Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect
<p>Dynamics of the quantum memory-assisted entropic uncertainty (<math display="inline"><semantics> <mrow> <mi>U</mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>), entropy purity <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and negativity entanglement <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are shown for the initial maximally correlated state <math display="inline"><semantics> <mrow> <mfrac> <mn>1</mn> <msqrt> <mn>2</mn> </msqrt> </mfrac> <mrow> <mo stretchy="false">(</mo> <mo>|</mo> <msub> <mn>1</mn> <mi>A</mi> </msub> <msub> <mn>0</mn> <mi>B</mi> </msub> <mo>〉</mo> </mrow> <mrow> <mo>−</mo> <mo>|</mo> </mrow> <msub> <mn>0</mn> <mi>A</mi> </msub> <msub> <mn>1</mn> <mi>B</mi> </msub> <mrow> <mo>〉</mo> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics></math> in the absence of the decoherence <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and detunings <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. When the cavities are initially in CEC cavity state in (<b>a</b>) and in EC cavity state in (<b>b</b>) for small coherent strengths, <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>α</mi> <mi>A</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.9</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>α</mi> <mi>B</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>0.5</mn> </mrow> </semantics></math>.</p> "> Figure 2
<p>Dynamics of the quantum memory-assisted entropic uncertainty (<math display="inline"><semantics> <mrow> <mi>U</mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>), entropy purity <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and negativity entanglement <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are shown in (<b>a</b>) and in (<b>b</b>) with the same parameters as <a href="#entropy-24-00545-f001" class="html-fig">Figure 1</a>a and <a href="#entropy-24-00545-f001" class="html-fig">Figure 1</a>b, respectively, but for <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>A</mi> </msub> <mo>=</mo> <msub> <mi>δ</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>λ</mi> </mrow> </semantics></math>.</p> "> Figure 3
<p>Dynamics of the quantum memory-assisted entropic uncertainty (<math display="inline"><semantics> <mrow> <mi>U</mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>), entropy purity <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and negativity entanglement <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are shown in (<b>a</b>) and in (<b>b</b>) with the same parameters as <a href="#entropy-24-00545-f001" class="html-fig">Figure 1</a>a and <a href="#entropy-24-00545-f002" class="html-fig">Figure 2</a>a, respectively, for CEC configuration but in the presence of the intrinsic decoherence <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.06</mn> <mi>λ</mi> </mrow> </semantics></math>.</p> "> Figure 4
<p>Dynamics of the quantum memory-assisted entropic uncertainty (<math display="inline"><semantics> <mrow> <mi>U</mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>), entropy purity <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and negativity entanglement <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are shown for the initial maximally correlated state in the absence of the decoherence <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math> and detunings <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> </mrow> </semantics></math>. When the cavities are initially prepared as CEC configuration in (<b>a</b>) and in EC in (<b>b</b>) for large coherent strengths <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>α</mi> <mi>A</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>8</mn> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mrow> <mo>|</mo> </mrow> <msub> <mi>α</mi> <mi>B</mi> </msub> <msup> <mrow> <mo>|</mo> </mrow> <mn>2</mn> </msup> <mo>=</mo> <mn>10</mn> </mrow> </semantics></math>.</p> "> Figure 5
<p>Dynamics of the quantum memory-assisted entropic uncertainty (<math display="inline"><semantics> <mrow> <mi>U</mi> <mi>R</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> and <math display="inline"><semantics> <mrow> <mi>U</mi> <mi>L</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>), entropy purity <math display="inline"><semantics> <mrow> <mi>E</mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math>, and negativity entanglement <math display="inline"><semantics> <mrow> <mi>N</mi> <mi>E</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> </semantics></math> are shown as <a href="#entropy-24-00545-f004" class="html-fig">Figure 4</a>b for EC configuration, but under the effects of the two-charge-qubit detunings <math display="inline"><semantics> <mrow> <msub> <mi>δ</mi> <mi>A</mi> </msub> <mo>=</mo> <msub> <mi>δ</mi> <mi>B</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>λ</mi> </mrow> </semantics></math> in (<b>a</b>) and of the intrinsic decoherence <math display="inline"><semantics> <mrow> <mi>γ</mi> <mo>=</mo> <mn>0.06</mn> <mi>λ</mi> </mrow> </semantics></math> in (<b>b</b>).</p> ">
Abstract
:1. Introduction
2. The Physical Model and Its Dynamics
2.1. Physical Description
2.2. The Solution of the Milburn Equation
3. Quantum Information Resources Measures
- Entropic uncertaintyFor incompatible observables P and Q, Bob’s uncertainty regarding the two qubits (A and B) measurement outcome is given by [49,50]:
- Two-charge-qubit entropy purity ()Here, entropy is used to quantify the amount of two-charge-qubit purity/mixedness [51].The qubit–qubit entropy is defined by:
- Two-qubit negativity entanglement ():The negativity is a good entanglement monotonic measure. In the current case, is used to investigate the two-charge-qubit entanglement [52]. It is equal to the absolute sum of the negative eigenvalues of the density matrix that is the partial transpose of the two-charge-qubit density matrix with respect to subsystem A. The elements of are given by:When , the state is separable. The function is used to estimate the entanglement amount of the quantum state.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wendin, G.; Shumeiko, V.S. Quantum bits with Josephson junctions. Low Temp. Phys. 2007, 33, 724–744. [Google Scholar] [CrossRef] [Green Version]
- Yurgens, A.A. Intrinsic Josephson junctions: Recent developments. Supercond. Sci. Technol. 2000, 13, R85. [Google Scholar] [CrossRef]
- Pekola, J.P.; Toppari, J.J. Decoherence in circuits of small Josephson junctions. Phys. Rev. B 2001, 64, 172509. [Google Scholar] [CrossRef] [Green Version]
- Berkley, A.J.; Xu, H.; Gubrud, M.A.; Ramos, R.C.; Anderson, J.R.; Lobb, C.J.; Wellstood, F.C. Decoherence in a Josephson-junction qubit. Phys. Rev. B 2003, 68, 060502. [Google Scholar] [CrossRef] [Green Version]
- DiVincenzo, D.P.; Brito, F.; Koch, R.H. Decoherence rates in complex Josephson qubit circuits. Phys. Rev. B 2006, 74, 014514. [Google Scholar] [CrossRef] [Green Version]
- Sete, E.A.; Eleuch, H. Strong squeezing and robust entanglement in cavity electromechanics. Phys. Rev. A 2014, 89, 013841. [Google Scholar] [CrossRef] [Green Version]
- Fendley, P.; Schoutens, K. Cooper pairs and exclusion statistics from coupled free-fermion chains. J. Stat. Mech. Theory Exp. 2007, 2007, P02017. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R., Jr. Position and Temperature Measurements of a Single Atom via Resonant Fluorescence. Ph.D. Thesis, University of Oregon, Eugene, OR, USA, 2019. [Google Scholar]
- You, J.Q.; Nori, F. Atomic physics and quantum optics using superconducting circuits. Nature 2011, 474, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Blais, A.; Girvin, S.M.; Oliver, W.D. Quantum information processing and quantum optics with circuit quantum electrodynamics. Nat. Phys. 2020, 16, 247–256. [Google Scholar] [CrossRef]
- Wendin, G. Quantum information processing with superconducting circuits: A review. Rep. Prog. Phys. 2017, 80, 106001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devoret, M.H.; Schoelkopf, R.J. Superconducting circuits for quantum information: An outlook. Science 2013, 339, 1169–1174. [Google Scholar] [CrossRef] [Green Version]
- Menke, T.; Häse, F.; Gustavsson, S.; Kerman, A.J.; Oliver, W.D.; Aspuru-Guzik, A. Automated design of superconducting circuits and its application to 4-local couplers. NPJ Quantum Inf. 2021, 7, 1–8. [Google Scholar] [CrossRef]
- You, J.Q.; Nori, F. Superconducting Circuits and Quantum Information. Phys. Today 2005, 58, 42. [Google Scholar] [CrossRef] [Green Version]
- You, J.Q.; Tsai, J.S.; Nori, F. Quantum information processing with superconducting qubits in a microwave field. Phys. Rev. B 2003, 68, 02451. [Google Scholar] [CrossRef] [Green Version]
- Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A.; Homid, A.H. A proposal for the realization of universal quantum gates via superconducting qubits inside a cavity. Ann. Phys. 2013, 334, 47. [Google Scholar] [CrossRef]
- Wehner, S.; Winter, A. Entropic uncertainty relations—A survey. New J. Phys. 2010, 12, 025009. [Google Scholar] [CrossRef]
- Coles, P.J.; Berta, M.; Tomamichel, M.; Wehner, S. Entropic uncertainty relations and their applications. Rev. Mod. Phys. 2017, 89, 015002. [Google Scholar] [CrossRef] [Green Version]
- Son, W. Role of quantum non-Gaussian distance in entropic uncertainty relations. Phys. Rev. A 2015, 92, 012114. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, J.A. On an inequality considered by Robertson. Proc. Am. Math. Soc. 1968, 19, 549–550. [Google Scholar] [CrossRef]
- Srinivas, M.D. Entropic formulation of uncertainty relations. Pramana 1985, 25, 369–375. [Google Scholar] [CrossRef]
- Damgard, I.B.; Fehr, S.; Salvail, L.; Schaffner, C. Cryptography in the bounded-quantum-storage model. SIAM J. Comput. 2008, 37, 1865–1890. [Google Scholar] [CrossRef] [Green Version]
- Guehne, O.; Lewenstein, M. Entropic uncertainty relations and entanglement. Phys. Rev. A 2004, 70, 022316. [Google Scholar] [CrossRef] [Green Version]
- Awasthi, N.; Haseli, S.; Johri, U.C.; Salimi, S.; Dolatkhah, H.; Khorashad, A.S. Quantum speed limit time for correlated quantum channel. Quantum Inf. Process. 2020, 19, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, Y.; Wang, X.; Yu, S.; Guo, H. Improving parameter estimation of entropic uncertainty relation in continuous-variable quantum key distribution. Entropy 2019, 21, 652. [Google Scholar] [CrossRef] [Green Version]
- Luis, A.; Rodil, A. Alternative measures of uncertainty in quantum metrology: Contradictions and limits. Phys. Rev. A 2013, 87, 034101. [Google Scholar] [CrossRef] [Green Version]
- Orlikowski, W.J.; Scott, S.V. The Entanglement of Technology and Work in Organizations; LSE: London, UK, 2008. [Google Scholar]
- Berrada, K.; Chafik, A.; Eleuch, H.; Hassouni, Y. Concurrence in the framework of coherent states. Quantum Inf. Process. 2010, 9, 13–26. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H.; Ooi, C.H.R. Quantum coherence and entanglement partitions for two driven quantum dots inside a coherent micro cavity. Phys. Lett. A 2019, 383, 125905. [Google Scholar] [CrossRef]
- Hu, X.M.; Guo, Y.; Liu, B.H.; Huang, Y.F.; Li, C.F.; Guo, G.C. Beating the channel capacity limit for superdense coding with entangled ququarts. Sci. Adv. 2018, 4, eaat9304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saffman, M.; Walker, T.G. Entangling single-and N-atom qubits for fast quantum state detection and transmission. Phys. Rev. A 2005, 72, 042302. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Ren, J.G.; Lu, H.; Cao, Y.; Yong, H.L.; Wu, Y.P.; Pan, J.W. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 2012, 488, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Asjad, M.; Qasymeh, M.; Eleuch, H. Continuous-Variable Quantum Teleportation Using a Microwave-Enabled Plasmonic Graphene Waveguide. Phys. Rev. Appl. 2021, 16, 034046. [Google Scholar] [CrossRef]
- Zidan, M. A novel quantum computing model based on entanglement degree. Mod. Phys. Lett. B 2020, 34, 2050401. [Google Scholar] [CrossRef]
- Fan, P.; Rahman, A.U.; Ji, Z.; Ji, X.; Hao, Z.; Zhang, H. Two-party quantum private comparison based on eight-qubit entangled state. Mod. Phys. Lett. A 2022, 37, 2250026. [Google Scholar] [CrossRef]
- Thagard, P. Explanatory coherence. Behav. Brain Sci. 1989, 12, 435–467. [Google Scholar] [CrossRef]
- Streltsov, A.; Adesso, G.; Plenio, M.B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 2017, 89, 041003. [Google Scholar] [CrossRef] [Green Version]
- Rahman, A.U.; Haddadi, S.; Pourkarimi, M.R.; Ghominejad, M. Fidelity of quantum states in a correlated dephasing channel. Laser Phys. Lett. 2022, 19, 035204. [Google Scholar] [CrossRef]
- Bluhm, H.; Foletti, S.; Neder, I.; Rudner, M.; Mahalu, D.; Umansky, V.; Yacoby, A. Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs. Nat. Phys. 2011, 7, 109–113. [Google Scholar] [CrossRef]
- Chiorescu, I.; Bertet, P.; Semba, K.; Nakamura, Y.; Harmans, C.J.P.M.; Mooij, J.E. Coherent dynamics of a flux qubit coupled to a harmonic oscillator. Nature 2004, 431, 159–162. [Google Scholar] [CrossRef] [Green Version]
- Fonseca-Romero, K.M.; Kohler, S.; Hänggi, P. Coherence stabilization of a two-qubit gate by ac fields. Phys. Rev. Lett. 2005, 95, 140502. [Google Scholar] [CrossRef] [Green Version]
- Luthi, F.; Stavenga, T.; Enzing, O.W.; Bruno, A.; Dickel, C.; Langford, N.K.; DiCarlo, L. Evolution of nanowire transmon qubits and their coherence in a magnetic field. Phys. Rev. Lett. 2018, 120, 100502. [Google Scholar] [CrossRef] [Green Version]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anwar, S.J.; Ramzan, M.; Usman, M.; Khan, M.K. Thermal and intrinsic decoherence effects on the dynamics of two three-level moving atomic system. Phys. A 2020, 549, 124297. [Google Scholar] [CrossRef]
- Khalil, E.M.; Mohamed, A.-B.A.; Obada, A.-S.F.; Eleuch, H. Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity. Mathematics 2020, 8, 1830. [Google Scholar] [CrossRef]
- Karpat, G.; Piilo, J.; Maniscalco, S. Controlling entropic uncertainty bound through memory effects. EPL (Europhys. Lett.) 2015, 111, 50006. [Google Scholar] [CrossRef]
- Duty, T.; Gunnarsson, D.; Bladh, K.; Delsing, P. Coherent dynamics of a Josephson charge qubit. Phys. Rev. B 2004, 69, 140503. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-X.; Wei, L.F.; Nori, F. Measuring the quality factor of a microwave cavity using superconducting qubit devices. Phys. Rev. A 2005, 72, 033818. [Google Scholar] [CrossRef] [Green Version]
- Zidan, N.; Bakry, H.; Rahman, A.U. Entanglement and Entropic Uncertainty of Two Two-Level Atoms. Annalen der Physik 2022, 2100555. [Google Scholar] [CrossRef]
- Berta, M.; Christandl, M.; Colbeck, R.; Renes, J.M.; Renner, R. The uncertainty principle in the presence of quantum memory. Nat. Phys. 2010, 6, 659. [Google Scholar] [CrossRef]
- Phoenix, S.J.D.; Knight, P.L. Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A 1991, 44, 6023. [Google Scholar] [CrossRef]
- Vidal, G.; Werner, R.F. A computable measure of entanglement. Phys. Rev. A 2002, 65, 032314. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.B.; Metwally, N. Quantifying the non-classical correlation of a two-atom system nonlinearly interacting with a coherent cavity: Local quantum Fisher information and Bures distance entanglement. Nonlinear Dyn. 2021, 104, 2573–2582. [Google Scholar] [CrossRef]
- Wang, C.Z.; Li, C.X.; Nie, L.Y.; Li, J.F. Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B 2010, 44, 015503. [Google Scholar] [CrossRef]
- Fang, B.L.; Shi, J.; Wu, T. Quantum-memory-assisted entropic uncertainty relation and quantum coherence in structured reservoir. Int. J. Theor. Phys. 2020, 59, 763–771. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Q.; Fang, M.; Kang, G.; Li, X. Quantum-memory-assisted entropic uncertainty in two-qubit Heisenberg XYZ chain with Dzyaloshinskii-Moriya interactions and effects of intrinsic decoherence. Quantum Inf. Process. 2018, 17, 1–23. [Google Scholar] [CrossRef]
- Khedr, A.N.; Mohamed, A.B.A.; Abdel-Aty, A.H.; Tammam, M.; Abdel-Aty, M.; Eleuch, H. Entropic Uncertainty for Two Coupled Dipole Spins Using Quantum Memory under the Dzyaloshinskii-Moriya Interaction. Entropy 2021, 23, 1595. [Google Scholar] [CrossRef]
- Rahman, A.U.; Noman, M.; Javed, M.; Ullah, A.; Luo, M.X. Effects of classical fluctuating environments on decoherence and bipartite quantum correlations dynamics. Laser Phys. 2021, 31, 115202. [Google Scholar] [CrossRef]
- Mishra, U.; Prabhu, R.; Rakshit, D. Quantum correlations in periodically driven spin chains: Revivals and steady-state properties. J. Magn. Magn. Mater. 2019, 491, 165546. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohamed, A.-B.A.; Rahman, A.U.; Eleuch, H. Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect. Entropy 2022, 24, 545. https://doi.org/10.3390/e24040545
Mohamed A-BA, Rahman AU, Eleuch H. Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect. Entropy. 2022; 24(4):545. https://doi.org/10.3390/e24040545
Chicago/Turabian StyleMohamed, Abdel-Baset A., Atta Ur Rahman, and Hichem Eleuch. 2022. "Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect" Entropy 24, no. 4: 545. https://doi.org/10.3390/e24040545
APA StyleMohamed, A. -B. A., Rahman, A. U., & Eleuch, H. (2022). Measurement Uncertainty, Purity, and Entanglement Dynamics of Maximally Entangled Two Qubits Interacting Spatially with Isolated Cavities: Intrinsic Decoherence Effect. Entropy, 24(4), 545. https://doi.org/10.3390/e24040545