Increasing Extractable Work in Small Qubit Landscapes
<p>Pictorial representation of the action of qubit machines, where individual square blocks represent thermal qubits with density matrix <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>i</mi> </msub> </semantics></math> as given in Equation (<a href="#FD1-entropy-25-00947" class="html-disp-formula">1</a>). Each collection of boxes highlighted in blue contains both a block with a black border, representing the qubit that evolves under the stochastic process (the “actor” that activates the machine), as well as the qubits that contribute to the definition of the process (the machine). The map for evolution is denoted by <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Φ</mi> <mo>(</mo> <mo>.</mo> <mo>|</mo> <msub> <mi>ρ</mi> <mi>ref</mi> </msub> <mo>,</mo> <msub> <mi>ρ</mi> <mrow> <mi>en</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>ρ</mi> <mrow> <mi>en</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>…</mo> <mo>;</mo> <mi>θ</mi> <mo>)</mo> </mrow> </semantics></math> defined by the initial density matrices for the qubits in the machine and the unitary operation that couples the qubits, labeled by <math display="inline"><semantics> <mi>θ</mi> </semantics></math>. The top half of the diagram shows the evolution of the reference temperature qubit <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>ρ</mi> <mi>ref</mi> </msub> <mo>)</mo> </mrow> </semantics></math>, and the bottom shows the evolution of the qubit system of interest, the “actor” qubit <math display="inline"><semantics> <mrow> <mo>(</mo> <msub> <mi>ρ</mi> <mi>sys</mi> </msub> <mo>)</mo> </mrow> </semantics></math>. The other diverse qubits, represented by <math display="inline"><semantics> <msub> <mi>ρ</mi> <mi>en</mi> </msub> </semantics></math> in the machine, <span class="html-italic">enable</span> non-trivial transformations. Three qubits are required for a non-trivial evolution of the reference temperature. Four are required for a subsystem that has an increase in extractable work after evolution.</p> "> Figure 2
<p>Symmetric connectivities considered on the landscape of eight qubits. The nodes represent the qubits and the links connect the qubits to the others they can directly interact with under unitary evolution.</p> "> Figure 3
<p>Connectivity (<b>a</b>) and circuit diagram (<b>b</b>) (for the first six steps of the evolution) for the messenger-qubit system. The two subsystems of size four that initially interact together are {<math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>4</mn> </msub> </mrow> </semantics></math>} and {<math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>6</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>7</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>8</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>5</mn> </msub> </mrow> </semantics></math>}, but <math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>4</mn> </msub> <mspace width="4.pt"/> <mi>and</mi> <mspace width="4.pt"/> <msub> <mi>Q</mi> <mn>5</mn> </msub> </mrow> </semantics></math> are then exchanged so that at the next step, the subsystems that interact together are {<math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>2</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>3</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>5</mn> </msub> </mrow> </semantics></math>} and {<math display="inline"><semantics> <mrow> <msub> <mi>Q</mi> <mn>6</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>7</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>8</mn> </msub> <mo>,</mo> <msub> <mi>Q</mi> <mn>4</mn> </msub> </mrow> </semantics></math>}. Compared to the connectivities shown in <a href="#entropy-25-00947-f002" class="html-fig">Figure 2</a>, the messenger-qubit system has asymmetric structure since the messenger qubits can participate in interactions with six other qubits of the landscape, while the members of subsystems only interact with four qubits on the landscape.</p> "> Figure 4
<p>Quantum circuit for the first six steps of an example eight-qubit landscape with connectivity six (<b>a</b>) and five (<b>b</b>). The colors denote the four-qubit subsystem grouping that is randomly chosen to undergo a unitary evolution. We use a periodic boundary so that the first qubit, <math display="inline"><semantics> <msub> <mi mathvariant="script">Q</mi> <mn>1</mn> </msub> </semantics></math>, is connected to last qubit, <math display="inline"><semantics> <msub> <mi mathvariant="script">Q</mi> <mn>8</mn> </msub> </semantics></math>. The degree of connectivity manifests in the number of possible groupings. Panel (<b>a</b>) shows the four possible groupings allowed for connectivity six, and (<b>b</b>) shows that more restricted connectivity results in fewer possible groupings. In the paper we also consider the connectivity seven, full connectivity for an eight-qubit landscape, which allows grouping any four qubits into a subsystem.</p> "> Figure 5
<p>Evolution of the temperature of the 8 qubits under 500 steps in energy subspace <math display="inline"><semantics> <mrow> <mi>E</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics></math> for an angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mn>0.1</mn> </mrow> </semantics></math>, under different levels of connectivity. The hot qubit starts with a population fraction of <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>h</mi> </msub> <mo>=</mo> <mn>0.4</mn> </mrow> </semantics></math>, and the colder qubits start at a population fraction of <math display="inline"><semantics> <mrow> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>0.2</mn> </mrow> </semantics></math>. The diffusion for a connectivity of seven follows a more gradual trend towards looking homogeneous, whereas for the landscape of connectivity five and six, and the messenger system, pockets of hot and cold regions develop on the landscape.</p> "> Figure 6
<p>The change in extractable work from each qubit across 500 steps corresponding to the landscapes shown in <a href="#entropy-25-00947-f005" class="html-fig">Figure 5</a>. The change in work is computed between two consecutive steps and thus a positive change corresponds to change with respect to the previous step. Fully connected landscape of connectivity seven shows dilution of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> pockets, while the restricted connectivity show persistent instances of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math>. Furthermore, the restriction in connectivity results in slow diffusion of energy from the hot qubit onto the landscape resulting in higher magnitude for extractable work early on on the landscape (as is depicted by the colors of the swatch).</p> "> Figure 7
<p>(<b>a</b>) Box plots showing the distribution in the percent of steps for which <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> for the qubits starting cold and hot, under 500 steps for the different levels of connectivity, for 100 trials. (<b>b</b>) Total <math display="inline"><semantics> <mrow> <mfrac> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> </mrow> <mrow> <mo>〈</mo> <mi>T</mi> <mo>〉</mo> </mrow> </mfrac> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> as a function of the fraction of hot qubits on the landscape, where <math display="inline"><semantics> <mrow> <mo>〈</mo> <mi>T</mi> <mo>〉</mo> </mrow> </semantics></math> is the average initial temperature on the whole landscape. The fit for the plot for the degree of connectivity six is proportional to <math display="inline"><semantics> <msup> <mi>e</mi> <mrow> <mo>−</mo> <mn>0.25</mn> <mi>x</mi> </mrow> </msup> </semantics></math>, where <span class="html-italic">x</span> is the initial number of hot qubits on landscape.</p> "> Figure 8
<p>The distribution, over 50 trials, of the percent of steps for which <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> for a qubit starting of as cold and hot. All landscapes have connectivity seven but undergo evolution via different types of unitary rotations: simultaneous swap of two pairs of qubits, two-qubit conditional swap and two-qubit unconditional swap. A random unitary belonging to the class was chosen at the initialization step and then applied to each landscape in random subsystems for 500 steps.</p> "> Figure 9
<p>(<b>a</b>) Log-linear scale histogram (normalized to relative frequency) of different length intervals for which the qubit consecutively exhibits <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math>. The histogram shows data for 100 trials of 500 steps each for three types of connectivity: fully connected (seven), connectivity six, five and a messenger-qubit system where two subsystem of size four make up the landscape and under each iteration a messenger qubit is exchanged between the subsystems. The landscape is initialized with a hot qubit and seven cold qubits. The horizontal axis shows the number of steps in the interval over which <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> persists and the vertical axis shows the percent of total steps that occur within intervals of that length. (<b>b</b>) Log–log scale plot showing development of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> of different lengths under 500 steps for 100 trials for three types of connectivity. Up until <math display="inline"><semantics> <mrow> <mn>10</mn> <mo>%</mo> </mrow> </semantics></math> of the evolution, the fully connected landscape with connectivity seven shows more instances of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> than the other two landscapes, but in the later part of evolution, sparsely connected landscapes—connectivity six and messenger-qubit system—dominate by showing that more instances of connected landscape show more instances of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>≥</mo> <mn>0</mn> </mrow> </semantics></math> that are long-lived.</p> "> Figure 10
<p>Time evolution of the extractable work divided by mean initial temperature of the landscape, <math display="inline"><semantics> <mfrac> <msup> <mi>W</mi> <mi>ex</mi> </msup> <msub> <mrow> <mo>〈</mo> <mi>T</mi> <mo>〉</mo> </mrow> <mrow> <mi>i</mi> <mi>n</mi> </mrow> </msub> </mfrac> </semantics></math>, for a cold (<b>a</b>) and hot (<b>b</b>) one-qubit subsystem on the landscape. The dark gray line shows the extractable work from a qubit on a landscape that undergoes subsequent collisions with qubits at the initial mean temperature of the landscape. The purple, orange, yellow and blue lines show the time evolution of normalized extractable work of one-qubit subsystems on closed landscapes where the allowed interactions occur in subsystems chosen under several different connectivity constraints as indicated in the legend. In the collisional model there is a monotonic decrease in extractable work, while in all three closed landscapes revivals of work extraction can be observed.</p> "> Figure 11
<p>Here, we show the evolution of the change in the ambient temperature, Equation (<a href="#FD27-entropy-25-00947" class="html-disp-formula">27</a>), the change in relative entropy and change in extractable work for an initially cold qubit that is evolving on a landscape with and without correlations kept. Panel (<b>a</b>) shows values for the landscape where all the correlations are retained. Panel (<b>b</b>) shows the evolution when any correlations formed are erased at each step. We see that on a landscape where correlations are erased, all three parameters for <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> show an overall diminishing trend whereas for the closed landscape with correlations, the generation of <math display="inline"><semantics> <mrow> <mi mathvariant="normal">Δ</mi> <msup> <mi>W</mi> <mi>ex</mi> </msup> <mo>></mo> <mn>0</mn> </mrow> </semantics></math> persists.</p> "> Figure A1
<p>The left panel shows contours of the maximum entanglement that can develop under energy-preserving unitaries acting on two qubit systems initialized in a product of Gibbs states (Equation (<a href="#FD1-entropy-25-00947" class="html-disp-formula">1</a>)). The initial excited state populations are labelled <math display="inline"><semantics> <msub> <mi>p</mi> <mn>1</mn> </msub> </semantics></math> and <math display="inline"><semantics> <msub> <mi>p</mi> <mn>2</mn> </msub> </semantics></math>. The contour labels indicate the maximum possible value of concurrence possible for the initial state, which develops after rotating by an angle <math display="inline"><semantics> <mrow> <mi>θ</mi> <mo>=</mo> <mfrac> <mi>π</mi> <mn>4</mn> </mfrac> </mrow> </semantics></math>. On the right, we show the space of accessible linear entropies and concurrence for all initial states of the closed two-qubit system. The shaded region in blue shows the range of concurrence for states in our system, given a fixed linear entropy. The curve in green is the “frontier" line [<a href="#B61-entropy-25-00947" class="html-bibr">61</a>] (green) characterizing the states that for a given mixedness or linear entropy are maximally entangled. The shaded region in yellow shows an example three-qubit calculation that demonstrates that the range of concurrence for a given linear entropy can be larger when the two qubits are embedded in a larger system. For more details, see <a href="#secAdot2-entropy-25-00947" class="html-sec">Section Appendix A.2</a>.</p> ">
Abstract
:1. Introduction
Defining the Rules of the Game: Initial States and Evolution
- In small qubit machines, the occurrence of under application of a single dynamical map arising from an energy-preserving unitary on a focal qubit and reference thermal qubit.
- On the landscape, the length and distribution in time of intervals over which qubits exhibit .
2. Qubit Machines
2.1. Two-Qubit Machines
2.2. Three-Qubit Machines
2.3. Four-Qubit Machines
3. Qubit Landscapes
- The degree of initial temperature variation on landscape. We consider initializing the landscape with between one and seven hot qubits.
- The type of unitary. We consider two qubit conditional partial swaps, two qubit unconditional partial swaps and simultaneous partial swaps of two different qubit pairs.
3.1. Results: Connectivity and Initial Temperature Inhomogeneity
3.2. Results: Varying the Unitaries
- Simultaneous swap of two qubit pairs generated by interaction of the class , where is a four-qubit interaction in the energy subspace , with two pairs of qubit simultaneously being swapped. A representative unitary of this type is given in Equation (23).
- Conditional two-qubit swap given by , where is a four-qubit interaction that swaps populations between two qubits of a four-qubit system. For example, the rotation generated by the Hamiltonian interaction
- Unconditional two-qubit swap given by where is a two qubit interaction that swaps populations. For example the rotation in is generated by a Hamiltonian interaction of the type
3.3. Results: Persistence of
3.4. Contrast with Thermalizing Landscapes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Accessible States and Correlations for Small Quantum Machines
Appendix A.1. Two Qubits
Appendix A.2. Three Qubits
References
- Jarzynski, C. Nonequilibrium Equality for Free Energy Differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [Google Scholar] [CrossRef] [Green Version]
- Parrondo, J.; Horowitz, J.; Sagawa, T. Thermodynamics of information. Nat. Phys. 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Kolchinsky, A.; Marvian, I.; Gokler, C.; Liu, Z.W.; Shor, P.; Shtanko, O.; Thompson, K.; Wolpert, D.; Lloyd, S. Maximizing Free Energy Gain. arXiv 2017, arXiv:1705.00041. [Google Scholar] [CrossRef]
- Skrzypczyk, P.; Short, A.J.; Popescu, S. Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 2014, 5, 4185. [Google Scholar] [CrossRef] [Green Version]
- Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. EPL Europhys. Lett. 2011, 95, 40004. [Google Scholar] [CrossRef] [Green Version]
- Kolchinsky, A. A Thermodynamic Threshold for Darwinian Evolution. arXiv 2022, arXiv:2112.02809. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Balian, R.; Nieuwenhuizen, T.M. Maximal work extraction from finite quantum systems. Europhys. Lett. 2004, 67, 565. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, B. Ergotropy from coherences in an open quantum system. Phys. Rev. E 2020, 102, 042111. [Google Scholar] [CrossRef]
- Perarnau-Llobet, M.; Hovhannisyan, K.V.; Huber, M.; Skrzypczyk, P.; Brunner, N.; Acín, A. Extractable Work from Correlations. Phys. Rev. X 2015, 5, 041011. [Google Scholar] [CrossRef] [Green Version]
- Bylicka, B.; Tukiainen, M.; Chruściński, D.; Piilo, J.; Maniscalco, S. Thermodynamic power of non-Markovianity. Sci. Rep. 2016, 6, 27989. [Google Scholar] [CrossRef] [Green Version]
- Andolina, G.M.; Keck, M.; Mari, A.; Campisi, M.; Giovannetti, V.; Polini, M. Extractable Work, the Role of Correlations, and Asymptotic Freedom in Quantum Batteries. Phys. Rev. Lett. 2019, 122, 047702. [Google Scholar] [CrossRef] [Green Version]
- Çakmak, B.; Pezzutto, M.; Paternostro, M.; Müstecaplıoğlu, O.E. Non-Markovianity, coherence, and system-environment correlations in a long-range collision model. Phys. Rev. A 2017, 96, 022109. [Google Scholar] [CrossRef] [Green Version]
- Rivas, Á.; Huelga, S.F.; Plenio, M.B. Entanglement and Non-Markovianity of Quantum Evolutions. Phys. Rev. Lett. 2010, 105, 050403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chruściński, D.; Maniscalco, S. Degree of Non-Markovianity of Quantum Evolution. Phys. Rev. Lett. 2014, 112, 120404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsch, J.M. Quantum statistical mechanics in a closed system. Phys. Rev. A 1991, 43, 2046–2049. [Google Scholar] [CrossRef]
- Srednicki, M. Chaos and quantum thermalization. Phys. Rev. E 1994, 50, 888–901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigol, M.; Dunjko, V.; Olshanii, M. Thermalization and its mechanism for generic isolated quantum systems. Nature 2008, 452, 854–858. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.W. Absence of Diffusion in Certain Random Lattices. Phys. Rev. 1958, 109, 1492–1505. [Google Scholar] [CrossRef] [Green Version]
- Imbrie, J.Z. On Many-Body Localization for Quantum Spin Chains. J. Stat. Phys. 2016, 163, 998–1048. [Google Scholar] [CrossRef] [Green Version]
- Rubio-Abadal, A.; Ippoliti, M.; Hollerith, S.; Wei, D.; Rui, J.; Sondhi, S.; Khemani, V.; Gross, C.; Bloch, I. Floquet prethermalization in a Bose-Hubbard system. Phys. Rev. X 2020, 10, 021044. [Google Scholar] [CrossRef]
- Ippoliti, M.; Gullans, M.J.; Gopalakrishnan, S.; Huse, D.A.; Khemani, V. Entanglement phase transitions in measurement-only dynamics. Phys. Rev. X 2021, 11, 011030. [Google Scholar] [CrossRef]
- Pai, S.; Pretko, M. Dynamical Scar States in Driven Fracton Systems. Phys. Rev. Lett. 2019, 123, 136401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sala, P.; Rakovszky, T.; Verresen, R.; Knap, M.; Pollmann, F. Ergodicity Breaking Arising from Hilbert Space Fragmentation in Dipole-Conserving Hamiltonians. Phys. Rev. X 2020, 10, 011047. [Google Scholar] [CrossRef] [Green Version]
- Khudorozhkov, A.; Tiwari, A.; Chamon, C.; Neupert, T. Hilbert space fragmentation in a 2D quantum spin system with subsystem symmetries. SciPost Phys. 2022, 13, 098. [Google Scholar] [CrossRef]
- Sels, D.; Polkovnikov, A. Thermalization of Dilute Impurities in One-Dimensional Spin Chains. Phys. Rev. X 2023, 13, 011041. [Google Scholar] [CrossRef]
- Nahum, A.; Ruhman, J.; Vijay, S.; Haah, J. Quantum Entanglement Growth under Random Unitary Dynamics. Phys. Rev. X 2017, 7, 031016. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Nahum, A. Emergent statistical mechanics of entanglement in random unitary circuits. Phys. Rev. B 2019, 99, 174205. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Sang, S.; Hsieh, T.H. Entanglement dynamics of noisy random circuits. Phys. Rev. B 2023, 107, 014307. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Open system dynamics from thermodynamic compatibility. Phys. Rev. Res. 2021, 3, 023006. [Google Scholar] [CrossRef]
- Dann, R.; Megier, N.; Kosloff, R. Non-Markovian dynamics under time-translation symmetry. Phys. Rev. Res. 2022, 4, 043075. [Google Scholar] [CrossRef]
- Dann, R.; Kosloff, R. Quantum thermo-dynamical construction for driven open quantum systems. Quantum 2021, 5, 590. [Google Scholar] [CrossRef]
- Arrighi, P. An overview of Quantum Cellular Automata. arXiv 2019, arXiv:1904.12956. [Google Scholar] [CrossRef] [Green Version]
- Farrelly, T. A review of Quantum Cellular Automata. Quantum 2020, 4, 368. [Google Scholar] [CrossRef]
- Hillberry, L.E.; Jones, M.T.; Vargas, D.L.; Rall, P.; Halpern, N.Y.; Bao, N.; Notarnicola, S.; Montangero, S.; Carr, L.D. Entangled Quantum Cellular Automata, Physical Complexity, and Goldilocks Rules. Quantum Sci. Technol. 2021, 6, 045017. [Google Scholar] [CrossRef]
- Brandão, F.G.S.L.; Horodecki, M.; Oppenheim, J.; Renes, J.M.; Spekkens, R.W. Resource Theory of Quantum States Out of Thermal Equilibrium. Phys. Rev. Lett. 2013, 111, 250404. [Google Scholar] [CrossRef]
- Horodecki, M.; Oppenheim, J. Fundamental limitations for quantum and nanoscale thermodynamics. Nat. Commun. 2013, 4, 2059. [Google Scholar] [CrossRef] [Green Version]
- Ng, N.H.Y.; Woods, M.P. Resource Theory of Quantum Thermodynamics: Thermal Operations and Second Laws. In Fundamental Theories of Physics; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 625–650. [Google Scholar] [CrossRef] [Green Version]
- Lostaglio, M.; Alhambra, Á.M.; Perry, C. Elementary Thermal Operations. Quantum 2018, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Roga, W.; Fannes, M.; Życzkowski, K. Davies maps for qubits and qutrits. Rep. Math. Phys. 2010, 66, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Shu, A.; Cai, Y.; Seah, S.; Nimmrichter, S.; Scarani, V. Almost thermal operations: Inhomogeneous reservoirs. Phys. Rev. A 2019, 100, 042107. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rosario, C.A.; Modi, K.; Meng Kuah, A.; Shaji, A.; Sudarshan, E.C.G. Completely positive maps and classical correlations. J. Phys. A Math. Theor. 2008, 41, 205301. [Google Scholar] [CrossRef]
- Carteret, H.A.; Terno, D.R.; Życzkowski, K. Dynamics beyond completely positive maps: Some properties and applications. Phys. Rev. A 2008, 77, 042113. [Google Scholar] [CrossRef]
- Müller-Hermes, A.; Reeb, D. Monotonicity of the Quantum Relative Entropy Under Positive Maps. arXiv 2015, arXiv:1512.06117. [Google Scholar] [CrossRef] [Green Version]
- McCloskey, R.; Paternostro, M. Non-Markovianity and system-environment correlations in a microscopic collision model. Phys. Rev. A 2014, 89, 052120. [Google Scholar] [CrossRef] [Green Version]
- Ciccarello, F.; Palma, G.M.; Giovannetti, V. Collision-model-based approach to non-Markovian quantum dynamics. Phys. Rev. A 2013, 87, 040103. [Google Scholar] [CrossRef]
- Kretschmer, S.; Luoma, K.; Strunz, W.T. Collision model for non-Markovian quantum dynamics. Phys. Rev. A 2016, 94, 012106. [Google Scholar] [CrossRef] [Green Version]
- Wootters, W.K. Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 1998, 80, 2245–2248. [Google Scholar] [CrossRef] [Green Version]
- Linden, N.; Popescu, S.; Skrzypczyk, P. How Small Can Thermal Machines Be? The Smallest Possible Refrigerator. Phys. Rev. Lett. 2010, 105, 130401. [Google Scholar] [CrossRef]
- Horowitz, J.M. Multipartite information flow for multiple Maxwell demons. J. Stat. Mech. Theory Exp. 2015, 2015, P03006. [Google Scholar] [CrossRef]
- Wolpert, D.H. Fluctuation Theorems for Multiple Co-Evolving Systems. arXiv 2021, arXiv:2003.11144. [Google Scholar] [CrossRef]
- Kliesch, M.; Riera, A. Properties of Thermal Quantum States: Locality of Temperature, Decay of Correlations, and More. In Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions; Binder, F., Correa, L.A., Gogolin, C., Anders, J., Adesso, G., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 195, p. 481. [Google Scholar] [CrossRef] [Green Version]
- Mehboudi, M.; Sanpera, A.; Correa, L.A. Thermometry in the quantum regime: Recent theoretical progress. J. Phys. A Math. Gen. 2019, 52, 303001. [Google Scholar] [CrossRef] [Green Version]
- Alipour, S.; Benatti, F.; Afsary, M.; Bakhshinezhad, F.; Ramezani, M.; Ala-Nissila, T.; Rezakhani, A.T. Temperature in Nonequilibrium Quantum Systems. arXiv 2021, arXiv:2105.11915. [Google Scholar] [CrossRef]
- Allahverdyan, A.E.; Gevorkian, S.G.; Dyakov, Y.A.; Wang, P.K. Thermodynamic definition of mean temperature. arXiv 2022, arXiv:2207.02343. [Google Scholar] [CrossRef]
- Riechers, P.M.; Gu, M. Initial-state dependence of thermodynamic dissipation for any quantum process. Phys. Rev. E 2021, 103, 042145. [Google Scholar] [CrossRef] [PubMed]
- Rau, J. Relaxation Phenomena in Spin and Harmonic Oscillator Systems. Phys. Rev. 1963, 129, 1880–1888. [Google Scholar] [CrossRef]
- Scarani, V.; Ziman, M.; Štelmachovič, P.; Gisin, N.; Bužek, V. Thermalizing Quantum Machines: Dissipation and Entanglement. Phys. Rev. Lett. 2002, 88, 097905. [Google Scholar] [CrossRef] [Green Version]
- Manatuly, A.; Niedenzu, W.; Román-Ancheyta, R.; çakmak, B.; Müstecaplıoǧlu, Ö.E.; Kurizki, G. Collectively enhanced thermalization via multiqubit collisions. Phys. Rev. E 2019, 99, 042145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazer, D.; Friedman, A. The Network Structure of Exploration and Exploitation. Adm. Sci. Q. 2007, 52, 667–694. [Google Scholar] [CrossRef] [Green Version]
- Ben-David, S.; Childs, A.M.; Gilyén, A.; Kretschmer, W.; Podder, S.; Wang, D. Symmetries, graph properties, and quantum speedups. In Proceedings of the 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), Durham, NC, USA, 19 November 2020; pp. 649–660. [Google Scholar]
- Wei, T.C.; Nemoto, K.; Goldbart, P.M.; Kwiat, P.G.; Munro, W.J.; Verstraete, F. Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 2003, 67, 022110. [Google Scholar] [CrossRef] [Green Version]
- Plenio, M.B.; Virmani, S.S. An Introduction to Entanglement Theory. In Quantum Information and Coherence; Springer: Berlin/Heidelberg, Germany, 2014; pp. 173–209. [Google Scholar]
- Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K. Quantum entanglement. Rev. Mod. Phys. 2009, 81, 865. [Google Scholar] [CrossRef] [Green Version]
- Munro, W.J.; James, D.F.V.; White, A.G.; Kwiat, P.G. Maximizing the entanglement of two mixed qubits. Phys. Rev. A 2001, 64, 030302. [Google Scholar] [CrossRef] [Green Version]
- Horn, A. Doubly Stochastic Matrices and the Diagonal of a Rotation Matrix. Am. J. Math. 1954, 76, 620–630. [Google Scholar] [CrossRef]
- Schur, I. Uber eine klasse von mittelbildungen mit anwendungen auf der determinantentheorie. Sitzungsber. Berliner Mat. Ges 1923, 22, 51. [Google Scholar]
- Dym, H.; Katsnelson, V. Studies in Memory of Issai Schur; Progress in Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 210. [Google Scholar]
- Loreaux, J.; Weiss, G. Majorization and a Schur-Horn Theorem for positive compact operators, the nonzero kernel case. J. Funct. Anal. 2015, 268, 703–731. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhouri, U.; Shandera, S.; Yesmurzayeva, G. Increasing Extractable Work in Small Qubit Landscapes. Entropy 2023, 25, 947. https://doi.org/10.3390/e25060947
Akhouri U, Shandera S, Yesmurzayeva G. Increasing Extractable Work in Small Qubit Landscapes. Entropy. 2023; 25(6):947. https://doi.org/10.3390/e25060947
Chicago/Turabian StyleAkhouri, Unnati, Sarah Shandera, and Gaukhar Yesmurzayeva. 2023. "Increasing Extractable Work in Small Qubit Landscapes" Entropy 25, no. 6: 947. https://doi.org/10.3390/e25060947
APA StyleAkhouri, U., Shandera, S., & Yesmurzayeva, G. (2023). Increasing Extractable Work in Small Qubit Landscapes. Entropy, 25(6), 947. https://doi.org/10.3390/e25060947