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Abstract: Misleading or unnecessary data can have out-sized impacts on the health or accuracy
of Machine Learning (ML) models. We present a Bayesian sequential selection method, akin to
Bayesian experimental design, that identifies critically important information within a dataset while
ignoring data that are either misleading or bring unnecessary complexity to the surrogate model of
choice. Our method improves sample-wise error convergence and eliminates instances where more
data lead to worse performance and instabilities of the surrogate model, often termed sample-wise
“double descent”. We find these instabilities are a result of the complexity of the underlying map
and are linked to extreme events and heavy tails. Our approach has two key features. First, the
selection algorithm dynamically couples the chosen model and data. Data is chosen based on its
merits towards improving the selected model, rather than being compared strictly against other data.
Second, a natural convergence of the method removes the need for dividing the data into training,
testing, and validation sets. Instead, the selection metric inherently assesses testing and validation
error through global statistics of the model. This ensures that key information is never wasted in
testing or validation. The method is applied using both Gaussian process regression and deep neural
network surrogate models.

Keywords: double descent; Bayesian sequential selection; machine learning; deep neural networks;
Gaussian process regression; sample-wise error convergence; misleading data

1. Introduction

What we term, “Information FOMO”, or Fear Of Missing Out, is the unhealthy ten-
dency to use all available data for fear of missing out on information. However, more data
are not always better. Data may present misleading information, or even worse, lead to
overfitting and, as we show here, induce instabilities in the surrogate map. These cases
may be linked to the concept of sample-wise “deep double descent” [1–3], where more
data does not result in better models. However, this phenomenon can more generally be
attributed to slow sample-wise convergence.

The general concept of double descent, Figure 1, refers to test errors that first undergo
a descent, then an ascent in error, followed by a second and final descent in error. This
phenomenon is observed with respect to model complexity (i.e., number of layers or layer
width), training epochs, or training samples [4], and has been both theoretically appreciated
and empirically observed in numerous studies [1–3,5–9]. Although all three manifestations
of double descent can lead to significant errors, the first two, model complexity and training
epochs, can be avoided through straightforward model parameter studies, such as “early
stopping” strategies [10] in either training time [11] or model size. Training sample size,
however, is nearly always fixed and often too small for sufficient cross-validation studies.
As such, double descent with small and fixed samples presents a substantial threat to ML
techniques in real-world applications.
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Despite this threat to ML techniques, sample-wise double descent in deep models
has received much less attention than model complexity and training time. This is likely
due to the limitation that fixed datasets are not large enough to perform validation studies.
The majority of the literature surrounding sample-wise double descent is recognized in
ridgeless regression [8,12] or random features regression [13]. In ridgeless regression, [12],
double descent is directly related to an instability of the solution to an ill-posed and noisy
dataset when dimensions d are equal to fitting parameters n. This notion of the instability
of the surrogate model is precisely what we find here.

Data-driven modeling often addresses sample-wise instabilities through appropriate
ℓ2 regularization of the model in ridge regression [8,12] or data-dependent regularizers
in deep learning models [14,15]. However, the latter provides modest improvements of
a few percent for the majority of presented cases. Our work follows in the vein of data-
dependent regularizers, where the data themselves are seen as a component to the level
of complexity of the model, to eliminate instabilities of the surrogate model and improve
error convergence.

Figure 1. Double Descent does not follow the expected descent of modern ML techniques. Modern
ML expects test error to decrease with model complexity, training epochs, and training samples, yet,
in practice, the descent is not monotonic.

While not applied to concepts of sample-wise double descent, there are several ap-
proaches for selecting subsets of training data to reduce training cost on large datasets
that draw parallels to our approach. Random uniform sampling [16,17], importance sam-
pling [18–22], and adaptive importance sampling [23–25] reduce neural network training
costs by selecting only a fraction of the data for training. Adaptive importance sampling
is closest to our approach, using probability distributions to define sample importance
and update the training set at each iteration [26]. While quite effective, these approaches
are designed for efficiently updating and training the network weights, not for neglecting
unnecessarily complex data or improving the stability of a general surrogate model. Our
application considers not only neural networks, but also Gaussian processes, which do not
undergo stochastic gradient descent for training.

In Section 2.4 we propose a method, inspired by Bayesian experimental design,
for eliminating double descent through identifying, and ignoring, data that bring un-
necessary complexity to the model. This is conducted by iteratively selecting a subset of
data for improving the model by scoring the dataset with respect to its likely information
gain and predictive uncertainty. This idea allows us to ignore data whose predictive un-
certainty and likely information gain are small. We find that doing so brings substantial
improvements to the convergence of test mean-squared error (MSE), as well as the often
unappreciated log-PDF error, which emphasizes accurate prediction of extreme events.

The method also converges without the need for testing or validation data while only
using a fraction of the data. As the method’s selection criteria ignores much of the data,
convergence in the training set directly implies convergence in test error. The approach
also demonstrates that only a small subset of the data, e.g., 1 out of every 20 samples in one
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example, provide useful information. Together, the unnecessary need for splitting data into
training, testing, and validation sets and the minimal selection of data for optimal error
properties suggest this approach may unlock the use of many small and fixed datasets
throughout various applications.

These findings are demonstrated first in Section 3.1 on a simple, nonlinear 1D function,
with a tunable extreme event parameter, approximated by Gaussian process (GP) regression
that presents a visual example of sample-wise double descent. To our knowledge, sample-
wise double descent has yet to be observed for GP regression and our tuning from non-
extreme to extreme behavior underscores how data can induce instabilities in the surrogate
map. We then extend this approach in Section 3.2 to a larger and significantly more complex
problem with 20,000 training samples and Deep Neural Networks (DNNs) taking the role of
a surrogate model (specifically, DeepONet [27]). Section 4 concludes our study discussing
the generality and implications of the approach to limited and sparse datasets as well as
any Bayesian or ensemble surrogate model.

2. Methods
2.1. General Map Approximation Task

We wish to predict an output, y, from an observed input, x , by approximating
the underlying map, y = f (x) via a surrogate model. Learning this map may require
substantial data depending on the complexity and dimension of the input space (e.g.,
when x is a multi-dimensional vector of inputs, x). We seek to accomplish this learning
task through the identification of only a subset of available data for training. We quantify
performance by measuring errors in both the normalized mean square error (MSE) and the
log-PDF error. MSE is calculated between the approximated output, µ, and true value, y,
with n samples and is calculated as,

eMSE =
∑n

i=1(yi − µi)
2

∑n
i=1 y2

i
, (1)

while the log-PDF error is calculated by,

elog−PDF =
∫

| log10 pµ(y)− log10 p f (y)|dy, (2)

where both the true PDF, p f (y), and approximated PDF, pµ(y), are found via a kernel
density estimator. Details on computing errors and application to each presented use case
are provided in the appendix, Appendix A.3.

We test two surrogate models on two approximation tasks of differing dimensionality
and complexity. A Gaussian Process regression (GP) surrogate approximates a simple
one-dimensional map with heavy-tailed statistics and a Deep Neural Network (DNN)
surrogate approximates a more complex dispersive nonlinear wave model that takes the
form of a one-dimensional partial differential equation. GPs and DNNs are detailed in the
Appendix A.2, while the high-level details of each task are presented next.

2.2. 1D Piece-Wise Nonlinear Function

Figure 2a presents the scalar, 1D piece-wise nonlinear function of varying degrees
(see Appendix A.1.1 for more details) with a linear core and nonlinear edges to emulate
rare dynamical instabilities initiated at high magnitudes (varied by a nonlinear coefficient,
C = 0, 5, 20, 50). The input variable, x, is a Gaussian random variable with mean 0 and
standard deviation of 1, whose probability distribution function (PDF), px, is shown in
Figure 2b. We may then calculate the PDF of the function, with output y, via a standard
weighted Gaussian kernel density estimators (KDE) as,

p f (y) = KDE(data = y, weights = px(x)), (3)
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which displays a Gaussian core and heavy tails in Figure 2c, indicating rare and extreme
events. The PDF of the surrogate model with output µ is calculated similarly, replacing y
for µ.

To emulate experimental datasets, where the independent variable is controlled rather
than stochastic, the training data are sampled from a uniform distribution from x ∈ [−6, 6].
While this may appear counter-intuitive, sampling from px would constitute the “in the
wild” case and require an improbably large training dataset to span the domain. We do
not test this case here. Experimentation of stochastic systems often aims to explore the
entire domain of possibilities, rather than repeating the most likely scenarios. For example,
resources on large-scale weather simulations are often spent to span the input space of
parameters, rather than resample likely scenarios, to quantify weather risk. This sampling
approach is also used for our second test case, the dispersive nonlinear wave model.
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Figure 2. (a) the true nonlinear solutions y = f (x), with respect to random variable x for nonlinear
coefficients of C = 0, 5, 20, 50, (b) the Gaussian PDF of x, and (c) the non-Gaussian PDF of the function
with respect to the response variable, y, displaying heavy tails for each nonlinear case.

2.3. Dispersive Nonlinear Wave Model

Our second task is based on a dispersive, nonlinear wave model that has the form
of a partial differential equation originally proposed by Majda, McLaughlin, and Tabak
(MMT) [28] for the study of one-dimensional (i.e., one spatial dimension) wave turbulence.
In contrast to the previous 1D task, the MMT model evolves a wave, u(xL, t) over space (1D
spatial variable xL) and time (t), resulting in an infinite dimensional task that is reduced
to the dimension of the chosen computational grid (i.e., nxL × nt). The initial conditions
of the wave, u(xL, 0), provide the input values for the model. They are randomly chosen
from an 8D subspace: u(xL, 0) = xΦ(xL), where x represents the random coefficients (an
8D vector) that are assumed to follow a known distribution. The output variable of interest,
which we wish to map the initial wave conditions to, is the maximum future wave height
|Re(u(xL, t = τ))|∞, where τ is a finite time horizon and set at τ = 50 for this study (see
Appendices A.1.2 and A.1 for details on MMT and the wave height map).

2.4. FOMO Algorithm

The “FOMO” algorithm aims to identify a subset of a dataset for training that results in
improved error metrics. For each of the tasks and surrogate models, we vary the size of the
dataset to search as well as the input variable distributions. Details on each of the datasets
used to test the FOMO algorithm are detailed and discussed in the results, Section 3.

The heart of the FOMO algorithm is the acquisition function used to select the
performance-improving subset. We use an acquisition function proposed by Blanchard
and Sapsis [29] to optimally learn the log-PDF for extreme events through sequential
experimentation (i.e., Bayesian Experimental Design (BED)). The acquisition function,

a(x) = w(x)σ2(x), (4)
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is the product of the likelihood ratio,

w(x) =
px(x)

pµ(µ(x))
, (5)

where px and pµ are the input and approximated output PDFs, respectively, and σ2(x) is
the predictive variance of the surrogate model. The likelihood ratio, or information metric,
ranks input-output (I-O) pairs with respect to their potential for contributing information
to efficiently learn the underlying probability distribution of the map. This metric becomes
optimal when pµ approaches p f in the log-PDF metric. The acquisition function combines
this metric with the predictive variance, identifying input regions where the model is
uncertain of the output. This balances the acquisition of samples that resolve the error in
the map (i.e., MSE) and the map’s output distribution (i.e., log-PDF error) [29].

The “FOMO” sequential selection method for a fixed dataset is outlined in Algorithm 1
with the following steps. (1) Initialize with a small subset, ninit, I-O pairs from the dataset
and train the surrogate model. For reference, the GP and DNN tasks are initialized with
8% and 0.1% of the datasets, respectively. The initial samples may be chosen randomly or
through some proposed sampling bias. (2) A predictive variance emitting surrogate model
(e.g., GP or an ensemble of DNNs) trains on the selected dataset and emits a predictive
mean, µ, and variance, σ2, for all observed I-O pairs. The new surrogate model is then
leveraged to construct the approximate output PDF (the output PDF is approximated by
107 Latin Hypercube samples (LHS) whose output is predicted by the surrogate model).
The acquisition values are calculated and the highest scoring I-O pairs of batch size, nb,
amongst the whole dataset, are selected. (3) Augment training dataset with selected I-O
pairs and, as all I-O pairs are given acquisition scores, duplicates, i.e., a current training
I-O sample that is chosen again, are removed. (4) Retrain the surrogate model on the
augmented dataset and repeat (2)–(4) until niter is achieved.

Algorithm 1 FOMO sequential selection algorithm for fixed data

1: Initialize: Select ninit I-O pairs, randomly or otherwise, and train surrogate model.
for n = 1 to niter do

2: Calculate acquisition values, a(x), for the entire dataset, select nb (i.e., batch size)
highest scoring I-O pairs.

3: Augment training dataset and remove duplicate I-O pairs.
4: Retrain surrogate model on augmented dataset.
5: end for
6: return Final surrogate model and training dataset.

3. Results

We show that the FOMO approach improves error convergence in both mean-square
error (MSE) and log-PDF error and eliminates model instabilities for GP and DNN sur-
rogate models in both low and high dimensional problems, without the need for test or
validation data.

3.1. 1D Example with Gaussian Process Regression

In Figure 3, we test and observe training errors for 100 independent experiments for
our two training approaches approximating the function defined by (A1)–(A3), shown
in Figure 2a with a GP surrogate model, detailed in Appendix A.2.1, given n samples
(sampled from a uniform distribution), ranging from 5 to 60, of observed input and output
data, D = {xi, yi}n

i=1. Figure 3a,c present the normalized MSE and log-PDF test errors (see
Appendix A.3 for error calculation details), respectively, against the number of samples in
standard training, while Figure 3b,d report the errors versus iteration using the FOMO algo-
rithm initialized with random samples and biased I-O samples. In each figure the median
error is highlighted with shaded regions indicating the minimum and maximum errors.
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Figure 3. GP FOMO model improves error convergence, is superior to early stopping, and con-
verges without testing or validation data. The mean normalized MSE and log-PDF errors (min and
max values shaded) of 100 experiments with randomly chosen data samples (a,c), and with FOMO
sequential selections (b,d) over four nonlinear coefficients C = 0, 5, 20, 50 and two initializations,
random and biased. (e) provides a comparison of the approximated and true solution for the errors
denoted in (a–d,f) is the number of chosen data samples by iteration for 100 independent sequential
searches from (b,d).

Poor error convergence, i.e., sample-wise double descent, is observed for both metrics
under standard training using GPs for the simple 1D problem for nonzero nonlinear
coefficients, while the FOMO approach clearly improves convergence. For this 1D case,
we will forego detailed early-stopping/training/testing/validation implications for the
following DNN example and focus on the C = 20 1D representations of sample-wise
double descent and the instabilities experienced by the surrogate model. We highlight 3
points in plots a–d. The red, gold, and blue points present representative examples of early
stopping point, double descent, and FOMO training, respectively, from the same training set.
Figure 3e provides the mean solution, µ(x), for each and their associated training samples.
While the red, nx = 14, solution is relatively accurate, the addition of 10 more samples
leads to an unstable solution at nx = 24. The FOMO approach avoids this instability and
presents a substantially superior model solution by sample 10, though nx = 24 is shown
to compare against the double descent solution. This observation of model instabilities
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through standard training is also observed for the other two nonlinear coefficients, C = 50
and C = 5, with more and less severity, respectively. These coefficients lead to heavier tails
and stronger extreme events, while C = 0 emits no extreme events and already possesses
fast error convergence with standard training.

Differences in initialization, biased or random, do not change FOMO performance,
as seen in Figure 3b,d. Our investigation of biased samples aims to ask whether the initial
subset of chosen data alters the FOMO trajectory. The biased I-O samples are chosen as the
ninit highest likelihood ratios after training the surrogate model with all data to approximate
the output PDF. This assumes the “all-data-trained” model provides a reasonable, but not
necessarily converged, approximation of the output statistics. Other initial approximations
of the output PDF could also be used to determine initial values. Regardless, the random
initialization performs similarly to the biased approach. This observation reiterates that the
FOMO algorithm seeks to build a subset that does not trigger model instabilities. As long
as the initialization does not trigger a model instability, it will not appreciably change
the FOMO trajectory. Initializing with a small training subset, when compared to model
capacity or the input space, helps ensure stability of the first iteration.

Figure 3f, presents another key feature of the FOMO algorithm, choosing only about
half of the available samples. The algorithm only adds samples that bring stable improve-
ments to the model and ignores those that do not. We now expand on this idea in the
higher-dimensional case using DNNs.

3.2. Dispersive Nonlinear Wave Model with Deep Neural Networks

We move to a more complex case that seeks to learn a dispersive nonlinear wave model
that has the form of a one-dimensional partial differential equation originally proposed by
Majda, McLaughlin, and Tabak (MMT) [28] for the study of 1D wave turbulence. While
GPs could be used as a surrogate, a companion study [9] showed DNNs are superior for
the complexity of this problem and are used here, see Appendix A.2.2 for DNN details.
Additionally, this example requires many training samples, at least at an order of magni-
tude of 1000 or more, and are computationally intractable for standard off-the-shelf GP
applications compared to off-the-shelf DNNs.

Similar to the previous example, Figure 4 presents the training errors of 25 independent
experiments of both training approaches for approximating the underlying map with a
DNN given n samples (sampled via Latin Hypercube sampling, LHS), ranging from 50
to 20,000, of observed input and output data, D = {ui(xL), yi}n

i=1. Figure 4a,c present the
normalized MSE and log-PDF test errors, respectively, against the number of samples, while
Figure 4b,d report the errors versus iteration using the FOMO algorithm. In Figure 4a,c,
early stopping only considers 1500 samples and a similarly accurate error is not observed
again until an order of magnitude higher, at 15,000 samples. Even at the early stopping error,
Figure 4e shows a drastic underprediction of the most probable states. More concerning,
if an unconservative splitting of the 20,000 samples is taken, i.e., 6700 samples for training,
testing, and validation, then full training leads to errors near the peak of double descent.
In addition to the early stopping errors, the peak of double decent also leads to extreme
over predictions of high magnitude events, shown in Figure 4e.

The FOMO results shown in Figure 4b,d, and found via Algorithm 1, do not suffer
from these difficulties. Instead, the FOMO approach provides the most accurate model (see
Figure 4e), does not undergo sample-wise double descent, converges quickly, and only uses
1/20th of the data to achieve these results. We stress the latter observation as it is a direct
result of Algorithm 1, which, at each iteration, only selects data that specifically eliminate
uncertainty in the model or provides essential information. Consequently, data that do not
bear beneficial information to the model are deemed unnecessary and ignored.
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Figure 4. DNN FOMO model eliminates double descent, is superior to early stopping, and con-
verges without testing or validation data. The mean normalized MSE and log-PDF errors (with min
and max values shaded) of 25 experiments with randomly chosen data points on a Latin Hypercube
(a,c), and with sequential selections (b,d), with biased initialization. (e) provides a comparison of the
predicted and true output distributions for three errors denoted in (a–d,f) the number of chosen data
samples by iteration for 25 independent sequential searches from (b,d).

Figure 4f demonstrates the ability of the algorithm to ignore data and converge to
a set of optimal training data that, critically, emits converged error metrics in both MSE
and log-PDF error. At each iteration, the algorithm finds a user-specified nb samples (here
nb = 50) that provide the greatest information gain amongst the entire dataset. This means
that even those samples that are amongst the training set are considered. As more samples
are added to the training set, the algorithm finds that the remaining samples provide
less information than known samples, permitting an ability to disregard those remaining
samples. The convergence of the training set results in a convergence of information, which
ultimately leads to a convergence in the test error (Figure 4b,d). This implies that the FOMO
approach does not require data to be split into training, testing, and validation groups.
Rather, all pertinent information may be extracted from the entire dataset for the most
accurate model.

Optimal data selection through a dynamic partitioning of samples as informative or
unnecessary. Figure 5 demonstrates how Algorithm 1 selects the most informative samples
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while ignoring the rest. The y-axis denotes our metric for information, the likelihood
ratio [29], while the x-axis presents the predictive variance, σ2(x), found amongst the
ensemble of the independently weight-initialized DNN predictions. The product of these
two quantities is the acquisition function proposed by Blanchard and Sapsis [29], Sapsis [30],
a(x) = w(x)σ2(x). As shown in Sapsis and Blanchard [31], the adopted acquisition function
balances information with the uncertainty that guarantees optimal convergence in the
context of Gaussian Process Regression. Here, it is employed as a measure to optimally
acquire samples for training the DNN. In effect, this approach allows us to measure model
risk versus model capacity [2,32–35].

Figure 5. Necessary/Informative and unnecessary/misleading datasets show clear separation.
A representative example of the iterative selection process, where data are sequentially acquired.
The acquisition front indicates the acquisition score of the 50th highest scoring I-O sample at each
iteration. Those above are acquired and those already chosen remain in the training set.

Walking through the iterations of Figure 5, we can see how the approach dynamically
partitions the data into informative and unnecessary categories. Starting at iteration 1,
only 50 samples, denoted in blue are used to train the model. Unsurprisingly, such little
data allow each DNN to train these samples to machine precision and gives a predictive
uncertainty amongst the training samples of log10(σ

2
Chosen(x)) ≈ −16, while the predictions

of the remaining samples are 12 orders of magnitude larger, as expected, and vary widely in
the likelihood ratio metric. We can then acquire the largest nb samples, with respect to the
acquisition function, retrain the model with the addition of the new samples, and repeat the
process. Here, we chose nb = 50 and the 50th point sets which we define as the “acquisition
front”, denoting a line of constant acquisition value between I-O samples the model wishes
to acquire and those it does not. Iterations 2 and 6 show that as more data are acquired into
the chosen/training set, the uncertainty in the chosen set increases, while the uncertainty in
the remaining set decreases. The latter observation is simply due to the increased training
data that reduce the generalization error and thus uncertainty. The former observation,
although expected, has significant implications for the FOMO method. As the training set
increases, the degree of over-parameterization of each DNN reduces and discrepancies
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between the DNN training errors increase. This behavior is critical to identifying when the
DNN parameterization becomes stressed and susceptible to instabilities related to slow
error convergence or double descent. This is shown in the following iterations.

Iterations 16, 50, and 100, demonstrate the ability of the model to ignore data when
the DNN parameterization has reached a critical threshold. At iteration 16 the uncertainty
of the chosen data has substantially increased, while the information contained in the
remaining data has decreased, leading to an acquisition front that intersects both the
chosen and remaining sets. For this iteration, only 28 of the 50 samples are novel, while 22
samples already exist in the chosen data. This means that the model begins to recognize
that it already contains the most pertinent information and its uncertainty in these data is
approaching an unacceptable level. By iteration 50 the model has begun to entirely ignore
the remaining data, as the model is sufficiently uncertain about its own, more informative
training data and does not see a reason to add further stress into the model. Over the next
50 iterations, the stochastic nature of the DNN training permits 43 new samples to join
the chosen dataset. However, considering the average of acquisition is less than one for
the 50 potential acquisition samples at each iteration, the algorithm is easily converged by
iteration 50.

Shallow ensembles are cheap and perform well. An ensemble of DNNs, differed
only in their weight initialization [36], are employed to calculate the predictive uncertainty.
Although the validity of such approaches is hotly debated, Wilson and Izmailov [37]
and Pickering and Sapsis [38] have argued that DNN ensembles provide a very good
approximation of the posterior. While the previous results have all been for an ensemble
of N = 10 DNNs, Figure 6 shows that shallow ensembles of only N = 2 perform nearly
as well at 1/5 the computational cost. Figure 6a shows that the median and range of both
the MSE and log-PDF errors are nearly identical, with small advantages going to the larger
ensemble. The greatest difference between the two is the number of acquired samples
in Figure 6b, where N = 2 chooses approximately 25% more samples. The surprising
ability of shallow ensembles of N = 2 to perform well in active learning schemes was also
observed in Pickering et al. [9].
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Figure 6. Shallow ensembles perform well. (a) The median MSE and log-PDF errors (with min and
max values shaded) of 25 experiments using DNN ensemble sizes of N = 10 and N = 2. (b) the
number of chosen data samples by iteration for 25 independent sequential searches for both N = 10
and N = 2.

4. Discussion

Slow sample-wise error convergence, or double descent, a traditionally unavoidable
phenomenon for fixed datasets, is eliminated in both the MSE and log-PDF errors for
both GP and DNN surrogate models. This Bayesian-inspired approach ignores data that
bring unwarranted instability to the chosen model that otherwise results in an increase
in test/generalization error with increased sample size, an instability that is often unre-
coverable. For real-world datasets, especially where data collection has concluded or is
expensive to collect, removing sample-wise double descent is critically important. This
method not only substantially reduces the errors in normalized MSE from a median of 20%,



Entropy 2024, 26, 835 11 of 16

to 1%, but also the log-PDF error by four-fold. An often unappreciated metric, the log-PDF
error appropriately weights high-magnitude, rare phenomena that ML methods struggle
to accurately predict [9,39].

The approach is model-agnostic and statistically driven, requiring a dynamic inter-
action between the model and the data. The statistical metrics used to select data means
that regardless of the chosen surrogate model (e.g., DNN, Gaussian process regression, etc.)
or parameters (e.g., layers, neurons, training epochs, activation functions, kernels, etc.),
the model and the dataset have an opportunity to “discuss” the inherent deficiencies of the
model and the short comings of the data. As only statistics are used to guide the iterative
data selection process, the approach only requires that the surrogate model of choice emit
a mean and variance prediction. Although rigorous predictions of the quantities, such as
Gaussian process regression, are clear surrogate model candidates, our work here shows
that simple, ensemble DNNs provide sufficient predictions for success.

Shallow DNN ensembles are simple in implementation, scalable, and computation-
ally tractable. Ensemble DNNs are simple to implement. They only require that DNN
weights are randomly initialized, the default setting in all DNN architectures. Despite
this simple approach, we find that shallow ensembles of DNNs, even just two, provide
sufficient predictive uncertainties to eliminate double descent. DNNs also provide ideal
scaling in data size and input parameters, unlike more rigorous methods such as Gaussian
processes. Finally, although the iterative process requires many new DNNs to be trained,
the DNNs are trained on only a small subset of the data, 1/20th here, during the selection
process. Together, ease of implementation, modest scaling, shallow ensembles, and reduced
training data are compelling for real-world application.

Convergence of the approximated output PDF ensures convergence of training
samples and removes the need for testing and validation sets. The surrogate model output
PDF, pµ directly, and dynamically, informs the information metric (i.e., likelihood ratio)
for acquiring new samples. Once the surrogate output PDF converges, the information
metric does as well. Consequently, the acquisition front becomes set, only the predictive
variance provides an avenue for acquiring more samples, and the remaining samples
above this threshold are acquired, ending the selection. While it is traditional to consider
the point-wise MSE in validation and testing, consisting of 2/3 of the data, the surrogate
output PDF is approximated through 106, or more, test samples. The surrogate output
PDF provides a global measure of the model generalization error, rather than a sparse and
limited pointwise comparison. Thus, we argue that the cost of losing information to a local
comparison tool, by setting aside 2/3 or more of available data, compared to a global metric
is a far greater and unnecessary risk.

An optimal sparse representation of the underlying map is preferred to a plentiful,
but arbitrary representation, opening the door to numerous datasets with various de-
ficiencies, whether that be from unnecessary or limited data. Although the likelihood
ratio is likely appropriate for most physical systems, other choices may be optimal for
different applications. Further work is also necessary to extend the method’s performance
in pathological cases and sufficiently noisy data.

Sample-wise double descent in the nonlinear context appears to have a fundamen-
tally different meaning compared to traditional discussions of double descent. While we
do not provide any theoretical findings here, the observation of sample-wise double descent
for Gaussian Process regression does not follow current reasoning. Double descent is typi-
cally associated with a crossover from under- to over-parameterization of DNNs. However,
a GP in 1D has only two tunable parameters (three if noise is considered), meaning the
under- to over-parameterization occurs over two samples, yet double descent is observed
from 5 to 30 samples. From our observations of both GPs and DNNs, we believe double
descent is due to the underlying map and the distribution of sample data. If the map is
sufficiently complex, i.e., nonlinear, and data are not appropriately distributed in the input
space, as is the case when randomly partitioned, then the surrogate model may possess
instabilities. Of course, in the 1D case, it is trivial to propose a uniform distribution, but in
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higher-dimensional cases, such as the MMT case here, a sufficient uniform distribution of
samples is infeasible. The FOMO method circumvents this by finding the distribution of
fixed samples that best recover the global, output PDF, which includes both the Gaussian
core and heavy tails where nonlinearities lie.

Instabilities of the surrogate model are induced by the underlying map complexity.
Specifically, the complexity refers to the degree to which extremes and heavy-tailed statistics
are present in the underlying map. By varying a tunable nonlinear coefficient, we show
that sample double descent is not present for a non-extreme Gaussian map while double
descent becomes increasingly apparent for maps with nonlinearities, extremes, and heavy
tails. As more nonlinearities or extremes are present, the surrogate models become more
susceptible to instabilities. Using our approach, these data-induced instabilities are avoided.

Drawbacks to this approach. While the FOMO approach improves the ability to
eliminate double descent, double descent may still be unavoidable without enough samples.
We list a few limitations below:

1. If no subset of the samples is sufficient to characterize the map, FOMO will not
improve performance.

2. While the GP case provides a compelling 1D representation of double descent, the in-
stability could be removed by introducing a nonzero noise term. Based on our
knowledge that the problem is noiseless, this would be an incorrect application of
noise, but, it would remove the instability.

3. Other regularization approaches for instabilities could be employed for DNNs, such
as physical constraints or physics-based loss functions (e.g., PINNs [40]), but their
efficacy for faster error convergence or sample-wise double descent is unknown.
Additionally, the use of regularization approaches does not invalidate the use of the
FOMO method.

4. The method assumes a known input distribution px. This distribution could be
approximated or rationalized from the input data. If incorrect, the performance would
suffer. Future work is necessary to determine the sensitivity of the method with
respect to errors in the input distribution.

In summary, we believe the FOMO approach is compelling for many practical prob-
lems. It mitigates sample-wise error convergence in both MSE and log-PDF, eliminates
instabilities introduced by data, removes traditional train/test/validation by converging
towards global statistics, and is simple and scalable via flexible off-the-shelf DNNs and
shallow ensembles. Future work should continue to explore this performance in addition-
ally challenging problems, on noisy data, and other surrogate models where sample-wise
double descent is observed. While we generally discuss small datasets here, the FOMO
approach could also be implemented to compress data and information for intractably large
datasets. This is a tremendous challenge for domains such as climate where individual
climate simulations can be on the order of terabytes to petabytes.
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Appendix A

Appendix A.1. Map Definition and Data

Appendix A.1.1. Nonlinear 1D Function

The piece-wise 1D equation is given by a linear function with logistic functions at each
end,

y =

(
ax +

C
1 + e−k(x+2)

− C/2
)

/b + 1 x < −2 (A1)

y = ax/b + 1 − 2 ≥ x ≤ 2 (A2)

y =

(
ax +

C
1 + e−k(x−2)

− C/2
)

/b + 1 x > 2, (A3)

where C = 20, k = 1, a = 1, and b = 10.

Appendix A.1.2. Nonlinear Dispersive Wave Model

The underlying nonlinear system in our study is the Majda, McLaughlin, and Tabak
(MMT) [28] model, a dispersive nonlinear model that also includes selective dissipation for
high wavenumbers, used for studying 1D wave turbulence. It is described by

iut = |∂x|αu + λ|∂x|−β/4
(∣∣∣|∂x|−β/4u

∣∣∣2|∂x|−β/4u
)
+ iDu, (A4)

where u is a complex scalar, exponents α and β are chosen model parameters, and D is a
selective Laplacian. Under appropriate choice of parameters its response is characterized
by extreme events which occur intermittently. Specifically, the model contains a rich set of
physical phenomena, from four-wave resonant interactions that produce both direct and
inverse cascades [28,41] and presents a unique utility as a physical model for extreme ocean
waves, or rogue waves [42–44]. We refer the reader to [9], where identical parameters were
used and to [45] for the numerical calculation technique.

In defining an input-output problem, we are not interested in quantifying the entire
MMT behavior, but a specific observation that does not possess any closed-form solution.
We define the input as

u(x, t = 0) ≈ xΦ(xL), ∀ xL ∈ [0, 1) (A5)

where x ∈ Cm is a vector of complex coefficients and both the real and imaginary compo-
nents of each coefficient are normally distributed with zero mean and diagonal covariance
matrix Λ, and {Λ, Φ(x)} contains the first m eigenpairs via a Karhunen–Loeve expansion
of the correlation matrix defined by the complex and periodic kernel,

k(xL, x′L) = σuei2 sin2(π|xL−x′L |/P)e−2 sin2(π|xL−x′L |/P)/ℓ2
u , (A6)

with σ2
u = 1, P = 1, and ℓu = 0.35. This gives the dimension of the parameter space as

2m due to the complex nature of the coefficients. For all cases, the random variable xi
is restricted to a domain ranging from −6 to 6, equivalent to six standard deviations in
each direction from the mean. Here, we chose m = 4, or eight total independent and real
variables. This value could easily be chosen to be higher; however, doing so requires an
intractable amount of data to recover from deep double descent (see [9] for a 20D double
descent example), further underscoring the threat sample-wise double descent brings
to ML.

Finally, the output map is then defined as,

f (x) = ||Re(u(xL, t = T; x))||∞, (A7)
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where T = 20. This map serves the purpose as a predictor for the largest incoming wave
and, if trained appropriately, informs of a future dangerous rogue wave.

The training data for each of the 25 independent experiments consists of 20,000 samples
distributed throughout the 8D parameter space with Latin Hypercube sampling. Both
the traditional training and FOMO algorithm share the same 25 independent datasets of
20,000 samples.

Appendix A.2. Surrogate Models

Appendix A.2.1. Gaussian Process Regression

Gaussian process regression [46] is the “gold standard” for Bayesian design. A Gaus-
sian process, f̄ (x), is completely specified by its mean function m(x) and covariance
function k(x, x′). For a dataset D of input–output pairs ({X, y}) and a Gaussian process
with constant mean m0, the random process f̄ (x) conditioned on D follows a normal
distribution with posterior mean and variance

µ(x) = m0 + k(x, X)K−1(y − m0) (A8)

σ2(x) = k(x, x)− k(x, X)K−1k(X, x) (A9)

respectively, where K = k(X, X) + σ2
ϵ I. Equation (A8) can predict the value of the surrogate

model at any point x, and (A9) to quantify uncertainty in prediction at that point [46]. Here,
we chose the radial-basis-function (RBF) kernel with automatic relevance determination
(ARD),

k
(
x, x′

)
= σ2

f exp
[
−
(
x − x′

)⊤D−1(x − x′
)
/2

]
, (A10)

where D is a diagonal matrix containing the lengthscales for each dimension and the GP
hyperparameters appearing in the covariance function (σ2

f and D in (A9) are trained by
maximum likelihood estimation). Additionally, training the GP in equation (A9) requires
the inversion of the matrix K. Typically performed by Cholesky decomposition, the inver-
sion cost scales as O(n3), with n being the number of samples [46,47]. The prohibitive cost
of this for large datasets (>O(103)) is one reason DNNs are used for the MMT case.

Appendix A.2.2. Ensemble Deep Neural Network

The DNN implemented here is a simple feed-forward neural network, built with
TENSORFLOW and using packages including DEEPXDE and DEEPONET [27]. The network
consists of eight layers, 250 neurons, and is trained for 1000 epochs, under a learning rate
of 0.001, ReLu activation functions, and a mean square error loss function.

For each set of training data, an ensemble of N Glorot normal randomly weight-
initialized DNN models, each denoted as G̃n, approximate the associated solution field y
for feature inputs u. This allows us to determine the point-wise variance of the models as

σ2(u) =
1

(N − 1)

N

∑
n=1

(G̃n(u)− G̃(u))2, (A11)

where G̃(u) is the mean solution of the model ensemble. Finally, we must adjust the above
representation to match the description for Bayesian design. In the case of traditional
Bayesian design and GPs, the input parameters, x, are random coefficients to a set of
functions that represent a decomposition of a random function u = xΦ(x1

L, . . . xm
L ), where

x1
L and xm

L represent the spatial boundaries of the function. Thus, the DNN description for
UQ may be recast as:

σ2(x) =

1
(N − 1)

N

∑
n=1

(
G̃n(xΦ(x1

L, ...xm
L ))− G̃(xΦ(x1

L, ...xm
L ))

)2

. (A12)
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Appendix A.3. Test Error Computation

To compute the MSE and log-PDF test errors, we select two random sets of test samples,
102 for the GP example and 105 for the DNN example, Xpdf, pulled from the input PDF px,
and Xlhs, from Latin Hypercube sampling (random uniform for the GP case, Xuni), where
XGP ∈ Rd×102

and XDNN ∈ Rd×105
. The normalized MSE is computed using Xpdf as input

and ypdf = f (Xpdf) as output. The normalized MSE is then calculated as,

eMSE(n) =
∑n

i=1(ypdf,i − µpdf,i)
2

∑n
i=1 y2

pdf,i
(A13)

where n = 105. The log-PDF error uses the ylhs = f (Xlhs) input-output pairs and is
calculated as

elog−PDF(n) =
∫

| log10 pµn(y)− log10 p f (y)|dy, (A14)

where both the true PDF, p f (y), and approximated PDF, pµn(y), are found via a kernel
density estimator as,

p f (y) = KDE(data = ylhs, weights = px(Xlhs)), (A15)

and
pµ(y) = KDE(data = µlhs, weights = px(Xlhs)). (A16)

With the exception that the GP example uses the uniform sampling, yuni, µuni, Xuni. We reit-
erate that the purpose of the log-PDF error is to ensure that the approximation appropriately
accounts for PDF tails, where rare, high-magnitude events, i.e., extreme events, live.
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