Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel
<p>Scenario diagram of DM-CVQKD through an underwater channel: (<b>a</b>) Underwater environment. PBS: Polarization Beam Splitter, BS: Beam Splitter, AM: Amplitude Modulator, PM: Phase Modulator, PD: Photo Diode; (<b>b</b>) Bayesian optimization; (<b>c</b>) The trained neural network.</p> "> Figure 2
<p>The internal structure of a cell of the LSTM-based NN. The internal state <math display="inline"><semantics> <msub> <mi>C</mi> <mrow> <mi>t</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </semantics></math> of the previous moment, the external state <math display="inline"><semantics> <msub> <mi>h</mi> <mrow> <mi>t</mi> <mo>−</mo> <mn>1</mn> </mrow> </msub> </semantics></math>, and the network input <math display="inline"><semantics> <msub> <mi>x</mi> <mi>t</mi> </msub> </semantics></math> of the current moment are used as the input of the cell, and the current internal state <math display="inline"><semantics> <msub> <mi>C</mi> <mi>t</mi> </msub> </semantics></math> and external state <math display="inline"><semantics> <msub> <mi>h</mi> <mi>t</mi> </msub> </semantics></math> are obtained as the output of the cell by gate operations, i.e., forget gate, input gate, and output gate, respectively.</p> "> Figure 3
<p>Training results of the LSTM-based NN: (<b>a</b>) Error histogram of prediction. The number of samples vs relative error of the train dataset; (<b>b</b>) The training set predicted and expected values. The red line is the predicted value, and the blue line is the expected value.</p> "> Figure 4
<p>The secret key rate as a function of the transmission distance for the given photon cutoff numbers. The black dashed line is <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>12</mn> </mrow> </semantics></math>, the blue dashed line is <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>15</mn> </mrow> </semantics></math>, and the green line is <math display="inline"><semantics> <mrow> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>=</mo> <mn>20</mn> </mrow> </semantics></math>. The key rate float is about <math display="inline"><semantics> <mrow> <mn>0.55</mn> <mo>%</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>c</mi> </msub> </semantics></math> from 12 to 15, and <math display="inline"><semantics> <mrow> <mn>0.2</mn> <mo>%</mo> </mrow> </semantics></math> for <math display="inline"><semantics> <msub> <mi>N</mi> <mi>c</mi> </msub> </semantics></math> from 15 to 20. For the increased <math display="inline"><semantics> <msub> <mi>N</mi> <mi>c</mi> </msub> </semantics></math>, the secret key rate is not obviously improved, but the computation time increases significantly.</p> "> Figure 5
<p>Effects of excess noise <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> on the secret key rate. The lines from top to bottom indicate the excess noise <math display="inline"><semantics> <mrow> <mi>ξ</mi> <mo>∈</mo> <mo>{</mo> <mn>0.005</mn> <mo>,</mo> <mn>0.01</mn> <mo>,</mo> <mn>0.015</mn> <mo>,</mo> <mn>0.02</mn> <mo>,</mo> <mn>0.025</mn> <mo>,</mo> <mn>0.03</mn> <mo>,</mo> <mn>0.035</mn> <mo>,</mo> <mn>0.04</mn> <mo>}</mo> </mrow> </semantics></math>. We set the amplitude <math display="inline"><semantics> <mrow> <mi>α</mi> <mo>=</mo> <mn>0.66</mn> </mrow> </semantics></math>, post-selection parameter <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, depth = 100 m, and reconciliation efficiency <math display="inline"><semantics> <mrow> <mi>β</mi> <mo>=</mo> <mn>0.95</mn> </mrow> </semantics></math>.</p> "> Figure 6
<p>Effects of excess noise <math display="inline"><semantics> <mi>ξ</mi> </semantics></math> on the secret key rate with the given post-selection. The solid line indicates <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>, and the dashed line indicates <math display="inline"><semantics> <mrow> <mo>Δ</mo> <mo>></mo> <mn>0</mn> </mrow> </semantics></math>.</p> "> Figure 7
<p>Prediction results of the NN-based CVQKD. Solid lines represent the initial value with photon cutoff method, the hollow dotted line represents LSTM-based NN, and the solid dotted line represents BP-based NN. The pink line represents a depth of 70 m, and the red line represents a depth of 90 m.</p> ">
Abstract
:1. Introduction
2. DM-CVQKD through an Underwater Channel
2.1. Description of DM-CVQKD Protocol
2.2. An NN Model for Data Post-Processing
3. Security Analysis
3.1. Derivation of the Secret Key Rate
3.2. Effects of Excess Noise
3.3. Post-Selection
3.4. Simulation Results
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Seawater Chlorophyll Model
Meaning of the Variates | Parameter | |
---|---|---|
Absorption coefficient of chlorophyll a at wavelength | ||
Loss of light propagation in pure water | ||
Fulvic acid’s absorption coefficient | ||
Fulvic acid’s exponential coefficient | 0.0189 nm | |
Wavelength | 532 nm | |
Humic acid’s absorption of coefficient | ||
Humic acid’s exponential coefficient | 0.01105 nm | |
The surface’s background chlorophyll content | 0.0429 mg/m | |
s | Vertical gradient of concentration | −0.000103 mg/m |
h | Total chlorophyll a above the background levels | 11.87 mg |
Depth of the deep chlorophyll maximum | 115.4 m | |
Maximum chlorophyll concentration at the chlorophyll maximum layer | 0.708 mg/m | |
Scattering coefficient of small particulate matter | ||
Scattering coefficient of large particulate matter | ||
Scattering coefficient of the pure water | ||
d | Depth of the ocean |
References
- Bennett, C.H.; Brassard, G. Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7–11. [Google Scholar] [CrossRef]
- Ekert, A.K. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 1991, 67, 661–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosshans, F.; Grangier, P. Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 2002, 88, 057902. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosshans, F.; Assche, G.V.; Wenger, J.; Brouri, R.; Cerf, N.J.; Grangier, P. Quantum key distribution using gaussian-modulated coherent states. Nature 2003, 421, 238–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weedbrook, C.; Lance, A.M.; Bowen, W.P.; Symul, T.; Ralph, T.C.; Ping, K.L. Quantum cryptography without switching. Phys. Rev. Lett. 2004, 93, 170504. [Google Scholar] [CrossRef] [Green Version]
- Ghorai, S.; Grangier, P.; Diamanti, E.; Leverrier, A. Asymptotic security of continuous-variable quantum key distribution with a discrete modulation. Phys. Rev. 2019, 9, 021059. [Google Scholar] [CrossRef] [Green Version]
- Liao, Q.; Liu, H.; Gong, Y.; Wang, Z.; Peng, Q.; Guo, Y. Practical continuous-variable quantum secret sharing using plug-and-play dual-phase modulation. Opt. Express 2022, 30, 3876. [Google Scholar] [CrossRef]
- Liao, Q.; Xiao, G.; Xu, C.G.; Xu, Y.; Guo, Y. Discretely modulated continuous-variable quantum key distribution with an untrusted entanglement source. Phys. Rev. 2020, A102, 032604. [Google Scholar] [CrossRef]
- Lo, H.K.; Curty, M.; Tamaki, K. Secure quantum key distribution. Nat. Photonics 2014, 8, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Beaudry, N.J.; Moroder, T.; Luetkenhaus, N. Squashing models for optical measurements in quantum communication. Phys. Rev. Lett. 2008, 101, 093601. [Google Scholar] [CrossRef] [Green Version]
- Tsurumaru, T. Squash operator and symmetry. Am. Phys. 2010, 81, 012328. [Google Scholar] [CrossRef] [Green Version]
- Gittsovich, O.; Beaudry, N.J.; Narasimhachar, V.; Alvarez, R.R.; Moroder, T.; Lütkenhaus, N. Squashing model for detectors and applications to quantum-key-distribution protocols. Phys. Rev. 2014, 89, 12325. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Coles, P.J.; Winick, A.; Lin, J.; Lutkenhaus, N. Security proof of practical quantum key distribution with detection-efficiency mismatch. Phys. Rev. 2009, 9, 131–165. [Google Scholar] [CrossRef]
- Braunstein, S.L.; Pati, A.K. Quantum information with continuous variables. Rev. Mod. Phys. 2005, 77, 513–577. [Google Scholar] [CrossRef] [Green Version]
- Weedbrook, C.; Pirola, S.; Garcia-Patron, R.; Cerf, N.J.; Ralph, T.C.; Shapiro, J.H.; Lloyd, S. Gaussian quantum information. Rev. Mod. Phys. 2012, 84, 621–669. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Lin, D.; Wang, C.; Zeng, G. High-speed continuous-variable quantum key distribution without sending a local oscillator. Opt. Lett. 2015, 40, 3695–3698. [Google Scholar] [CrossRef]
- Huang, D.; Huang, P.; Lin, D.; Zeng, G. Long-distance continuous-variable quantum key distribution by controlling excess noise. Sci. Rep. 2016, 6, 19201. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, T.; Himbeeck, T.V.; Lin, J.; Lütkenhaus, N. Dimension reduction in quantum key distribution for continuous- and discrete-variable protocols. PRX Quantum 2021, 2, 020325. [Google Scholar] [CrossRef]
- Xu, D.L.; Yue, P.; Yi, X.; Liu, J.Y. Improvement of a monte-carlo-simulation-based turbulence-induced attenuation model for an fiber wireless optical communications channel. J. Opt. Soc. Am. Opt. Image Sci. Vis. 2022, 39, 1330–1342. [Google Scholar] [CrossRef]
- Liu, Z.P.; Zhou, M.G.; Liu, W.B.; Li, C.L.; Gu, J.; Yin, H.L.; Chen, Z.B. Automated machine learning for secret key rate in discrete-modulated continuous-variable quantum key distribution. Opt. Express 2022, 30, 15024–15036. [Google Scholar] [CrossRef]
- Liu, W.B.; Li, C.L.; Xie, Y.M.; Weng, C.X.; Chen, Z.B. Homodyne detection quadrature phase shift keying continuous-variable quantum key distribution with high excess noise. PRX Quantum 2021, 2, 040334. [Google Scholar] [CrossRef]
- Rath, A.; Van Bijnen, R.; Elben, A.; Zoller, P.; Vermersch, B. Importance Sampling of Randomized Measurements for Probing Entanglement. Phys. Rev. Lett. 2021, 127, 200503. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Ren, C.L.; Ma, Y.C.; Xiao, Y.; Guo, G.C. Experimental simultaneous learning of multiple non-classical correlations. Phys. Rev. Lett. 2019, 123, 190401. [Google Scholar]
- Ahmed, S.; Muoz, C.S.; Nori, F.; Kockum, A.F. Classification and reconstruction of optical quantum states with deep neural networks. Phys. Rev. Res. 2021, 3, 033278. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approxmations neural networks. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Martinez-Cantin, R. Bayesopt: A bayesian optimization library for nonlinear optimization, experimental design and bandits. J. Mach. Res. 2014, 15, 3735–3739. [Google Scholar]
- Will-Cole, A.R.; Kusne, A.G.; Tonner, P.; Dong, C.; Liang, X.; Chen, H.; Sun, N.X. Application of bayesian optimization and regression analysis to ferromagnetic materials development. IEEE Trans. Magn. 2022, 58, 2800108. [Google Scholar] [CrossRef]
Symbols | Value | Description |
---|---|---|
0.6–0.7 | Amplitude | |
– | Orthogonal amplitude components | |
– | Orthogonal phase component | |
20 | Photon cutoff number | |
0–0.04 | Excess noise | |
0.01 | Post-selection parameter | |
0.95 | Reconciliation efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Zhu, Y.; Hu, H.; Luo, G.; Wang, J.; Wang, Y.; Guo, Y. Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel. Entropy 2023, 25, 937. https://doi.org/10.3390/e25060937
Mao Y, Zhu Y, Hu H, Luo G, Wang J, Wang Y, Guo Y. Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel. Entropy. 2023; 25(6):937. https://doi.org/10.3390/e25060937
Chicago/Turabian StyleMao, Yun, Yiwu Zhu, Hui Hu, Gaofeng Luo, Jinguang Wang, Yijun Wang, and Ying Guo. 2023. "Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel" Entropy 25, no. 6: 937. https://doi.org/10.3390/e25060937
APA StyleMao, Y., Zhu, Y., Hu, H., Luo, G., Wang, J., Wang, Y., & Guo, Y. (2023). Neural Network-Based Prediction for Secret Key Rate of Underwater Continuous-Variable Quantum Key Distribution through a Seawater Channel. Entropy, 25(6), 937. https://doi.org/10.3390/e25060937