Dynamical Analyses Show That Professional Archers Exhibit Tighter, Finer and More Fluid Dynamical Control Than Neophytes
<p>Motion capture stick figure of a professional participant during the shot cycle: (<b>A</b>) Set-up phase, (<b>B</b>) Draw phase, (<b>C</b>) Aim phase, (<b>D</b>) Release phase (not included in the analysis and not done by neophytes).</p> "> Figure 2
<p>Preprocessed and normalized time series (of each group) of the Cartesian coordinates of the center of mass (CoM) and their projection onto their first principal component (PC). We resampled the bow-draw movement from all participants (which could have taken a different amount of time) to have 1000 samples each and then concatenated them to create the time series for each group. Considering the number of participants in each group (N = 14), the concatenated time series has 14,000 samples for neophytes and professionals.</p> "> Figure 3
<p>Steps for: (<b>A</b>) Plotting the phase portrait for the 1D time series of the CoM using the time-lag method, (<b>B</b>) Fitting the convex hull to the phase space trajectories, and (<b>C</b>) Removing the trajectories from the convex hulls to generate Figure 5c.</p> "> Figure 4
<p>Normalized Cartesian coordinates of the hands (<b>a</b>,<b>b</b>) and CoM (<b>c</b>) for the single bow-draw motion for all participants. The asterisks indicate the start of the motion, and the shaded areas represent standard deviations from the mean presented by the solid line.</p> "> Figure 5
<p>Convex-hulls of the phase portraits for the bow hand (<b>a</b>), the drawing hand (<b>b</b>), and CoM (<b>c</b>) of the professionals and neophytes. There is one convex hull per group, as each phase portrait was obtained from the concatenated time series from all subjects in that group. The volume of each convex hull is shown in <a href="#entropy-25-01414-t003" class="html-table">Table 3</a>.</p> "> Figure 6
<p>The slope of the fitted line on the calculated data points from the logarithm of rescaled range (<math display="inline"><semantics> <mrow> <mi>R</mi> <mo>/</mo> <mi>S</mi> </mrow> </semantics></math>) vs. the logarithm of time lags is equal to the Hurst exponent.</p> "> Figure A1
<p>The quantile-quantile plots for the professionals (<b>a</b>–<b>c</b>) and the neophytes (<b>d</b>–<b>f</b>).</p> ">
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Procedure
2.3. Data Preprocessing
2.3.1. Kinematics Resampling and Normalization
2.3.2. Creation of a 1D Time Series for the CoM, Drawing Hand, and Bow Hand
2.4. Phase Space Reconstruction
2.4.1. Time Delay and Embedding Dimension
2.4.2. Convex Hull of Phase Portrait
2.5. Hurst Exponent Analysis
2.6. Sample Entropy
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1. Further Analysis of First PC
Appendix A.1.1. Nonstationarity Test
Appendix A.1.2. Nonlinearity Test
Appendix A.1.3. Detection of Chaos
Body Part | Professionals | Neophytes |
---|---|---|
Bow Hand | 0 | 0 |
Drawing Hand | 0 | 0 |
Center of Mass | 22.1 | 20.2 |
References
- Sigmundsson, H.; Trana, L.; Polman, R.; Haga, M. What is trained develops! theoretical perspective on skill learning. Sports 2017, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- de Pedro-Carracedo, J.; Fuentes-Jimenez, D.; Ugena, A.M.; Gonzalez-Marcos, A.P. Phase space reconstruction from a biological time series: A photoplethysmographic signal case study. Appl. Sci. 2020, 10, 1430. [Google Scholar] [CrossRef]
- Peppoloni, L.; Lawrence, E.L.; Ruffaldi, E.; Valero-Cuevas, F.J. Characterization of the disruption of neural control strategies for dynamic fingertip forces from attractor reconstruction. PLoS ONE 2017, 12, e0172025. [Google Scholar] [CrossRef]
- Paterno, M.V.; Kiefer, A.W.; Bonnette, S.; Riley, M.A.; Schmitt, L.C.; Ford, K.R.; Myer, G.D.; Shockley, K.; Hewett, T.E. Prospectively identified deficits in sagittal plane hip–ankle coordination in female athletes who sustain a second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Clin. Biomech. 2015, 30, 1094–1101. [Google Scholar] [CrossRef]
- Kurz, M.J.; Stergiou, N.; Buzzi, U.H.; Georgoulis, A.D. The effect of anterior cruciate ligament reconstruction on lower extremity relative phase dynamics during walking and running. Knee Surg. Sports Traumatol. Arthrosc. 2005, 13, 107–115. [Google Scholar] [CrossRef]
- Quintana-Duque, J.C. Non-linear dynamic invariants based on embedding reconstruction of systems for pedaling motion. In Proceedings of the Sportinformatik 2012, Konstanz, Germany, 12–14 September 2012. [Google Scholar]
- Wu, W.; Zeng, W.; Ma, L.; Yuan, C.; Zhang, Y. Modeling and classification of gait patterns between anterior cruciate ligament deficient and intact knees based on phase space reconstruction, Euclidean distance and neural networks. Biomed. Eng. Online 2018, 17, 165. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Ismail, S.A.; Pappas, E. Classification of gait patterns in patients with unilateral anterior cruciate ligament deficiency based on phase space reconstruction, Euclidean distance and neural networks. Soft Comput. 2020, 24, 1851–1868. [Google Scholar] [CrossRef]
- Shea, J.J. The origins of lithic projectile point technology: Evidence from Africa, the Levant, and Europe. J. Archaeol. Sci. 2006, 33, 823–846. [Google Scholar] [CrossRef]
- Williams, V.M.; Burke, A.; Lombard, M. Throwing spears and shooting arrows: Preliminary results of a pilot neuroarchaeological study. S. Afr. Archaeol. Bull. 2014, 69, 199–207. [Google Scholar]
- Hatfield, B.D.; Haufler, A.J.; Hung, T.M.; Spalding, T.W. Electroencephalographic studies of skilled psychomotor performance. J. Clin. Neurophysiol. 2004, 21, 144–156. [Google Scholar] [CrossRef]
- Nishizono, H.; Shibayama, H.; Izuta, T.; Saito, K. Analysis of archery shooting techniques by means of electromyography. In Proceedings of the 5 International Symposium on Biomechanics in Sports, Athens, Greece, 12–17 July 1987; pp. 364–372. [Google Scholar]
- Wang, D.; Hu, T.; Luo, R.; Shen, Q.; Wang, Y.; Li, X.; Qiao, J.; Zhu, L.; Cui, L.; Yin, H. Effect of cognitive reappraisal on archery performance of elite athletes: The mediating effects of sport-confidence and attention. Front. Psychol. 2022, 13, 860817. [Google Scholar] [CrossRef] [PubMed]
- Dorshorst, T.; Weir, G.; Hamill, J.; Holt, B. Archery’s signature: An electromyographic analysis of the upper limb. Evol. Hum. Sci. 2022, 4, e25. [Google Scholar] [CrossRef]
- Baifa, Z.; Xinglong, Z.; Dongmei, L. Muscle coordination during archery shooting: A comparison of archers with different skill levels. Eur. J. Sport Sci. 2023, 23, 54–61. [Google Scholar] [CrossRef]
- Shinohara, H.; Urabe, Y. Analysis of muscular activity in archery: A comparison of skill level. J. Sport. Med. Phys. Fit. 2017, 58, 1752–1758. [Google Scholar] [CrossRef] [PubMed]
- Ertan, H.; Kentel, B.; Tümer, S.; Korkusuz, F. Activation patterns in forearm muscles during archery shooting. Hum. Mov. Sci. 2003, 22, 37–45. [Google Scholar] [CrossRef]
- Kuch, A.; Tisserand, R.; Durand, F.; Monnet, T.; Debril, J.F. Postural adjustments preceding string release in trained archers. J. Sport. Sci. 2023, 41, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Sarro, K.J.; Viana, T.D.C.; De Barros, R.M.L. Relationship between bow stability and postural control in recurve archery. Eur. J. Sport Sci. 2021, 21, 515–520. [Google Scholar] [CrossRef]
- Spratford, W.; Campbell, R. Postural stability, clicker reaction time and bow draw force predict performance in elite recurve archery. Eur. J. Sport Sci. 2017, 17, 539–545. [Google Scholar] [CrossRef]
- Laborde, S.; Dosseville, F.E.; Leconte, P.; Margas, N. Interaction of hand preference with eye dominance on accuracy in archery. Percept. Mot. Ski. 2009, 108, 558–564. [Google Scholar] [CrossRef] [PubMed]
- Callaway, A.J.; Wiedlack, J.; Heller, M. Identification of temporal factors related to shot performance for indoor recurve archery. J. Sport. Sci. 2017, 35, 1142–1147. [Google Scholar] [CrossRef]
- Bartsch-Jimenez, A.; Błażkiewicz, M.; Azadjou, H.; Novotny, R.; Valero-Cuevas, F.J. Fine synergies” describe motor adaptation in people with drop foot in a way that supplements traditional “coarse synergies. Front. Sport. Act. Living 2023, 5, 1080170. [Google Scholar] [CrossRef]
- Warmenhoven, J.; Cobley, S.; Draper, C.; Harrison, A.; Bargary, N.; Smith, R. Considerations for the use of functional principal components analysis in sports biomechanics: Examples from on-water rowing. Sport. Biomech. 2019, 18, 317–341. [Google Scholar] [CrossRef]
- Federolf, P.; Reid, R.; Gilgien, M.; Haugen, P.; Smith, G. The application of principal component analysis to quantify technique in sports. Scand. J. Med. Sci. Sports 2014, 24, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Witte, K.; Ganter, N.; Baumgart, C.; Peham, C. Applying a principal component analysis to movement coordination in sport. Math. Comput. Model. Dyn. Syst. 2010, 16, 477–488. [Google Scholar] [CrossRef]
- Matilla-García, M.; Morales, I.; Rodríguez, J.M.; Ruiz Marín, M. Selection of embedding dimension and delay time in phase space reconstruction via symbolic dynamics. Entropy 2021, 23, 221. [Google Scholar] [CrossRef]
- Wang, H.Y.; Sigerson, L.; Jiang, H.; Cheng, C. Psychometric properties and factor structures of Chinese smartphone addiction inventory: Test of two models. Front. Psychol. 2018, 9, 1411. [Google Scholar] [CrossRef]
- Kennel, M.B.; Brown, R.; Abarbanel, H.D. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 1992, 45, 3403. [Google Scholar] [CrossRef] [PubMed]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–799. [Google Scholar] [CrossRef]
- Hurst, H.E.; Black, R.P.; Simaika, Y.M. Long term storage. Exp. Study. 1965. Available online: https://cir.nii.ac.jp/crid/1573387449265485184 (accessed on 23 August 2023).
- Kroha, P.; Skoula, M. Hurst Exponent and Trading Signals Derived from Market Time Series. In Proceedings of the ICEIS (1), Funchal, Madeira, 21–24 March 2018; pp. 371–378. [Google Scholar]
- Jagdhane, S.; Kanekar, N.; S Aruin, A. The effect of a four-week balance training program on anticipatory postural adjustments in older adults: A pilot feasibility study. Curr. Aging Sci. 2016, 9, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T. Plasticity of the postural function to sport and/or motor experience. Neurosci. Biobehav. Rev. 2017, 72, 129–152. [Google Scholar] [CrossRef]
- Mason, B.R.; Pelgrim, P.P. Body stability and performance in archery. Excel 1986, 3, 17–20. [Google Scholar]
- Simsek, D.; Cerrah, A.; Ertan, H.; Soylu, A. A comparison of the ground reaction forces of archers with different levels of expertise during the arrow shooting. Sci. Sports 2019, 34, e137–e145. [Google Scholar] [CrossRef]
- Mégrot, F.; Bardy, B.G. Changes in phase space during learning an unstable balance. Neurosci. Lett. 2006, 402, 17–21. [Google Scholar] [CrossRef]
- van Schooten, K.S.; Rispens, S.M.; Pijnappels, M.; Daffertshofer, A.; van Dieen, J.H. Assessing gait stability: The influence of state space reconstruction on inter-and intra-day reliability of local dynamic stability during over-ground walking. J. Biomech. 2013, 46, 137–141. [Google Scholar] [CrossRef]
- Sessa, S.; Saito, K.; Zecca, M.; Bartolomeo, L.; Lin, Z.; Cosentino, S.; Ishii, H.; Ikai, T.; Takanishi, A. Walking assessment in the phase space by using ultra-miniaturized Inertial Measurement Units. In Proceedings of the 2013 IEEE International Conference on Mechatronics and Automation, Takamatsu, Japan, 4–7 August 2013; pp. 902–907. [Google Scholar] [CrossRef]
- Saraiva, M.; Vilas-Boas, J.P.; Fernandes, O.J.; Castro, M.A. Effects of motor task difficulty on postural control complexity during dual tasks in young adults: A nonlinear approach. Sensors 2023, 23, 628. [Google Scholar] [CrossRef] [PubMed]
- López-Méndez, A.; Casas, J.R. Model-based recognition of human actions by trajectory matching in phase spaces. Image Vis. Comput. 2012, 30, 808–816. [Google Scholar] [CrossRef]
- Takens, F. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: New York, NY, USA, 1981; pp. 366–381. [Google Scholar]
- Ottino, J.M.; Shinbrot, T. Nonlinear Dynamics and Chaos (with Applications to Physics, Biology Chemistry, and Engineering); Strogatz, S.H., Ed.; Addison-Wesley: Reading, MA, USA, 1994; 498p. [Google Scholar]
- Kaplan, D.; Glass, L. Time-series analysis. In Understanding Nonlinear Dynamics; Springer: New York, NY, USA, 1995; pp. 278–358. [Google Scholar]
- Ott, E. Chaos in Dynamical Systems; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Zhivomirov, H.; Nedelchev, I. A Method for Signal Stationarity Estimation. Rom. J. Acoust. Vib. 2020, 17, 149–155. [Google Scholar]
- Prichard, D.; Theiler, J. Generating surrogate data for time series with several simultaneously measured variables. Phys. Rev. Lett. 1994, 73, 951. [Google Scholar] [CrossRef]
- Martinez, W.L.; Martinez, A.R. Computational Statistics Handbook with MATLAB; Chapman and Hall/CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: Cambridge, UK, 2004; Volume 7. [Google Scholar]
- Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J.D. Testing for nonlinearity in time series: The method of surrogate data. Phys. D Nonlinear Phenom. 1992, 58, 77–94. [Google Scholar] [CrossRef]
- Fraser, A.; Swinney, H. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134. [Google Scholar] [CrossRef] [PubMed]
- Liebert, W.; Schuster, H. Proper choice of the time delay for the analysis of chaotic time series. Phys. Lett. A 1989, 142, 107–111. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef]
Group | Age [Years] | Body Mass [kg] | Height [cm] | Training History [Years] | Draw Weight [lb] |
---|---|---|---|---|---|
Professionals (N = 14) | 23.7 ± 9.9 | 73.2 ± 16.5 | 175.7 ± 9.7 | 11.1 ± 7.9 | 36–40 |
Neophytes (N = 14) | 23.5 ± 1.3 | 73.3 ± 16.7 | 176 ± 13.5 | 0 | 30 |
Body Part | Professionals | Neophytes |
---|---|---|
Bow Hand | 64.3 | 68.6 |
Drawing Hand | 76.1 | 74.9 |
Center of Mass | 56.5 | 62.5 |
Body Part | Professionals | Neophytes | |
---|---|---|---|
Bow Hand | 7.0 | < * | 8.3 |
Drawing Hand | 7.3 | < * | 8.0 |
Center of Mass | 6.3 | < * | 11.2 |
Body Part | Professionals | Neophytes | |
---|---|---|---|
Bow Hand | 0.71 | < * | 0.79 |
Drawing Hand | 0.85 | < * | 0.86 |
Center of Mass | 0.82 | < * | 0.86 |
Body Part | Professionals | Neophytes | |
---|---|---|---|
Bow Hand | 0.024 | > | 0.023 |
Drawing Hand | 0.020 | > * | 0.014 |
Center of Mass | 0.035 | > * | 0.025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azadjou, H.; Błażkiewicz, M.; Erwin, A.; Valero-Cuevas, F.J. Dynamical Analyses Show That Professional Archers Exhibit Tighter, Finer and More Fluid Dynamical Control Than Neophytes. Entropy 2023, 25, 1414. https://doi.org/10.3390/e25101414
Azadjou H, Błażkiewicz M, Erwin A, Valero-Cuevas FJ. Dynamical Analyses Show That Professional Archers Exhibit Tighter, Finer and More Fluid Dynamical Control Than Neophytes. Entropy. 2023; 25(10):1414. https://doi.org/10.3390/e25101414
Chicago/Turabian StyleAzadjou, Hesam, Michalina Błażkiewicz, Andrew Erwin, and Francisco J. Valero-Cuevas. 2023. "Dynamical Analyses Show That Professional Archers Exhibit Tighter, Finer and More Fluid Dynamical Control Than Neophytes" Entropy 25, no. 10: 1414. https://doi.org/10.3390/e25101414
APA StyleAzadjou, H., Błażkiewicz, M., Erwin, A., & Valero-Cuevas, F. J. (2023). Dynamical Analyses Show That Professional Archers Exhibit Tighter, Finer and More Fluid Dynamical Control Than Neophytes. Entropy, 25(10), 1414. https://doi.org/10.3390/e25101414