A Real-Time and Robust Neural Network Model for Low-Measurement-Rate Compressed-Sensing Image Reconstruction
<p>The compressed sensing measurement process and the overall structure of RootsNet. The target image is reshaped to <span class="html-italic">b</span> blocks with size <math display="inline"><semantics> <mrow> <mi>L</mi> <mo>×</mo> <mi>L</mi> </mrow> </semantics></math> and reshaped to a <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>×</mo> <mi>b</mi> </mrow> </semantics></math> matrix latter as the target signal <math display="inline"><semantics> <mi mathvariant="bold">X</mi> </semantics></math>, where <math display="inline"><semantics> <mrow> <mi>n</mi> <mo>=</mo> <msup> <mi>L</mi> <mn>2</mn> </msup> </mrow> </semantics></math>. RootsNet consists of root caps, feeder root net module, and rootstock net module as is annotated in purple text. Each root cap takes one column from <math display="inline"><semantics> <mi mathvariant="bold">Y</mi> </semantics></math> and <math display="inline"><semantics> <mi mathvariant="bold">A</mi> </semantics></math>, respectively, as input. The feeder root net consists of many branches that are denoted as <math display="inline"><semantics> <msub> <mi>B</mi> <mn>1</mn> </msub> </semantics></math>–<math display="inline"><semantics> <msub> <mi>B</mi> <mi>n</mi> </msub> </semantics></math>, each branch takes one root cap as input and outputs one sparse coefficient <math display="inline"><semantics> <msub> <mi>s</mi> <mi>n</mi> </msub> </semantics></math>. Finally, all reconstruction blocks are used as input to obtain the final reconstructed image through rootstock net. More details on each module are given in the next subsection.</p> "> Figure 2
<p>Network structure of (<b>a</b>) a single feeder root branch and (<b>b</b>) the rootstock module.</p> "> Figure 3
<p>The image measurement system for invisible CFRP impact damage detection.</p> "> Figure 4
<p>Measurement results of different methods under 0.05 of measurement rate (95% of data compression ratio). (<b>a</b>) Raster scan; (<b>b</b>) CS scan; (<b>c</b>) OMP reconstruction; (<b>d</b>) RootsNet reconstruction; (<b>e</b>) AMP-Net-9BM reconstruction; (<b>f</b>) ReconNet reconstruction; (<b>g</b>) The ground truth by 100% of raster scan. The built-in decimals are the 2D correlation coefficients between each measurement result and the corresponding ground truth image in column (<b>g</b>). The average normalized time use ground truth as the baseline and set it as 100.</p> "> Figure 5
<p>The MFL measurement system for oil and gas pipeline inspection.</p> "> Figure 6
<p>Examples of two measurement channels of one measurement piece under a measurement rate of 0.05 for pipeline. The ground truth is the traditional all-time wake-up measurement.</p> "> Figure 7
<p>Measurement results of piece one under a measurement rate of 0.05 for the pipeline. (<b>a</b>) CS sampling data; (<b>b</b>) OMP reconstruction; (<b>c</b>) ground truth by full-time wake-up sampling; (<b>d</b>) RootsNet reconstruction; (<b>e</b>) AMP-Net-9BM reconstruction; (<b>f</b>) ReconNet reconstruction. Each row is one measurement channel. The proposed method successfully reconstructed a super-low measurement rate of 0.05, while the traditional OMP algorithm failed.</p> "> Figure 8
<p>Measurement results of piece two under the measurement rate of 0.05 for pipeline. (<b>a</b>) CS sampling data; (<b>b</b>) OMP reconstruction; (<b>c</b>) ground truth by full-time wake-up sampling; (<b>d</b>) RootsNet reconstruction; (<b>e</b>) AMP-Net-9BM reconstruction; (<b>f</b>) ReconNet reconstruction. The proposed method successfully reconstructed a super-low measurement rate of 0.05 while traditional OMP algorithm failed.</p> "> Figure 9
<p><math display="inline"><semantics> <mrow> <mi>f</mi> <mi>i</mi> <mi>g</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>n</mi> <mi>t</mi> </mrow> </semantics></math> (odd columns) and <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>l</mi> <mi>i</mi> <mi>n</mi> <mi>s</mi> <mi>t</mi> <mi>o</mi> <mi>n</mi> <mi>e</mi> <mi>s</mi> </mrow> </semantics></math> (even columns) images recovered from the ground truth sparse coefficients and predicted coefficients of the feeder root net (denoted as Model in the figure) under different branch numbers and sparse bases. MR = 0.25.</p> "> Figure 10
<p>Zoomed -in view of <math display="inline"><semantics> <mrow> <mi>f</mi> <mi>i</mi> <mi>g</mi> <mi>u</mi> <mi>r</mi> <mi>e</mi> <mi>p</mi> <mi>r</mi> <mi>i</mi> <mi>n</mi> <mi>t</mi> </mrow> </semantics></math> in <a href="#entropy-25-01648-f009" class="html-fig">Figure 9</a>.</p> "> Figure 11
<p>Waveform of different sparse bases. (<b>a</b>) a full DCT basis; (<b>b</b>) some columns in DCT basis; (<b>c</b>) cosine and other wavelets [<a href="#B44-entropy-25-01648" class="html-bibr">44</a>,<a href="#B45-entropy-25-01648" class="html-bibr">45</a>].</p> "> Figure 12
<p>Refined performance for the rootstock net module under some worst case scenarios. Rows from the top to bottom are the feeder root net module output, the rootstock net module output, and the ground truth image, respectively. The number behind ‘-’ represents branch number for integers or MR for float decimals.</p> "> Figure 13
<p>The influence of branch number on average reconstruction quality in SET11 by (<b>a</b>) SSIM and (<b>b</b>) PSNR. MR = 0.25.</p> "> Figure 14
<p>Reconstruction results under 256 feeder root branches for different measurement rates. The red square shows the zoom-in location.</p> "> Figure 15
<p>The influence of feeder root branch number on average reconstruction quality in SET11 by (<b>a</b>) SSIM and (<b>b</b>) PSNR. The branch number is 256.</p> "> Figure 16
<p>Robustness test results by different error injection rate (1% for the first row, 10% for the second row) for different methods. (<b>a</b>) The proposed RootsNet; (<b>b</b>) CSNet+; (<b>c</b>) AMP-Net. The ground truth results are given in the middle.</p> ">
Abstract
:1. Introduction
- This paper proposes RootsNet for a small step toward truly trustworthy deep-learning-based CS image reconstruction. Instead of being a black-box as its counterparts are, RootsNet integrates the CS mechanism into the network to prevent error propagation. The error-injection test in Section 4.2.4 shows RootsNet is much more robust than its counterparts.
- RootsNet enables real-time reconstruction and supports different measurement rates in a single net for general measurement matrices. Section 4.2 validates this feature.
- RootsNet successfully reconstructs super-low measurement rates that are impossible for traditional optimization-theory-based methods. The qualitative evaluation on two real-world applications, presented in Section 4.1, shows this powerful ability. At least 60% of the measurement time is saved in one microwave testing system using the proposed method. The proposed method achieves extremely low measurement rates, which saved at least 95% of storage in one pipeline monitoring system. The quantitative evaluation, presented in Section 4.2.3, also validates this ability.
2. Compressed Sensing Measurement Theory
3. The Proposed Rootsnet
3.1. Overall Structure of RootsNet
3.2. Key Modules in RootsNet
3.2.1. Root Caps
3.2.2. The Feeder Root Net Module
3.2.3. The Rootstock Net Module
3.3. The Underlying Information Theory for RootsNet
3.4. Training Methods
4. Experimental Results
4.1. Qualitative Evaluation in Real-World Applications for Low Measurement Rates Reconstruction
4.1.1. Application in Near-Field Microwave Imaging
4.1.2. Application in Pipeline Inspection Robot
4.2. Quantitative Evaluation on SET11
4.2.1. The Influence of Sparse Basis and Roostock Net Module
4.2.2. The Influence of Feeder Root Branch Number on RootsNet
4.2.3. The Influence of Measurement Rates on RootsNet
4.2.4. Evaluation of Robustness
4.2.5. Evaluation of Reconstruction Time
4.2.6. Evaluation of Reconstruction Quality
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, K.; Cui, W.; Xu, X. Superresolution Radar Imaging via Peak Search and Compressed Sensing. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Cui, Y.; Yin, L.; Zhou, H.; Gao, M.; Tang, X.; Deng, Y.; Liang, Y. Compressed sensing based on L1 and TGV regularization for low-light-level images denoising. Digit. Signal Process. 2023, 136, 103975. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, L.; Wang, X.; Shen, X.; Li, L. Secure Remote Sensing Image Registration Based on Compressed Sensing in Cloud Setting. IEEE Access 2019, 7, 36516–36526. [Google Scholar] [CrossRef]
- Oya, J.R.G.; Hidalgo-Fort, E.; Chavero, F.M.; Carvajal, R.G. Compressive-Sensing-Based Reflectometer for Sparse-Fault Detection in Elevator Belts. IEEE Trans. Instrum. Meas. 2020, 69, 947–949. [Google Scholar] [CrossRef]
- Sun, J.; Yan, C.; Wen, J. Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning. IEEE Trans. Instrum. Meas. 2018, 67, 185–195. [Google Scholar] [CrossRef]
- Tang, C.; Tian, G.Y.; Li, K.; Sutthaweekul, R.; Wu, J. Smart Compressed Sensing for Online Evaluation of CFRP Structure Integrity. IEEE Trans. Ind. Electron. 2017, 64, 9608–9617. [Google Scholar] [CrossRef]
- Najafabadi, H.E.; Leung, H.; Guo, J.; Hu, T.; Chang, G.; Gao, W. Structure-Aware Compressive Sensing for Magnetic Flux Leakage Detectors: Theory and Experimental Validation. IEEE Trans. Instrum. Meas. 2021, 70, 1–12. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, S.; Wang, S.; Zhuang, S.; Wang, Q.; Zhao, W. Compressed Sensing Method for Health Monitoring of Pipelines Based on Guided Wave Inspection. IEEE Trans. Instrum. Meas. 2020, 69, 4722–4731. [Google Scholar] [CrossRef]
- Candés, E.J.; Romberg, J.; Tao, T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 2006, 52, 489–509. [Google Scholar] [CrossRef]
- Lohit, S.; Kulkarni, K.; Kerviche, R.; Turaga, P.; Ashok, A. Convolutional Neural Networks for Noniterative Reconstruction of Compressively Sensed Images. IEEE Trans. Comput. Imaging 2018, 4, 326–340. [Google Scholar] [CrossRef]
- Shi, W.; Liu, S.; Jiang, F.; Zhao, D. Video Compressed Sensing Using a Convolutional Neural Network. IEEE Trans. Circuits Syst. Video Technol. 2021, 31, 425–438. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, K.; Lohit, S.; Turaga, P.; Kerviche, R.; Ashok, A. Reconnet: Non-iterative reconstruction of images from compressively sensed measurements. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 449–458. [Google Scholar]
- Hu, S.W.; Lin, G.X.; Lu, C.S. GPX-ADMM-Net: Interpretable Deep Neural Network for Image Compressive Sensing. IEEE Access 2021, 9, 158695–158709. [Google Scholar] [CrossRef]
- Seong, J.T. Review on non-iterative recovery frameworks in compressed sensing. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, 24–27 January 2018; pp. 1–2. [Google Scholar]
- Shi, W.; Jiang, F.; Liu, S.; Zhao, D. Image compressed sensing using convolutional neural network. IEEE Trans. Image Process. 2019, 29, 375–388. [Google Scholar] [CrossRef]
- Shi, W.; Jiang, F.; Liu, S. Scalable convolutional neural network for image compressed sensing. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 12290–12299. [Google Scholar]
- Ran, M.; Xia, W.; Huang, Y.; Lu, Z.; Bao, P.; Liu, Y.; Sun, H.; Zhou, J.; Zhang, Y. MD-recon-net: A parallel dual-domain convolutional neural network for compressed sensing MRI. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 120–135. [Google Scholar] [CrossRef]
- Ravelomanantsoa, A.; Rabah, H.; Rouane, A. Compressed Sensing: A Simple Deterministic Measurement Matrix and a Fast Recovery Algorithm. IEEE Trans. Instrum. Meas. 2015, 64, 3405–3413. [Google Scholar] [CrossRef]
- Zhang, J.; Ghanem, B. ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 1828–1837. [Google Scholar]
- You, D.; Zhang, J.; Xie, J.; Chen, B.; Ma, S. Coast: Controllable arbitrary-sampling network for compressive sensing. IEEE Trans. Image Process. 2021, 30, 6066–6080. [Google Scholar] [CrossRef]
- You, D.; Xie, J.; Zhang, J. ISTA-Net++: Flexible deep unfolding network for compressive sensing. In Proceedings of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July 2021; pp. 1–6. [Google Scholar]
- Sun, J.; Li, H.; Xu, Z. Deep ADMM-Net for compressive sensing MRI. Adv. Neural Inf. Process. Syst. 2016, 29, 1–12. [Google Scholar]
- Yang, Y.; Sun, J.; Li, H.; Xu, Z. ADMM-CSNet: A deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 42, 521–538. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, X.; Gui, G. Co-robust-ADMM-net: Joint ADMM framework and DNN for robust sparse composite regularization. IEEE Access 2018, 6, 47943–47952. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Liu, J.; Wen, F.; Zhu, C. AMP-Net: Denoising-based deep unfolding for compressive image sensing. IEEE Trans. Image Process. 2020, 30, 1487–1500. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Yu, Z.L.; Gu, Z.; Cheng, Y.; Gong, H. Deep Unfolding With Weighted ℓ2 Minimization for Compressive Sensing. IEEE Internet Things J. 2020, 8, 3027–3041. [Google Scholar] [CrossRef]
- Chan, S.H.; Wang, X.; Elgendy, O.A. Plug-and-play ADMM for image restoration: Fixed-point convergence and applications. IEEE Trans. Comput. Imaging 2016, 3, 84–98. [Google Scholar] [CrossRef]
- Prono, L.; Mangia, M.; Marchioni, A.; Pareschi, F.; Rovatti, R.; Setti, G. Deep Neural Oracle With Support Identification in the Compressed Domain. IEEE J. Emerg. Sel. Top. Circuits Syst. 2020, 10, 458–468. [Google Scholar] [CrossRef]
- Wu, Y.; Rosca, M.; Lillicrap, T. Deep compressed sensing. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6850–6860. [Google Scholar]
- Zhang, J.; Zhao, C.; Gao, W. Optimization-inspired compact deep compressive sensing. IEEE J. Sel. Top. Signal Process. 2020, 14, 765–774. [Google Scholar] [CrossRef]
- Metzler, C.A.; Maleki, A.; Baraniuk, R.G. From denoising to compressed sensing. IEEE Trans. Inf. Theory 2016, 62, 5117–5144. [Google Scholar] [CrossRef]
- Rossi, P.V.; Kabashima, Y.; Inoue, J. Bayesian online compressed sensing. Phys. Rev. E 2016, 94, 022137. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Tian, G.; Boussakta, S.; Wu, J. Feature-Supervised Compressed Sensing for Microwave Imaging Systems. IEEE Trans. Instrum. Meas. 2020, 69, 5287–5297. [Google Scholar] [CrossRef]
- Tang, C.; Tian, G.Y.; Wu, J. Segmentation-oriented Compressed Sensing for Efficient Impact Damage Detection on CFRP Materials. IEEE/ASME Trans. Mechatron. 2021, 26, 2528–2537. [Google Scholar] [CrossRef]
- Bacca, J.; Gelvez-Barrera, T.; Arguello, H. Deep coded aperture design: An end-to-end approach for computational imaging tasks. IEEE Trans. Comput. Imaging 2021, 7, 1148–1160. [Google Scholar] [CrossRef]
- Zonzini, F.; Zauli, M.; Mangia, M.; Testoni, N.; Marchi, L.D. Model-Assisted Compressed Sensing for Vibration-Based Structural Health Monitoring. IEEE Trans. Ind. Inf. 2021, 17, 7338–7347. [Google Scholar] [CrossRef]
- Candés, E.J.; Romberg, J.K.; Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 2006, 59, 1207–1223. [Google Scholar] [CrossRef]
- Küng, R.; Jung, P. Robust nonnegative sparse recovery and 0/1-Bernoulli measurements. In Proceedings of the 2016 IEEE Information Theory Workshop (ITW), Cambridge, UK, 11–14 September 2016; pp. 260–264. [Google Scholar]
- Cai, T.T.; Wang, L. Orthogonal matching pursuit for sparse signal recovery with noise. IEEE Trans. Inf. Theory 2011, 57, 4680–4688. [Google Scholar] [CrossRef]
- Wei, P.; He, F. The Compressed Sensing of Wireless Sensor Networks Based on Internet of Things. IEEE Sens. J. 2021, 21, 25267–25273. [Google Scholar] [CrossRef]
- Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898–916. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Bovik, A.; Sheikh, H.; Simoncelli, E. Image quality assessment: From error visibility to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, T.; Lim, E.; López-Benítez, M.; Ma, F.; Yu, L. A Review of Wavelet Analysis and Its Applications: Challenges and Opportunities. IEEE Access 2022, 10, 58869–58903. [Google Scholar] [CrossRef]
- Nielsen, M. On the Construction and Frequency Localization of Finite Orthogonal Quadrature Filters. J. Approx. Theory 2001, 108, 36–52. [Google Scholar] [CrossRef]
- Blumensath, T.; Davies, M.E. Normalized iterative hard thresholding: Guaranteed stability and performance. IEEE J. Sel. Top. Signal Process. 2010, 4, 298–309. [Google Scholar] [CrossRef]
- Wright, S.J.; Nowak, R.D.; Figueiredo, M.A. Sparse reconstruction by separable approximation. IEEE Trans. Signal Process. 2009, 57, 2479–2493. [Google Scholar] [CrossRef]
Time | MR | 0.3 | 0.25 | 0.2 | 0.15 | 0.1 | |
---|---|---|---|---|---|---|---|
Methods | |||||||
OMP [40] | 564.3 | 172.5 | 58.9 | 15.6 | 6.3 | ||
IHT [46] | 571.8 | 176.5 | 57.7 | 12.5 | 5.7 | ||
SpaRSA [47] | 692.3 | 224.1 | 71.8 | 22.6 | 9.2 | ||
OMP-block | 99.7 | 32.9 | 10.0 | 2.8 | 0.9 | ||
IHT-block | 96.1 | 30.8 | 9.3 | 2.4 | 0.8 | ||
SpaRSA-block | 192.4 | 58.8 | 18.0 | 4.9 | 1.4 | ||
ReconNet [13] | 0.021 | 0.022 | 0.021 | 0.021 | 0.021 | ||
ISTA-Net+ [20] | 0.048 | 0.048 | 0.048 | 0.047 | 0.048 | ||
CSNet+ [16] | 0.028 | 0.027 | 0.028 | 0.028 | 0.028 | ||
GPX-ADMM [14] | 0.071 | 0.069 | 0.070 | 0.069 | 0.069 | ||
AMP-Net-2BM [26] | 0.032 | 0.031 | 0.031 | 0.033 | 0.031 | ||
AMP-Net-9BM [26] | 0.041 | 0.042 | 0.041 | 0.041 | 0.041 | ||
RootsNet-SinglePC | 0.047 | 0.046 | 0.046 | 0.047 | 0.047 | ||
RootsNet-Distributed | 0.008 | 0.008 | 0.008 | 0.008 | 0.008 |
PSNR/SSIM | MR | 0.3 | 0.25 | 0.1 | 0.05 | 0.01 | |
---|---|---|---|---|---|---|---|
Methods | |||||||
OMP [40] | 29.91/0.8641 | 28.65/0.8517 | 24.37/0.7143 | 21.26/0.5646 | 17.65/0.2426 | ||
IHT [46] | 29.31/0.8602 | 28.58/0.8500 | 24.43/0.7108 | 21.17/0.5538 | 17.22/0.2331 | ||
SpaRSA [47] | 30.86/0.8994 | 29.42/0.8676 | 26.12/0.7729 | 22.13/0.6629 | 19.17/0.3016 | ||
OMP-block | 27.14/0.8449 | 26.48/0.8303 | 23.60/0.7002 | 20.03/0.5321 | 16.895/0.2234 | ||
IHT-block | 26.66/0.8346 | 25.21/0.8151 | 23.52/0.6985 | 19.65/0.5482 | 16.01/0.1951 | ||
SpaRSA-block | 28.23/0.8537 | 27.70/0.8497 | 25.42/0.8177 | 21.72/0.5771 | 17.62/0.2568 | ||
D-AMP [32] | 32.64/0.7544 | 31.62/0.7233 | 19.87/0.3757 | 14.38/0.1034 | 5.58/0.0034 | ||
ReconNet [13] | 33.17/0.938 | 32.07/0.9246 | 27.63/0.8487 | 21.73/0.6211 | 17.54/0.4426 | ||
DCS [30] | 21.98/0.5358 | 21.85/0.5166 | 21.53/0.4546 | 17.67/0.2235 | 12.51/0.1937 | ||
ISTA-Net+ [20] | 33.66/0.9330 | 32.27/0.9127 | 25.93/0.7840 | 18.34/0.4715 | 17.12/0.3251 | ||
CSNet+ [16] | 33.90/0.9449 | 32.76/0.9322 | 27.76/0.8513 | 21.07/0.6103 | 20.09/0.5334 | ||
GPX-ADMM [14] | 33.85/0.9501 | 32.43/0.9382 | 26.96/0.8561 | 19.13/0.5421 | 18.21/0.4653 | ||
AMP-Net-2BM [26] | 35.21/0.9530 | 33.92/0.9417 | 28.67/0.8654 | 20.82/0.5614 | 20.41/0.5539 | ||
AMP-Net-9BM [26] | 36.03/0.9586 | 34.63/0.9481 | 29.40/0.8779 | 21.88/0.6441 | 20.20/0.5581 | ||
RootsNet | 34.16/0.9542 | 32.84/0.9471 | 28.86/0.8597 | 24.74/0.7734 | 22.73/0.7335 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Song, H.; Zeng, Y.; Guo, X.; Tang, C. A Real-Time and Robust Neural Network Model for Low-Measurement-Rate Compressed-Sensing Image Reconstruction. Entropy 2023, 25, 1648. https://doi.org/10.3390/e25121648
Chen P, Song H, Zeng Y, Guo X, Tang C. A Real-Time and Robust Neural Network Model for Low-Measurement-Rate Compressed-Sensing Image Reconstruction. Entropy. 2023; 25(12):1648. https://doi.org/10.3390/e25121648
Chicago/Turabian StyleChen, Pengchao, Huadong Song, Yanli Zeng, Xiaoting Guo, and Chaoqing Tang. 2023. "A Real-Time and Robust Neural Network Model for Low-Measurement-Rate Compressed-Sensing Image Reconstruction" Entropy 25, no. 12: 1648. https://doi.org/10.3390/e25121648
APA StyleChen, P., Song, H., Zeng, Y., Guo, X., & Tang, C. (2023). A Real-Time and Robust Neural Network Model for Low-Measurement-Rate Compressed-Sensing Image Reconstruction. Entropy, 25(12), 1648. https://doi.org/10.3390/e25121648