2

6 Rapid recovery The system not only recovers but reaches a superior
performance level. 1

7 Disruptive drop Significant performance reduction from a high state to a
vulnerable state. 5

8 Moderate decline Performance reduces to a medium or expected level. 3

9 Stable at a high level Performance improves and maintains at a high level. 1

4. Application Example

To demonstrate the application of the model and validate the use of ordinal patterns
and permutation entropy as a reliable measure of resilience, a synthetic series containing
50 data points on equipment availability was used. This series was divided into 5 segments,
each containing 10 consecutive data points. These segments were selected to represent
different states or typical behaviors, both in terms of their magnitudes and variability. The
idea was to provide a set of values that would shed light on the discussion of how well the
proposed resilience indicator can represent a qualitative description of a system’s resilient
behavior. The configuration of the proposed model was chosen for its simplicity:

■ τ = 1
■ Lookback = 10

As part of the symbolization procedure, and in order to facilitate the subsequent quali-
tative analysis of the example, the time series was subdivided into 5 segments. Additionally,
each segment was assigned its own range, considering +/−3% of the mean value of the
data in each segment, thereby establishing the boundaries for the low, medium, and high
ranges. Subsequently, patterns were identified in each segment. Permutation entropy was
then calculated using 8 sliding time windows of constant size (3) for each segment. Figure 5
illustrates the series, the respective ranges for the symbolization process, the mean value
of each segment, and the corresponding resilience value. To enhance understanding of
the proposed model, a detailed analysis and discussion of each segment in the series is
provided. Figure 6 shows the identified patterns for the 10 data points in Segment 1.
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Table 2 presents the identifiers (IDs) along with the frequency with which they were
detected in each segment, representing the patterns and their frequencies of occurrence
within each segment (the meaning of each pattern ID is provided in Figure 2). Additionally,
the table includes the mean values of the data within each segment, their standard deviation,
and the resilience value calculated for each time segment, as determined by Equation (1).

Table 2. Detected patterns and characteristic values of each segment.

Segment Patterns
[Pattern ID: Frequency] Average Standard

Deviation Resilience

1 {13: 1, 18: 1, 21: 2, 1: 1, 6: 2, 7: 1} 105,660 6.606 0.635

2 {2: 1, 10: 3, 13: 1, 16: 1, 23: 1, 11: 1} 46,662 12.413 0.691

3 {27: 2, 14: 1, 22: 1, 16: 1, 23: 1, 10: 1, 13: 1} 65,439 34.551 0.631

4 {2: 1, 13: 1, 14: 1, 20: 1, 26: 1, 9: 1, 27: 1, 16: 1} 106,941 11.168 0.592

5 {1: 8} 100,161 0.000 1.000
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Segment 1 demonstrates moderate resilience despite initial impressions of good per-
formance stability. This is attributed to different ordinal patterns with lower relative
frequencies, indicating unstable behavior.

Segment 2 exhibits superior resilience due to two factors: relatively stable performance
values with fewer distinct patterns and the system’s quick recovery to a stable range
following a disruptive event. This rapid recovery reflects high resilience.

Segment 3 shows the lowest resilience, primarily due to the use of permutation entropy,
where frequent patterns correlate with better resilience.

Segment 4, while not having predominantly negative patterns, lacks stable trends and
shows considerable data variability. Consequently, it can be interpreted as less resilient
compared to other segments.

Finally, Segment 5 maintains complete stability, representing the highest resilience
level, characterized by a single pattern (pattern 1) with a frequency of 8, indicating no
fluctuations in the data.

By examining this illustrative example, it can be concluded that the resilience value
does not depend on the magnitude of the values used for its calculation, but rather on the
relationships between the values or symbols considered. In other words, resilience is a
measure of stability derived from the behavior of a dataset. Furthermore, if the entropy
value is adjusted by giving greater weight to certain ordinal patterns that better represent
the behavior or reaction to a system’s or entity’s performance drop, the altered entropy
value will be closely associated with the characteristic intended to be extracted from the
data—resilience.

5. Case Study

In order to validate and demonstrate the utility of both, the model and the proposed
methodological procedure, an analysis was conducted on the resilience index behavior
of a fleet used in the operation and exploitation of an open pit mine located in northern
Chile. This fleet consists of 4 electric shovels, 5 drills, and 42 trucks, comprising 51 units.
Support equipment, such as motor graders and water trucks, among others, were excluded.
Historical availability data at the fleet level were collected, covering a continuous 244-week
period of operation. Subsequently, this series underwent the symbolization process, as
described in the previous section. Once the values were replaced by the corresponding
symbols, ordinal patterns were identified using sliding windows and subsequently counted.
Finally, the resilience values were calculated using the proposed procedure. The data series,
as well as the value ranges for the low, medium, and high intervals for each segment,
averages, and the resilience value for each segment, are shown in Figure 11.

As mentioned earlier, there are several methods in the literature for quantifying the
resilience of industrial systems. To compare the results provided by the proposed model
(Method A), two existing resilience indicators from the literature were computed.

The availability-based resilience method, known as the “Availability-based engineer-
ing resilience metric”, evaluates a system’s ability to maintain and recover its functionality
after disturbances. It measures the system’s availability in a steady state before and after
external shocks, as well as the time required to reach these states. Equation (4) computes a
resilience value through the integration of availability values and times that reflects both
the system’s performance and recovery processes [27]. This method will be referred to as
Method B.

ρ =

(
A1

ln (t1)

)
·

n

∑
i=1

(
Ai2 ·Ai3

ln (ti3 − ti2)

)
(4)

where

■ A1 is the system’s availability in a steady state before the shock.
■ t1 is the time required to reach the initial steady state.
■ Ai2 is the transient availability of the system immediately after shock i.
■ Ai3 is the system’s availability in the new steady state after shock i.
■ ti2 and ti3 are the times corresponding to the states Ai2 and Ai3, respectively.
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The resilience method based on performance and recovery, described by Cheng
et al. [28,29] measures a system’s ability to resist, adapt to, and recover from disturbances.
It evaluates the system’s performance during periods of decline and recovery, as well as the
time needed to restore its performance. The resilience metric integrates performance across
different periods and the speed of recovery, providing a quantitative assessment of the
system’s robustness and recovery capability. This method will be referred to as Method C.

ρ(tx; tm < tx ≤ tm+1) = 1 +
m−1

∑
j=1

tj+1−tj

∑
i=1

Pnorm
(
tj(i)

)
− Pnorm

(
tj(i − 1)

)
tnormj(i)− tnormj(i − 1)

+
tx−tm

∑
i=1

Pnorm(tm(i))− Pnorm(tm(i − 1))
tnormm(i)− tnormm(i − 1)

(5)

where

■ Pnorm
(
tj(i)

)
is the system’s normalized performance over time tj(i).

■ tnormm is the normalized duration time of segment m.

The values obtained by each method for the nine segments are shown in Table 3.

Table 3. Resilience values for each segment.

Segment Method A Method B Method C

1 0.573 0.587 0.266

2 0.573 0.679 0.566

3 0.598 0.611 0.796

4 0.901 0.707 0.960

5 0.729 0.718 0.866

6 0.585 0.639 0.689

7 0.633 0.646 0.682

8 0.573 0.587 0.266

To compare the resilience values between the studied indicators, two different methods
were employed:
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• Coefficient of Determination (R2): This method measures how well the observed
outcomes are replicated by the model, indicating the proportion of the variance in the
dependent variable that is predictable from the independent variable.

• Bland–Altman Model: This approach evaluates the agreement between two measure-
ment methods by plotting the differences between the measures against their mean,
allowing for the identification of any systematic bias [30].

Figure 12 shows the correlation plot and the Bland–Altman plot for comparing the
results obtained between Method A and Method B. It can be observed that the coefficient
of determination (R2) has a value of 0.50, which is interpreted as a moderate correlation
between the methods.
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When observing both Bland–Altman plots, almost all points are within the variability
interval limits. This means that the differences between the measurements of the three
methods are within an acceptable range of variability. This implies a certain and good
consistency between the methods, with no extreme differences or significant disagreements
among the three methods. This also indicates the absence of systematic bias that could
cause major discrepancies.

Figure 14 shows the comparison between the resilience values obtained by the three
methods. As observed, there is a relative similarity in the behavior of the values. Segments
1 to 8 were used because Segment 9, not having the same number of periods as the previous
segments, distorts the resilience values and does not allow for correct comparison. As pre-
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viously mentioned, there is no complete agreement between the resilience values calculated
by the three methods. However, a relatively similar behavior can be observed among them.
When considering the two methods cited in the literature, the same discrepancy is evident.
This suggests that the field remains open and that no universal resilience indicator exists,
hence the proposal of this new resilience indicator based on the permutation entropy of
ordinal patterns.
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Ultimately, these analyses and comparisons lead to the conclusion that, when com-
pared to two other established methods in the literature, the resilience measurement
approach based on the permutation entropy of ordinal patterns is both reliable and viable
as an alternative, offering an acceptable level of accuracy.

6. Conclusions

In this work, we have presented a proposal for a new resilience indicator based on the
application of permutation entropy of ordinal patterns to a time series transformed into a
symbolic series. This approach has demonstrated its applicability and feasibility through a
practical case study.

This innovative methodology offers a robust approach under conditions of noise and
variability, making it a valuable tool for resilience studies in various fields. The application
of permutation entropy based on ordinal patterns and the transformation into symbolic
series allows for fast and accurate calculations, facilitating the real-time analysis of large
datasets. Thus, this proposal constitutes a computationally efficient method for evaluating
resilience in engineering systems, enabling real-time analysis of large datasets. Additionally,
the method is flexible enough to adapt to different types of time series and systems.
Along with this, the method is parameterizable, as it allows for the adjustment of its key
parameters to adapt to specific situations, such as production cycles, new maintenance
strategies, etc. In summary, the proposed indicator represents a contribution in the field
of resilience quantification, offering a new perspective for examining and understanding
complex systems.

The managerial insights derived from this work offer guidance for improving op-
erational efficiency and long-term sustainability. One key takeaway is the influence of
maintenance strategies on resilience indicators. Proactive maintenance approaches, such as
predictive and preventive strategies, can significantly enhance system resilience by mini-
mizing unplanned downtimes and ensuring more stable operations. In contrast, reactive
maintenance may lead to greater variability and reduced resilience, as it often fails to
address potential failures in a timely manner. The challenge for managers lies in translating
these insights into actionable practices, requiring an alignment of resources, employee
training, and technological integration to implement data-driven maintenance strategies.
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Efforts to embed resilience measurement into the operational workflow will involve not
only adjusting existing processes but also fostering a culture of continuous improvement
and responsiveness to system feedback. Ultimately, adopting and integrating resilience
measurement tools and metrics will provide managers with real-time insights that enable
more informed decision-making, optimizing both performance and adaptability in dynamic
production environments.

Future work will focus primarily on continuing the validation of this method in
different applications and on the continuous improvement of the underlying algorithm.
We plan to use larger ordinal patterns and test this strategy in more extensive time series.
Additionally, we will continue to compare this new resilience indicator with other indicators
or values obtained thorough different methodologies to evaluate its relative performance.
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